
Reconstruction of Metabolic Networks Using IncompleteInformationbyTerry Gaasterland1 and Evgeni Selkov2AbstractThis paper describes an approach that uses methods for automated sequence analysis[GLMC94] and multiple databases accessed through an object+attribute view of thedata [BDG+92], together with metabolic pathways, reaction equations, and compoundsparsed into a logical representation from the Enzyme and Metabolic Pathway Database[SYet.al.94], as the sources of data for automatically reconstructing a weighted partialmetabolic network for a prokaryotic organism. Additional information can be providedinteractively by the expert user to guide reconstruction.1 IntroductionAs available genome sequence data for microbial organisms increases both in the amountof data for individual organisms and in the number of organisms with data, we ask: howmuch of an organism's metabolic structure can be pieced together using sequence evidence,knowledge about metabolism, and encoded metabolic pathways? How much of this processcan be automated? How can the resulting tool be used to help people investigate anorganism? This paper describes a prototyped methodology for automatically reconstructingpartial metabolic networks. Our goal is to describe the modules of knowledge necessaryfor this endeavor, to present novel methods to use them, and to describe a prototypesystem written in Prolog with examples from Mycoplasma capricolum. The methodologyis grounded in theory of logic programming, annotated logic programming, reasoning withincomplete information, and handling user con�dences. The work has unfolded in closeconcert with the manual reconstruction of the metabolism of Mycoplasma capricolum bydomain experts with the intention of building a tool that will work rapidly and reliably forprocaryotic organisms, in particular for archaea [Doo92].One critical component for carrying out reconstruction of metabolism from genomesequence data is a system that produces a ranked list of potential proteins that appear inthe sequence data. The AutoSeq system at Argonne [GL94, GLMC94] provides this facility.It takes assembled sequence fragments as input and produces an interpretation of proteinswith genomic evidence at varying levels of con�dence. The AutoSeq system is written inProlog and produces an analysis as Prolog facts as well as in a WWW browseable form. So1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. E-mail:gaasterland@mcs.anl.gov2The Mathematics and Computer Science Department, Argonne National Laboratory, and the Institutefor Theoretical and Experimental Biophysics, The Russian Academy of Science, 142292 Pushchino, Russia,E-mail: evgeni@mcs.anl.gov 1



the interpretation is accessible for answering queries about putative proteins in an analyzedorganism.Another necessary component is encoded knowledge about metabolic pathways and re-action equations. The EMP database [SYet.al.94] provides this information. Over 1000pathways from EMP have been parsed into Prolog facts as lists of connected reaction equa-tions with direction, reversibility, and other supporting information.Also needed is an environment for answering queries about individual sequences, phylo-genetically related organisms, and sets of sequences interrelated by homology. The GenoBaseintegrated database system [BDG+92, YSK+92] provides this environment. It treats eachbody of data as a set of objects with attributes. Each object-attribute structure is encodedas one or more Prolog facts. Prolog rules capture operators over the objects. Togetherthe rules and facts form a knowledge base that can be used to answer queries during thereconstruction.The next section provides background information. Next we describe how reconstructionis carried out using direct evidence and give the basic reconstruction algorithm. Thenwe give examples of how the basic reconstruction algorithm applies to a selected body ofevidence from a procaryotic organism, Mycoplasma capricolum. Finally we show how touse additional information about the environment that an organism requires for its survival.This facility becomes important for organisms that import substances instead of | or aswell as | manufacturing them.2 BackgroundProcaryotic Organisms With the eventual goal of carrying out sequence analysis forcomplex organisms, we seek to build and understand analysis tools for the simplest organ-isms: procaryotes. Procaryotic organisms have fewer complications than other organisms.In their genome sequences, they rarely have introns; a sequence that translates into a pro-tein usually has a starting point marked by a start codon and continues until a stoppingpoint marked by a stop codon is reached. A prokaryote nuclear region has no nuclear mem-brane and consists of a single DNA molecule that divides non-miotically. It lacks histonesand nucleolus. The cell's plasma membrane usually lacks