
The Nexus Task-parallel Runtime System�Ian Foster Carl Kesselman Steven TueckeMath & Computer Science Beckman Institute Math & Computer ScienceArgonne National Laboratory Caltech Argonne National LaboratoryArgonne, IL 60439 Pasadena, CA 91125 Argonne, IL 60439foster@mcs.anl.gov carl@compbio.caltech.edu tuecke@mcs.anl.govAbstractA runtime system provides a parallel languagecompiler with an interface to the low-level facilitiesrequired to support interaction between concurrentlyexecuting program components. Nexus is a portableruntime system for task-parallel programming lan-guages. Distinguishing features of Nexus include itssupport for multiple threads of control, dynamic pro-cessor acquisition, dynamic address space creation, aglobal memory model via interprocessor references,and asynchronous events. In addition, it supports het-erogeneity at multiple levels, allowing a single compu-tation to utilize di�erent programming languages, ex-ecutables, processors, and network protocols. Nexusis currently being used as a compiler target for twotask-parallel languages: Fortran M and Composi-tional C++. In this paper, we present the Nexusdesign, outline techniques used to implement Nexuson parallel computers, show how it is used in compil-ers, and compare its performance with that of anotherruntime system.1 IntroductionCompilers for parallel languages rely on the exis-tence of a runtime system. The runtime system de-�nes the compiler's view of a parallel computer: howcomputational resources are allocated and controlledand how parallel components of a program interact,communicate and synchronize with one another.Most existing runtime systems support the single-program, multiple-data (SPMD) programming model�This work was supported by the O�ce of Scienti�c Com-puting, U.S. Department of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation's Centerfor Research in Parallel Computation under Contract CCR-8809615.

used to implement data-parallel languages. In thismodel, each processor in a parallel computer executesa copy of the same program. Processors exchangedata and synchronize with each other through callsto the runtime library, which typically is designed tooptimize collective operations in which all processorscommunicate at the same time, in a structured fash-ion. A major research goal in this area is to identifycommon runtime systems that can be shared by a va-riety of SPMD systems.Task-parallel computations extend the SPMD pro-gramming paradigm by allowing unrelated activitiesto take place concurrently. The need for task par-allelism arises in time-dependent problems such asdiscrete-event simulation, in irregular problems suchas sparse matrix problems, and in multidisciplinarysimulations coupling multiple, possibly data-parallel,computations. Task-parallel programs may dynam-ically create multiple, potentially unrelated, threadsof control. Communication and synchronization arebetween threads, rather than processors, and can oc-cur asynchronously among any subset of threads andat any point in time. A compiler often has littleglobal information about a task-parallel computation,so there are few opportunities for exploiting optimizedcollective operations.The design of Nexus is shaped both by the require-ments of task-parallel computations and by a desireto support the use of heterogeneous environments,in which heterogeneous collections of computers maybe connected by heterogeneous networks. Other de-sign goals include e�ciency, portability across diversesystems, and support for interoperability of di�erentcompilers. It is not yet clear to what extent these var-ious goals can be satis�ed in a single runtime system:in particular, the need for e�ciency may conict withthe need for portability and heterogeneity. Later inthis paper, we present some preliminary performanceresults that address this question.