sterols, and internal membranesare limited to speci�c groups. Ribosomes are 70S in size, smaller than in other organisms.Procaryotic cells have no microtubules and are generally small, on the order of <2�m.With their simplicity and small size, procaryotes almost have an enumerable set ofmetabolic functions. One can estimate the order of the number of genes in the genomefrom a functional layout of such an organism's necessary components. This knowledgegreatly facilitates the process of reconstructing an procaryote's metabolism. Given just afew protein parts involved in a module of the metabolic machine of an organism in questionand given a limited but crucial amount of speci�c knowledge about the pathways thatappear in similar organisms, we can infer much abut the module. The examples sectiongives illustrates this with Mycoplasma capricolum, a procaryotic organism whose genomeis 30-40% sequenced.Prolog and Logic Programming Much knowledge about a domain can be captured inlogical expressions. Logic programming provides a means to compute new information basedon captured information. Prolog is a programming language that carries computation overlogical expressions. Logic programs have two types of logical expressions: facts and rules.2



Facts are atomic expressions formed from a predicate with arguments | the argumentscontain terms. A term is either a variable, a constant, or a function applied to a term. So,if p is a predicate with two arguments; a and b are constants; f is a function; and X andY are variables, p(a; b) is a fact, as are p(f(a); b), p(X;X), p(f(Y ); a) (and more). A factmay be referred to as an atom.A rule has a body and a head: Head Body. It expresses the notion that Head is trueif Body is true. The head of a rule is an atom. The body of a rule is a (possibly empty)conjunction of atoms. A rule with an empty body is a fact. So, if we add the predicatesr and s each with one argument to our collection above, p(X;X) s(X); q(X): (meaning"p(X,X) is true if s(X) is true and q(X) is true") is a rule as are r(X) s(X); q(f(X)): ands(b) : Rules can have negated atoms in their bodies. So, p(X; Y )  q(Y ); NOTs(Y ): isa rule meaning \p(X; Y ) is true if q(Y ) is true and s(Y ) is not true." We could also say\p(X; Y ) holds if q(Y ) holds and s(Y ) does not hold." Deduction allows us to derive newfacts from a set of rules and facts. For example, if we have the facts s(a) and q(b) and therule p(X; Y ) s(X); q(Y ):, we can derive p(a; b).Representing Preference and Con�dence The theory of annotated logic program-ming supplemented with user constraints provides a means to consider levels of con�denceand preferences while reasoning about knowledge expressed in logic. In a logic program,a fact, say young(kim) (meaning \kim is young") is either true or false. In an annotatedlogic program, a fact may have an annotation, and the annotated fact, say young(kim):very(where very is the annotation) is considered true or false. The values used in annotations aredistinct from the values used in the facts. They also have a partial order, for example, very> somewhat > slightly. An annotated rule uses a combination function to combine the anno-tations of the atoms in the body into an annotation for the head. Suppose our combinationfunction is to take the maximum of the annotation values. Then, the rule innocent(X) :max(A;B)  young(X) : A; sheltered(X) : B: allows us to derive innocent(kim) : veryfrom young(kim) : very and sheltered(kim) : somewhat. When multiple rules de�ne thesame atom, some combination function can be used to �nd a consensus annotation for a de-rived fact. For example, suppose a second rule says innocent(X) : A naive(X) : A: andwe have a fact naive(kim) : slightly:With a combination function that takes the minimumof the annotations, we obtain innocent(kim) : slightly in the context of the two rules. Formore details on annotated logic programming, see [GL94, KS93].Automatic Sequence Analysis The AutoSeq automatic sequence analysis system iscomposed of three separate modules. The �rst is a data collection module that acceptsDNA sequence, sends it out to an array of analysis tools (including blastx, blastn, tblastn,blaize, fasta, genmark, and blocks [AGM+90, HH93, CC90]), and parses the output intoprolog facts. Each input sequence has a unique identi�er. Each fact gleaned about asequence expresses a property about some range within the sequence. For example, outputfrom tools that �nd homologies between a query sequence and protein database sequencesis encoded into facts of the form: sim(QID, QBegin, QEnd, DBID, DBegin, DEnd,Score, Tool). meaning that the query sequence QID between QBegin and QEnd alignedwith the database sequence DBID between DBegin and DEnd. Output from tools thatlocate patterns in a query sequence produce facts of the form: pattern(QID, QBegin,QEnd, PatternID, Score, Tool). Meaning the pattern associated with PatternIDoccurs in the QID sequence between QBegin and QEnd. Output from tools that �nd other3



properties such as codon usage is encoded in facts of a similar nature.In summary, the datacollection phase produces a body of facts about input sequences where each fact expressesa feature associated with some interval of the input sequence.The second module of AutoSeq analyzes the facts about features of the input sequenceand associates regions that are likely to code for some protein with a set of possible proteins.Whenever possible, an attempt is made to �nd a generalization that characterizes theactual protein encoded in each coding regions. This data analysis module produces factsof the form: putative cds(QID, [B1+E1, B2+E2, : : :, Bn+En], Protein, Score).where the second argument listing beginning and ending points captures discontinuities(e.g. frameshifts and sequencing errors). The third module of AutoSeq presents putative cdsregions together with supporting evidence in a WWW browseable form. More informationon AutoSeq can be found in [GL94, GLMC94].Metabolic Information: the EMP Database The reconstruction process takes ad-vantage of the Enzyme and Metabolic Pathway database (EMP). EMP includes data onboth enzymology and metabolism. The approach described in this paper relies on metabolicinformation that is encoded in over 1000 records, each giving a di�erent pathway instancein some organism. For each pathway, an EMP metabolic record contains an equationalrepresentation, a graphical portrayal, and regulatory information.Records in the database | both enzymological and metabolic | are structured distilla-tions of the factual content of published research articles. The database attempts to captureall relevant facts from each article (there are over 300 distinct �elds used to encode data).Encoded articles have been selected from the leading international journals on biochemistry.A journal article is encoded into one or more EMP records (averaging 2 articles per record)with a current total of over 14,000 records. The enzymological section of EMP includesdata on over 70% of enzymes classi�ed by EC numbers. In addition, it includes records onover 600 new, unclassi�ed enzymes (that have not yet been assigned EC numbers). Thedatabase now includes data on approximately 3000 distinct enzymes. Enzymes withouto�cial EC numbers are assigned temporary \partial" EC numbers.For the purposes of reconstruction, we need to know about substrates, products, co-factors and enzymes (if any) for each reaction in a pathway. To reason automaticallyabout the pathways through logic (e.g. for the purposes of metabolic reconstruction), theymust be represented in logical expressions. Thus, over 1100 pathways have been extractedfrom EMP records and stored as facts in the following logical form: pathway(PathID,[Reaction1, : : :, Reactionn]). where PathID is a unique identi�er for the pathway andeach Reactioni is a term of the form: [Enzyme, Substrates, Cofactors, Products,Reversible, Direction].An enzyme and a pathway are connected when an enzyme appears in one of the reac-tions in the pathway. The following rule expresses this notion.enzyme to pathway(Enzyme,PathID)  pathway(PathID, ReactionList),member(Reaction, ReactionList),Reaction == [Enzyme j ].One may consider a metabolic pathway to be a judgement of proximity of reactionequations. At its simplest level, a pathway is a set of connected reactions equations thatform a group. For the purposes of reconstruction, each pathway is considered to be a distinctset of connected reaction equations. By this de�nition, even if two sets of reactions di�er by4



only one reaction, they comprise two distinct pathways. One may refer to a pathway at anabstract level according to its general name, for example, \glycolysis" and at a speci�c levelaccording to the set of connected reaction equations and the organism(s) associated withthe pathway. Facts containing common names of speci�c pathways have also been parsedfrom EMP into the form pathway name(PathID,CommonName).We also extracted connections between instances of pathways and the organism in whichthey were determined from the EMP records. The connections are stored as facts of theform: pathway to organism(PathID,Organism). Knowledge about which organismgoes with a pathway instance becomes important when we want a suitable pathway in anearest neighbor to the organism in question.Phylogenetic Information Phylogenetic relationships between organisms can be com-puted from multiple sequence alignments of molecules common to each. The ribosomalRNA Database Project (RDP) has built multiple sequence alignments of the small subunitribosomal RNA (SSU rRNA) for over 3200 taxa. A single tree was computed [OWO94] forthese taxa by constructing thousands of smaller trees using a maximum likelihood