As we describe in this paper, Nexus is alreadyin use as a compiler target for two task-parallellanguages: Fortran M [7] (FM) and CompositionalC++ [3] (CC++). Our initial experiences have beengratifying in that the resulting compilers are consider-ably simpler than earlier prototypes that did not useNexus services.Space does not permit a detailed discussion of re-lated work. However, we note that the Chant sys-tem [9] has similar design goals (but adopts di�erentsolutions).2 Nexus Design and ImplementationBefore describing the Nexus interface and imple-mentation, we review the requirements and assump-tions that motivated the Nexus design.Nexus is intended as a general-purpose runtime sys-tem for task-parallel languages. While it currentlycontains no specialized support for data parallelism,data-parallel languages such as pC++ and HPF canin principle also use it as a runtime layer. Nexus is de-signed speci�cally as a compiler target, not as a libraryfor use by application programmers. Consequently,the design favors e�ciency over ease of use.We believe that the future of parallel computinglies in heterogeneous environments in which diversenetworks and communications protocols interconnectPCs, workstations, small shared-memory machines,and large-scale parallel computers. We also expectheterogeneous applications combining di�erent pro-gramming languages, programming paradigms, andalgorithms to become widespread.Nexus abstractions need to be close to the hard-ware, in order to provide e�ciency on machines thatprovide appropriate low-level support. Operationsthat occur frequently in task-parallel computations,such as thread creation, thread scheduling, and com-munication, need to be particularly fast. At the sametime, Nexus abstractions must be easily layered ontop of existing runtime mechanisms, so as to provideportability to machines that do not support Nexus ab-stractions directly. Communication mechanisms thatwere considered in designing Nexus include messagepassing, shared memory, distributed shared memory,and message-driven computation.Finally, Nexus is intended to be a lingua francafor compilers, promoting reuse of code between com-piler implementation as well as interoperability be-tween code generated by di�erent compilers.Important issues purposefully not addressed in theinitial design include reliability and fault tolerance,

real-time issues, global resource allocation, replica-tion, data and code migration, and scheduling poli-cies. We expect to examine these issues in future re-search.2.1 Core AbstractionsThe Nexus interface is organized around �ve basicabstractions: nodes, contexts, threads, global point-ers, and remote service requests. The associated ser-vices provide direct support for light-weight thread-ing, address space management, communication, andsynchronization [8]. A computation consists of a setof threads, each executing in an address space calleda context. An individual thread executes a sequentialprogram, which may read and write data shared withother threads executing in the same context. It canalso generate asynchronous remote service requests,which invoke procedures in other contexts.Nodes. The most basic abstraction in Nexus is thatof a node. A node represents a physical processingresource. Consequently, the set of nodes allocatedby a program determines the total processing poweravailable to that computation. When a program usingNexus starts, an initial set of nodes is created; nodescan also be added or released dynamically. Programsdo not execute directly on a node. Rather, as we willdiscuss below, computation takes place in a context,and it is the context that is mapped to a node.Nexus provides a set of routines to create nodes onnamed computational resources, such as a symmet-ric shared-memory multiprocessor or a processor in adistributed-memory computer. A node speci�es onlya computational resource and does not imply any spe-ci�c communication medium or protocol. This nam-ing strategy is implementation dependent; however,a node can be manipulated in an implementation-independent manner once created.Contexts. Computation takes place within an ob-ject called a context. Each context relates an exe-cutable code and one or more data segments to anode. Many contexts can be mapped onto a singlenode. Contexts cannot be migrated between nodesonce created.Contexts are created and destroyed dynamically.We anticipate context creation occurring frequently:perhaps every several thousand instructions. Con-sequently, context creation should be inexpensive:certainly less expensive then process creation underUnix. This is feasible because unlike Unix processes,



contexts do not guarantee protection. We note thatthe behavior of concurrent I/O operations within con-texts is currently unde�ned.Compiler-de�ned initialization code is executed au-tomatically by Nexus when a context is created. Onceinitialization is complete, a context is inactive until athread is created by an explicit remote service requestto that context. The creation operation is synchro-nized to ensure that a context is not used before it iscompletely initialized. The separation of context cre-ation and code execution is unique to Nexus and is adirect consequence of the requirements of task paral-lelism. All threads of control in a context are equiva-lent, and all computation is created asynchronously.Threads. Computation takes place in one or morethreads of control. A thread of control must be cre-ated within a context. Nexus distinguishes betweentwo types of thread creation: within the same con-text as the currently executing thread and in a di�er-ent context from the currently executing thread. Wediscuss thread creation between contexts below.Nexus provides a routine for creating threadswithin the context of the currently executing thread.The number of threads that can be created within acontext is limited only by the resources available. Thethread routines in Nexus are modeled after a subsetof the POSIX thread speci�cation [10]. The opera-tions supported include thread creation, termination,and yielding the current thread. Mutexes and con-dition variables are also provided for synchronizationbetween threads within a context.Basing Nexus on POSIX threads was a pragmaticchoice: because most vendors support POSIX threads(or something similar), it allows Nexus to be imple-mented using vendor-supplied thread libraries. Thedrawback to this approach is that POSIX was de-signed as an application program interface, with fea-tures such as real-time scheduling support that mayadd overhead for parallel systems. A lower-level inter-face designed speci�cally as a compiler target wouldmost likely result in better performance [1] and willbe investigated in future research.To summarize, the mapping of computation tophysical processors is determined by both the map-ping of threads to contexts and the mapping of con-texts to nodes. The relationship between nodes, con-texts, and threads is illustrated in Fig. 1.Global Pointers. Nexus provides the compilerwith a global namespace, by allowing a global nameto be created for any address within a context. This