method[OMHO94, Fel81] and then carrying out an optimized assembly. Figure 1 shows an excerptfrom the SSU rRNA phylogenetic tree centering on Mycoplasma.The relative positions of taxa in the phylogenetic tree reect changes over time in thesequences of the molecules used in the alignment. Each organism appears in a leaf node ofthe tree. Each pair of organisms has a closest common ancestor | which may or may nothave actually occurred at some time in evolutionary history. The distance between organ-isms is the sum of their distances to their closest common ancestor. Thus, the phylogenetictree provides a measurement of proximity between organisms for use in query relaxation[GGM92].3 Reconstruction from Direct Sequence EvidenceThe problem of reconstructing metabolism automatically for an organism can be partitionedinto a series of reasoning steps. The starting point is a list of proteins in the organism forwhich there is evidence. Evidence comes from two sources: automatic interpretations ofgenome sequence data from AutoSeq and observations in the biochemical literature aboutthe existence or absence of particular proteins in an organism. From this evidence, we wantto reason forward about what pathways are potentially present in the organism. Then, wewant to reason further about pathways that must be present either because they comple-ment pathways with direct evidence or because they are mandatory (in some form) in anyorganism. Next, we want to identify conicts and inconsistencies in the set of candidatepathways and resolve them, when possible, using con�dence about the direct evidence. Theoutput is a partial metabolic framework for the input organism. Figure 2 gives an overviewof the process. In this section, we describe these steps in detail.Utilizing Direct Evidence AutoSeq produces a set of proteins for which there is di-rect evidence in the genome sequence data. Those proteins are represented as facts ofthe following form that relate con�dence (preference) to protein identi�ers and descrip-tions. For convenience, we take the SwissProt ID as the identi�er for a protein whenavailable. The annotation Level captures the calibrated score for the protein: puta-tive protein(ProteinID):Con�denceLevel.5
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Next, we want to �nd a set of reaction equations that are associated with the pu-tative proteins. To do so, we ask, \Which of the putative proteins is an enzyme?" and\What enzyme number is associated with that enzyme?" The resulting pool of enzymes be-comes candidates for which we have direct evidence from the organism's genome sequence.They are annotated with levels of con�dence (or preference) and represented in the form:putative enzyme(EnzymeNumber):Con�denceLevel. For the annotation value inLevel, we take the maximum of the con�dence values associated with the set of instancesof putative proteins with the enzyme number.3Given a set of putative enzymes for an organism and a database of pathways as de�nedearlier, one may ask \Which metabolic pathways correspond to the putative enzymes and inwhat organism is this instance of a pathway reported (in the literature)?" Answers are rep-resented as facts of the form: putative pathway(PID, Organism):Con�denceLevel.where PID is a unique ID for an instance of a pathway and Organism is the name of theorganism in which that instance of a pathway was encountered.Assigning a con�dence level to putative pathway di�ers from assigning level to a putativeenzyme. With putative enzymes, many instances of protein sequences for the same enzymemay align with a single region of genome sequence. Since the sequences tend to alignwith each other, each subsequent sequence provides new evidence for the enzyme only if itcovers a larger portion of the genome sequence. On the other hand, a pathway may containmultiple enzymes (that is, it may contain multiple reaction equations catalyzed by di�erentenzymes) one or more of which appears in the evidence list. Each evident enzyme addscon�dence to the presence of the pathway, so the annotation value should reect this state.We capture this phenomenon abstractly as a combination function � over the annotationvalues of the set of putative enzymes connected to a pathway4.Thus, one may start with a set of putative proteins for which there is direct evidence in anorganism and proceed to gather a set of pathways. Annotated logic programming providesthe theory for using con�dence in the initial evidence to determine con�dence in each path-way. We shall refer to pathways determined in this manner as directly supported pathwaysand annotate them as direct: putative pathway(PID, Organism):Con�denceLevel,direct.Utilizing Default Information The previous section laid out a method to gather aset of directly supported pathways from genome sequence evidence. The genome sequenceinterpretation is inherently incomplete | we are limited to identifying coding regions thatcorrespond to sequenced proteins with known function. One way to supplement the recon-struction method is to infer possible pathways from default information about pathwaysthat must be present in an organism according to some criteria. Organisms must havethe ability to carry out certain functions if they are to survive. We consider the abstractcharacterization of these functions as default information.3We use maximum for ease of illustration. Because we use meta-interpreters to handle supporting evi-dence, this choice of combination function could easily be replaced with another, for example, least upperbound (lub) or a probabilistic combination. The �nal choice in a reliable working system will likely be tunedas more is learned about the methodology. We leave this to be worked out with time and experience.4As with the exact combination function for putative enzyme, we expect appropriate combination func-tions for putative pathways to emerge with time. In our prototype, we use least upper bound (lub) de�nedas follows for a lattice over integers: [ lub(i,j) = i if i > j, lub(i,j) = j if i < j, lub(i,j) = i+1 if i = j]. So,for example, if two pathway enzymes are putative enzymes at level 2, the pathway receives level 1; if twopathway enzymes are putative enzymes at levels 1 and 4, the pathway receives level 1.7



Each pathway in our database of encoded pathways is assigned to one or more of thesedefault modules. Further, each pathway is associated with a common name which servesas an abstraction for the pathway. For example, energy metabolism includes glycolysis,and the pathway may be refered to by \glycolysis" rather than a particular set of reactionequations. We can use the abstract pathway name to identify a candidate set of defaultpathways.Of interest is the question: for each default pathway, how speci�c can we be? Shouldwe select an instance of that pathway from a phylogenetically close neighbor or shouldwe leave the pathway at an abstract level. For example, should we simply state that theorganism has glycolysis or should we borrow an instance of a glycolytic pathway fromthe closest available organism? Again with annotated logic programming, we are ableto select a close neighbor if it is available and keep track of the fact that it is not yetexact. As before, we represent a selected pathway as a putative pathway, but now, weannotate it with the phylogenetic distance (in the ribosomal RNA tree) to the neighboringorganism and note that it is a default (or necessary) pathway: putative pathway(PID,Organism):distance, default.Connecting Disjoint Pathways Once a set of directly evident pathways and a setof default pathways are determined, we can ask a series of queries about them: Whatcompounds and cofactors are used but not produced? What pathways are known (encoded)that produce these substances? What compounds and cofactors are produced but not used?These dangling inputs and outputs to the current set of pathways must be resolved inany �nal reconstruction. So the query is used to identify alternative connections from thepathways encoded in the database:?- produced(C), NOT used(C),pathway to substrate(PID,C).?- used(C), NOT produced(C),pathway to product(PID,C).These pathways are annotated as connective: putative pathway(PID, Organism):connective.Handling Conicts and Inconsistencies A (possibly disjoint) metabolic network isconsidered inconsistent if it violates certain truths. We limit consistency checking to thenotion that all compounds that are produced must be either used or exported and allcompounds that are used must be either produced or imported. Pathways that have miss-ing inputs or unconsumed outputs even after the search for connections are annotated asdangling.Redundancy is a potential source of conict. But redundancy in organisms is common,so redundant pathways for producing the same compounds are not necessarily conicts. Welimit conict resolution to handling cases in which alternative pathways are mutually exclu-sive. Since the system cannot choose between such pathways without further information,they are represented as a disjunction, indicating that one or more may be present5.Reconstruction Algorithm The following algorithm encapsulates the previously de-scribed steps.5This approach generalizes to n mutually exclusive pathways, but we shall not expand on this point here.8



INPUT: an empty set of metabolic pathways.OUTPUT: an annotated set of metabolic pathways; a set C of dangling compounds (com-pounds that are produced or used by some pathway but not used or supplied by some otherpathway).Let P and C be empty sets:1. Add to P each putative pathway with direct evidence. Annotate each with con�dencelevel based on the evidence level and with the label supported.2. For each metabolic module, if an abstract pathway in the module does not have acorresponding supported pathway in P, add to P a default pathway for the abstractpathway, where the default pathway is selected from phylogenetic neighbors whenavailable. Annotate the pathway with phylogenetic distance from the organism inquestion and label it default.3. For each supported pathway in P that has substrates with no source, search for aconnecting pathway that could supply the substrate. If it exists, add it to the set ofpathways P with the annotation connective.4. For each pathway in P that has substrate S (or a product D) that is not supplied(consumed) by some other pathway:(a) Add each dangling substrate to C in the form substrate(S).(b) Add each dangling product to C in the form product(S).(c) Annotate P further with the label dangling.5. For each pair of conicting pathways in P, p1 and p2, replace p1 and p2 with thedisjunction (p1 _ p2) until no more conicts exist.The resulting set P contains a collection of (partially) connected metabolic pathways,some of which have direct evidence, some of which have indirect evidence, and some ofwhich are hypothesized. All pathways in P are annotated with their respective properties.4 Utilizing Experimental DataThe previous section described how to carry out by reasoning from proteins with directevidence. Other sources of knowledge about proteins in the organism allow us to augmentthe reconstruction process. Those sources are (1) experimental information about reactionsthat are known to take place inside the organism, (2) experimental information about reac-tions that are known NOT to take place inside the organism, (3) experimental informationabout substances that the organism requires from outside the cell, and (4) experimentalinformation about substances that the organism is able to utilize from outside the cell.In an ideal world, each of these bodies of information would be available in encoded formand could be used to answer queries during the reconstruction process. In reality, we mustsupply expert users with a means to supply additional information that they want to be partof the reasoning process. This section describes a knowledge representation for capturingthe information described above and shows how they may be used in the reconstructionprocess. 9



Additional and Absent Reactions If some reaction that is catalyzed by some enzyme,say E, is known to take place in the organism, the user can assert its presence by addinga annotated fact of the form: reported enzyme(E):Con�denceLevel. In this case,con�dence level is assigned by the user and reects con�dence in the relevant literature. Asingle rule allows the reported enzymes to be used in the generation of putative pathways:putative enzyme(E):Level  reported enzyme(E):Level.6There are several alternatives for handling negative information. For now, we havechosen to handle it at the consistency checking phase. As with the reported enzymes, theuser expresses absent reactions according to their enzymes through asserted facts, now ofthe form: absent enzyme(E):Level. Again, Level reects the user's con�dence in thesource of information. An integrity constraint is a logical statement that must be true ofthe represented data. Here, two integrity constraints express unacceptable states : absent enzyme(E):LevelA,putative enzyme(E):LevelB. absent enzyme(E):LevelA,reported enzyme(E):LevelB.We can check for conicts by asking the integrity constraint as a query. If it is true inthe data, then a conict exists, and any pathway that depends on the putative or reportedenzyme should be suspect. Again, this is handled through a single rule:suspicious pathway(P,O):Annotation  putative pathway(P,O):Annotation,pathway to enzyme(P,E),absent enzyme(E).External Medium Information about external sources of compounds provides possibleresolutions for dangling compounds. If a compound in the set C produced by the reconstruc-tion algorithm is known to be necessary in the external growth medium for the organism,we can hypothesize that it is imported. Until a database of growth conditions for organ-isms is available and integrated into the system, we depend on the user to provide growthmedium compounds in asserted facts of the form: growth medium(C). A single rule al-lows the growth medium fact to be used to resolve dangling compounds: produced(C) growth medium(C) Furthermore, for any compound that is necessary in the growthmedium and is not dangling, we can infer that pathways are present to consume it. Theconnection step is used together with the rule above to augment the current set of pathwayswith additional connected pathways.Intuitively, a faithful representation of the growth medium completely would require thatwe be able to capture information about mutually exclusive growth medium compounds oralternative compounds as in "Organism O requires compound C or compound D, but notboth." However, we intend the reconstructed pathways to represent the full collection ofpathways that may be present in an organism | i.e. the pathways that are available to beinvoked when an substrate compound is present in su�cient concentration. So it is su�cientto represent external growth medium compounds as de�nite facts without quali�cationsabout mutual exclusion or alternatives.6We have chosen to consider the level of the derived putative enzyme fact to be the same as the level of thereported enzyme fact. However, a user who wants to express a more re�ned opinion about the domain couldeasily change the rule to contain a function fon the head annotation as in: putative enzyme(E):f(Level) reported enzyme(E):Level. 10