N    O    D    E N    O    D    E

Context

TT T T T T T

Context ContextFigure 1: Nodes, Contexts, and Threadsname is called a global pointer. A global pointer canbe moved between contexts, thus providing for a mov-able intercontext reference. Global pointers are usedin conjunction with remote service requests to causeactions to take place on a di�erent context. The useof global pointers was motivated by the following con-siderations.� While the data-parallel programming model nat-urally associates communication with the sectionof code that generates or consumes data, task-parallel programs need to associate the commu-nication with a speci�c data structure or a spe-ci�c piece of code. A global namespace facilitatesthis.� Dynamic behaviors are the rule in task-parallelcomputation. References to data structures needto be passed between contexts.� Data structures other than arrays need to besupported. A general global pointer mechanismfacilitates construction of complex, distributeddata structures.� Distributed-memory computers are beginning toprovide direct hardware support for a globalshared namespace. We wanted to reect thistrend in Nexus.Global pointers can be used to implement datastructures other than C pointers. For example, theFM compiler uses them to implement channels.Remote Service Requests. A thread can requestthat an action be performed in a remote context byissuing a remote service request. A remote service re-quest results in the execution of a special function,called a handler, in the context pointed to by a globalpointer. The handler is invoked asynchronously inthat context; no action, such as executing a receive,



needs to take place in the context in order for thehandler to execute. A remote service request is nota remote procedure call, because there is no acknowl-edgement or return value from the call, and the threadthat initiated the request does not block.Remote service requests are similar in some re-spects to active messages [11]. They also di�er insigni�cant ways, however. Because active messagehandlers are designed to execute within an interrupthandler, there are restrictions on the ways in whichthey can modify the environment of a node. For ex-ample, they cannot call memory allocation routines.While these restrictions do not hinder the use of ac-tive messages for data transfer, they limit their utilityas a mechanism for creating general threads of con-trol. In contrast, remote service requests are moreexpensive but less restrictive. In particular, they cancreate threads of control, and two or more handlerscan execute concurrently.During a remote service request, data can be trans-ferred between contexts by the use of a bu�er. Datais inserted into a bu�er and removed from a bu�erthrough the use of packing and unpacking functionssimilar to those found in PVM and MPI [5, 6]. Invok-ing a remote service request is a three-step process:1. The remote service request is initialized by pro-viding a global pointer to an address in the desti-nation context and the identi�er for the handlerin the remote context. A bu�er is returned fromthe initialization operation.2. Data to be passed to the remote handler is placedinto the bu�er. The bu�er uses the global pointerprovided at initialization to determine if any dataconversion or encoding is required.3. The remote service request is performed. Inperforming the request, Nexus uses the globalpointer provided at initialization to determinewhat communication protocols can be used tocommunicate with the node on which the con-text resides.The handler is invoked in the destination contextwith the local address component of the global pointerand the message bu�er as arguments. In the most gen-eral form of remote service request, the handler runsin a new thread. However, a compiler can also specifythat a handler is to execute in a preallocated threadif it knows that that handler will terminate withoutsuspending. This avoids the need to allocate a newthread; in addition, if a parallel computer system al-lows handlers to read directly from the message inter-face, it avoids the copying to an intermediate bu�er

that would otherwise be necessary for thread-safe ex-ecution. As an example, a handler that implementsthe get and put operations found in Split-C [4] cantake advantage of this optimization.2.2 ImplementationIn order to support heterogeneity, the Nexus im-plementation encapsulates thread and communicationfunctions in thread and protocol modules, respec-tively, that implement a standard interface to low-level mechanisms (Fig. 2). Current thread modulesinclude POSIX threads, DCE threads, C threads, andSolaris threads. Current protocol modules include lo-cal (intracontext) communication, TCP socket, andIntel NX message-passing. Protocol modules forMPI, PVM, SVR4 shared memory, Fiber Channel,IBM's EUI message-passing library, AAL-5 (ATMAdaptation Layer 5) for Asynchronous Transfer Mode(ATM), and the Cray T3D's get and put operationsare planned or under development.More than one communication mechanism can beused within a single program. For example, a con-text A might communicate with contexts B and C us-ing two di�erent communication mechanisms if B andC are located on di�erent nodes. This functionalityis supported as follows. When a protocol module isinitialized, it creates a table containing the functionsthat implement the low-level interface and a small de-scriptor that speci�es how this protocol is to be used.(Protocol descriptors are small objects: typically 4-5words, depending on the protocol.) When a globalpointer is created in a context, a list of descriptors forthe protocols supported by this context is attachedto the global pointer. The protocol descriptor list ispart of the global pointer and is passed with the globalpointer whenever it is transferred between contexts.A recipient of a global pointer can compare this pro-tocol list with its local protocols to determine the bestprotocol to use when communicating on that globalpointer.Although some existing message-passing systemssupport limited network heterogeneity, none do sowith the same generality. For example, PVM3 al-lows processors in a parallel computer to communi-cate with external computers by sending messages tothe pvmd daemon process which acts as a message for-warder [5]. However, this approach is not optimal onmachines such as the IBM SP1 and the Intel Paragon,whose nodes are able to support TCP directly, and itlimits PVM programs to using just one protocol inaddition to TCP. P4 has several special multiprotocolimplementations, such as a version for the Paragon



 Network
Protocol 1

 Network
Protocol 2

Thread
Library

Other  System  Services

 Protocol
 Module 1

 Protocol
Module 2

Nexus
Thread
Module

Other  Nexus  Services

  Nexus Protocol
Module Interface

N  e  x  u  s       I  n  t  e  r  f  a  c  eFigure 2: Structure of Nexus Implementationthat allows the nodes to use both NX and TCP [2].But it does not allow arbitrary mixing of protocols.3 Performance StudiesIn this section, we present results of some prelim-inary Nexus performance studies. We note that thethrust of our development e�ort to date has been toprovide a correct implementation of Nexus. No tuningor optimization work has been done at all. In addi-tion, the operating system features used to implementNexus are completely generic: we have not exploitedeven the simplest of operating system features, such asnonblocking I/O. Consequently, the results reportedhere should be viewed as suggestive of Nexus perfor-mance only, and are in no way conclusive.The experiments that we describe are designed toshow the cost of the Nexus communication abstrac-tion as compared to traditional send and receive. Be-cause Nexus-style communication is not supported oncurrent machines, Nexus is implemented with sendand receive. Thus, Nexus operations will have over-head compared to using send and receive. Our objec-tive is to quantify this overhead. We note that sup-port for Nexus can be build directly into the systemsoftware for a machine, in which case Nexus perfor-mance could meet or even exceed the performance ofa traditional process-oriented send and receive basedsystem. (We have started a development e�ort withthe IBM T.J. Watson Research Center to explore thispossibility.)The experiments reported here compare the per-formance of a CC++ program compiled to use Nexusand a similar C++ program using PVM [5] for com-munication. The CC++ program uses a function callthrough a CC++ global pointer to transfer an array ofdouble-precision oating-point numbers between twoprocessor objects (Nexus contexts). We measure the