Interactive Reconstruction Algorithm To recapitulate briey, we augment our re-construction algorithm by allowing the user to assert the following types of facts: re-ported enzyme(E):Level. absent enzyme(E):Level. growth medium(C). Fromthese facts, we can augment the set of pathways with additional pathways and identify newinconsistencies. The algorithm is modi�ed as follows:Let P and C be the initially empty sets of pathways and compounds.� (Replace Step 1) Generate the putative pathways in P using putative enzyme factsthat are derived both from putative protein facts and from reported enzyme facts.� (Replace Step 4) For each pathway in P that has substrate (or a product) S that isnot supplied (consumed) by some other pathway or contained in a fact of the formgrowth medium(S):1. Add each dangling substrate to C in the form substrate(S).2. Add each dangling product to C in the form product(S).3. Annotate P further with the label dangling.� (New step) For each compound in growth medium, search for a connecting pathwaythat could consume the compound. If it exists, add it to the set of pathways P withthe annotation connecting.� (New step) Identify suspicious pathways as de�ned above.This augmented version of the metabolic reconstruction algorithm produces a set of(partially) connected annotated metabolic pathways.5 Examples from Mycoplasma capricolumIn the background section, we noted that one can lay out the basic parts of the metabolicmachine for procaryotic organisms. In this section, we consider Mycoplasma capricolum asa speci�c example and use it to illustrate the steps in the reconstruction algorithm. In aninterpretation of the available Mycoplasma capricolum genome sequence data, our groupat Argonne and an independent group at EMBL have identi�ed just over 300 regions thatcode for proteins.First, we lay out the modules: an organism like Mycoplasma capricolum has DNAreplication, maintenance, and repair. It manufactures proteins through folding, refolding,assembly, degradation, maintenance. It assembles, maintains, repairs, uses, and translo-cates ribosomes. Its energy metabolism includes amino acid synthesis and degradation,carbohydrate synthesis and degradation, lipid (and membrane) synthesis and degradation.It synthesizes, degrades, and uses nucleotides. It has a means to do membrane transportand signal transduction. It must carry out cell division and maintain a cell clock. Optionalmodules include cell wall synthesis and degradation, motility mechanism synthesis andmaintenance (e.g. cilia and agella) and secondary metabolic functions. In the interpreta-tion of Mycoplasma capricolum, we have evidence of proteins from metabolite transport andactivation, amino acid metabolism, nucleotide metabolism, lipid metabolism, carbohydratemetabolism, DNA replication and recombination, DNA repair, cell division, transcription,translation, protein biosynthesis, ribosomal proteins, internal transport and translocationas well as RNAs and several unclassi�ed proteins.11
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argininecitrulineL-ornithineH2ONH3orthoophosphatecarbamoyl-phosphate CO2ADPATP NH33.5.3.62.1.3.3 2.7.2.2 ATPpyrophosphateorthophosphateH2OAMPH2O3.6.1.13.6.1.8Figure 3: Arginine Hydrolysis and Phosphate Metabolism PathwaysTo illustrate the reconstruction steps, we turn to three examples. We reason aboutarginine biosynthesis as follows. We have weak genome sequence evidence for the enzymethat catalyzes arginine hydrolysis, 3.5.3.6. We have strong evidence for 2.1.3.3, ornithinecarbomoyl transferase. The literature tells us that arginine hydrolysis occurs in severalMycoplasma strains[Pol86]. So from the putative enzymes 3.5.3.6 and 2.1.3.3, we infer thatthe pathway between arginine and L-ornithine is present. Through connectivity and defaultreasoning, we suppose that carbamoyl phosphate is taken to CO2 by enzyme 2.7.2.2. Thereis evidence in the literature that Mycoplasma mycoides is dependent on arginine in thegrowth medium. Since M. mycoides is a close neighbor of M. capricolum, it gives additionalevidence that the organism can use arginine to make ornithase and carbamoyl phosphate.Figure 