cost both with remote thread creation and when a pre-allocated thread is used to execute the remote servicerequest. The PVM program uses send and receive totransfer the array. Both systems are compiled with-03 using the Sun unbundled C and C++ compilers;neither performs data conversion. In both cases thedata starts and �nishes in a user-de�ned array. Thisarray is circulated between the two endpoints repeat-edly until the accumulated execution time is su�cientto measure accurately. Execution time is measuredfor a range of array sizes. The results of these exper-iments are summarized in Fig. 3.We see that despite its lack of optimization, Nexusis competitive with PVM. Execution times are con-sistently lower by about 15 per cent when remote ser-vice requests are executed in a preallocated thread;this indicates that both latency and per-word trans-fer costs are lower. Not surprisingly, execution timesare higher when a thread is created dynamically: byabout 40 per cent for small messages and 10 to 20 percent for larger messages.4 SummaryNexus is a runtime system for compilers of task-parallel programming languages. It provides an in-tegrated treatment of multithreading, address spacemanagement, communication, and synchronizationand supports heterogeneity in architectures and com-munication protocols.Nexus is operational on networks of Unix work-stations communicating over TCP/IP networks, theIBM SP1, and the Intel Paragon using NX; it is beingported to other platforms and communication proto-cols. Nexus has been used to implement two very dif-ferent task-parallel programming languages: CC++and Fortran M. In both cases, the experience withthe basic abstractions has been positive: the overall



1000

10000

100000

1e+06

1 10 100 1000 10000

T
ra

ns
fe

r 
T

im
e 

(u
se

cs
)

Message Length (double floats)

Nexus (remote thread)
Nexus (no remote thread)

PVM3

Figure 3: Round-trip time as a function of message size between two Sun 10 workstations under Solaris 2.3 usingan unloaded Ethernet.complexity of both compilers was reduced consider-ably compared to earlier prototypes that did not useNexus facilities. In addition, we have been able toreuse code and have laid the foundations for interop-erability between the two compilers. The preliminaryperformance studies reported in this paper suggestthat Nexus facilities are competitive with other run-time systems.References[1] Peter Buhr and R. Stroobosscher. The �system:Providing light-weight concurrency on shared-memory multiprocessor systems running Unix.Software Practice and Experience, pages 929{964, September 1990.[2] R. Butler and E. Lusk. Monitors, message, andclusters: The p4 parallel programming system.Parallel Computing (to appear), 1994.[3] K. Mani Chandy and Carl Kesselman. CC++: Adeclarative concurrent object oriented program-ming notation. In Research Directions in ObjectOriented Programming. MIT Press, 1993.[4] David Culler et al. Parallel programming in Split-C. In Proc. Supercomputing '93. ACM, 1993.

[5] J. Dongarra, G. Geist, R. Manchek, and V. Sun-deram. Integrated PVM framework supports het-erogeneous network computing. In Computers inPhysics, April 1993.[6] Message Passing Interface Forum. Document fora standard messge-passing interface, March 1994.(available from netlib).[7] Ian Foster and K. Mani Chandy. Fortran M:A language for modular parallel programming.J. Parallel and Distributed Computing, 1994. toappear.[8] Ian Foster, Carl Kesselman, Robert Olson, andSteve Tuecke. Nexus: An interoperability toolkitfor parallel and distributed computer systems.Technical Report ANL/MCS-TM-189, ArgonneNational Laboratory, 1994.[9] M. Haines, D. Cronk, and P. Mehrotra. Onthe design of Chant: A talking threads package.Technical Report 94-25, ICASE, 1994.[10] IEEE. Threads extension for portable operatingsystems (draft 6), February 1992.[11] Thorsten von Eicken, David Culler, Seth CopenGoldstein, and Klaus Erik Schauser. Active mes-sages: a mechanism for integrated communica-tion and computation. In Proc. 19th Int'l Sym-posium on Computer Architecture, May 1992.