3a gives the reconstructed pathway.Our next example shows how we use default reasoning to construct a module fromscant evidence. We have a strong genome sequence hit on arabinose permease, a transportprotein that brings arabinose into the cell. In addition, we have the evidence described abovethat carbamoyl phosphate and ornithine are produced by the arginine deaminase pathway.Further, we have weak sequence evidence for xylose permease. From this evidence, we inferstrongly a putative pathway that takes L-arabinose to D-xylulose-5-phosphate. Further,we infer weakly that D-arabitol is taken through D-xylulose to D-xylulose-5-phosphate.From the existence of these two parts of the pentose pathway, we infer through connectivitythat the remaining branches of the pathway that take D-xylose, D-ribose, and ribitol to D-xylulose-5-phosphate. All of these pentoses are very common in the host of M. capricolum(the gut of a goat), so we can postulate that M. capricolum takes advantage of it.Finally, we reason forward through connectivity that D-xylulose-5-phosphate enters theglycolytic system via the truncated hexose-monophosphate shunt [DTP89]. There is strongdirect evidence for transketylase, 2.2.1.1, which takes D-xylulose-5-phosphate to D-fructose-6-phosphate, which like carbamoyl phosphate leads us into the glycolytic system.7 Figure 4shows the reconstruction.Our third example carries the unfolding pathway topology in the direction of energymetabolism. We have strong sequence evidence for 3.6.1.8 and 3.6.1.1 The �rst of these me-7It is worthwhile to note that the shunt pathway can work backwards as an additional source of D-ribose-5-phosphate, and thus ribose-1-phosphate, to lead into synthesis of purine and pyrimidine. For spacereasons, we forgo further description of the glycolytic pathway topology.12



D-xyloseD-arabitolD-riboseL-arabinoseribitolD-xyloseD-arabitolD-riboseL-arabinoseribitolD-xyloseD-arabitolD-riboseL-arabinoseribitolD-xyloseD-arabitolD-riboseL-arabinoseribitol ----- ---- --����*XXXXz ZZZZ~���3-5.3.1.41.1.1.112.7.1.51.1.1.56D-ribuloseL-ribuloseD-ribose-5-P L-ribulose-5-PD-ribulose-5-P2.7.1.165.3.1.62.7.1.47D-xylulose 2.7.1.17 D-xylulose-5-PMEMBRANE 5.3.1.5 5.1.3.15.1.3.4Figure 4: Pentose Pathwaydiates between ATP and pyrophosphate using H2O and producing AMP. The second takespyrophosphate to orthophosphate using H2O. So we conclude that the ATP pyrophosphatehydrolase dependent pathway is present. Figure 3b shows this pathway.6 ConclusionsThe methods for reconstruction described in this paper emerged from the manual recon-struction of a topology of metabolism for Mycoplasma capricolum. The methods depend onthe completeness of encoded pathways and the domain expert's knowledge of the literaturefor supplementary information. An important feature of the system is ease of of assertionof new information from the literature during the reconstruction process. M. capricolumprovides a particularly interesting test case because it is dependent on its environmentfor particular compounds. An open question centers on whether particular pathways withsequence evidence are in truth used in the living organism or whether they are relics ofancestral organisms, leaving the modern organism to import pathway products from theoutside instead of producing them.One may think of the reconstruction process as protein driven or as compound driven.The approach we describe here uses both types of information to conclude the presenceof pathways. Evidence for compounds and evidence for catalysts both play roles in theprocess. The resulting topology can be considered as a graph with weighted edges; eachweight indicates the strength of con�dence or preference about an arc in the graph. We areexploring tools for visualizing reconstructed pathways so that the domain expert user caneasily see the ongoing process and turn quickly to the literature for additional evidence.Another facet of the work is to use the reconstructed pathways to feed backward into theinterpretation. This is a straightforward process: if there is strong evidence for one enzymein a pathway, we reason forward that the other proteins in the pathway are present andthen turn back to the sequence analysis in AutoSeq to look for other supporting evidencefor those proteins.It is clear that by limiting the implementation to enzymes only and by characterizingindividual reaction equations according to the enzymes that catalyze them, we limit thesearch space for reconstruction to catalyzed reactions and reactions that appear in encodedpathways. However, we also recognize that de�ning the methodology is a substantial stepforward. Once we show that the approach works for organisms beyond Mycoplasma, weshall explore how it may be generalized to handle individual non-enzymatic reactions in ageneral manner. 13
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