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Abstract

The ADIFOR automatic differentiation tool is applied to a 3-D storm-scale
meteorological model to generate a sensitivity-enhanced code capable of providing
derivatives of all model output variables and related diagnostic (derived) parameters as
a function of specified control parameters. The tangent linear approximation, applied
to a deep convective storm by the first of its kind using a full-physics compressible
model, is valid up to 50 min for a 1 % water vapor perturbations. The result is very
encouraging considering the highly nonlinear and discontinuous properties of solutions.
The ADIFOR-generated code has provided valuable sensitivity information on storm
dynamics. Especially, it is very efficient and useful for investigating how a perturbation
inserted at earlier time propagates through the model variables at later times. However,
it 1s computationally very expensive to be applied to the variational data assimilation,
especially for 3-D meteorological models, which potentially have a large number of input
variables.

Keywords: tangent linear approximation, forward sensitivity, adjoint sensitivity, vartia-
tional data assimilation, convective storm, 3-D cloud model, moist convection, supercell
storm

1 Introduction

The dynamical evolution of numerically simulated storms is highly dependent on the
physical and computational parameters in the model, as well as on the initial and boundary
conditions. The deterministic approach to sensitivity analysis, which employs both the
tangent linear and adjoint of the original nonlinear model, can provide a wealth of sensitivity
information at a very low cost compared with traditional brute force and Monte Carlo
methods, which make numerous simulations with the full numerical model and perform
various types of statistical analysis on the output.
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In the deterministic approach, one develops a set of differential sensitivity equations,
which is used to express the gradient of the solution vector with respect to input
parameters [21]. Sensitivity coefficients are then computed exactly by solving the differential
equations using a nonlinear solution as a basic state (e.g., [8, 17, 5]). In this sense, the
sensitivity is defined as the gradient (i.e., the first-order derivative) of the model response
with respect to any input parameter [18].

The gradients can be computed efficiently and accurately by using automatic differ-
entiation (AD) tools, which apply the chain rule systematically to elementary operations
or functions to generate derivative codes of given nonlinear models [2]. Besides providing
basic sensitivity information, AD tools are indispensable in variational data assimilation,
whose optimization processes require accurate gradient information.

In meteorology, the adjoint model (ADJM) has been used substantially in both
sensitivity analysis (e.g., [8]) and variational data assimilation (e.g., [14]). Although AD
tools exist for generating the ADJM (e.g., Odyssée [19], AMC [10]), the ADJMs, especially
of 3-D models, are still routinely generated by hand. Bischof et al. [5] have successfully
applied an AD tool to generate the tangent linear model (TLM) of a 3-D mesoscale model
(the PSU/NCAR MM5). A compilation of currently available AD tools can be found in [4]
and on the World Wide Web at

http://www.mcs.anl.gov/Projects/autodiff/AD Tools.

In this study, we apply the ADIFOR (Automatic DIfferentiation of FORtran) general-
purpose AD tool [2, 3] to the 3-D Advanced Regional Prediction System (ARPS) [22]
to generate a sensitivity-enhanced (SE-ARPS) code capable of providing derivatives of
all model output variables and related diagnostic (derived) parameters as a function of
specified control parameters, including initial and boundary conditions as well as physical
and computational constants.

In this manner, we obtain exact derivative information, which is used to establish
physical/dynamical cause and effect between changes in input and changes in output.
Specifically, we compute the sensitivity of model outputs with respect to water vapor, which
is a major factor to control storm life and morphology. We also compute sensitivities of
the cost function, which measures distance in the Fuclidean norm between the observation
data and model results, with respect to all forecast aspects. Subsequently, we discuss
implications of the sensitivity results on data assimilation.

ARPS is a fully compressible cloud model with full physics. Although an AD tool
has been applied to a nonhydrostatic mesoscale model [5], no AD tool has been applied
to a compressible model. In a compressible model, meteorologically unimportant acoustic
waves are also supported, which severely limit the timestep size of explicit time integration
schemes. To improve efficiency, ARPS employs the mode-splitting time integration
technique [13]. In this technique, a large integration timestep is divided into a number
of small timesteps; the acoustically active terms are updated every small timestep, while
all other terms are computed only once every large timestep. This research is the first of its
kind to apply an AD tool to a storm-scale model (meteorologically) with a mode-splitting
time integration scheme (computationally).

2 Automatic Differentiation — ADIFOR

Developing the adjoint model by hand is tedious, time-consuming, and error-prone work,
especially for a large model such as ARPS, which is composed of more than two hundred
subroutines. We therefore use ADIFOR to compute sensitivities of all given dependent
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variables (DVs, e.g., forecast aspects and their diagnostic functions) with respect to all
given independent variables (IVs, e.g., initial and boundary conditions). For a single run,
ADIFOR performs one control run and as many TLM runs as the number of IVs, implicitly.
The final results are exactly the same as would be obtained from as many ADJM runs as
the number of DVs. In meteorology, ADIFOR, has been applied to a 1-D convective cloud
model [17, 16], a 3-D storm-scale model [15], a mesoscale model [5], and an air quality
model [11].

3 Methodology — Sensitivity to Perturbations

In the context of 3-D models, the number of IVs is potentially very large when grid
variables are considered, and this may inhibit the practical computation of sensitivity
because of memory limitations. We propose to compute sensitivities with respect to the
perturbations inserted in model variables rather than the grid variables themselves. That
is, by introducing an artificial perturbation parameter, e, into the original forward model
(ARPS), ADIFOR can generate a sensitivity code that regards e as one of the IVs [5].
Consider, for example, the water vapor field, ¢},. If we perturb it by a factor e,

(1) Qu(z,y,2,te) = (1+€)Qu(2,y,2,1),

any quantity P that is influenced by the water vapor field implicitly depends upon e.
Expanding P(e) in a Taylor series about the reference state [P(e = 0)] and retaining only
the first-order term, we obtain an approximation of the sensitivity of P with respect to e:

OP(z,y,2,t;¢€)

(2) 0P(z,y,z,t)= e L

Here, 6 P can be interpreted as the sensitivity of P to a uniform relative change in the water
vapor field. We have modified the ARPS to include e as an input parameter, as shown in
(1), and have applied ADIFOR to differentiate this code with respect to e.

Since the perturbation e is added to the input parameters, which already have their own
characteristic distribution in the model domain, sensitivities computed from this approach
implicitly involve the effect of distribution for those parameters. We limit our experiments
only to initial conditions. Boundary conditions, including lateral, top, and bottom, are
excluded for sensitivity experiments and TLM validation.

We also compute sensitivities of the cost function with respect to perturbations in all
forecast aspects. The cost function, J, is defined as the squared distance between the model
state, )Z, and the corresponding observations, Xe:

—

N
(3) J: Z < WX(Xn_XS)v(Xn_XS) >7
n=1

where <%f,l§> denotes a scalar product between A and B and n represents the time
index. Here, the scalar product implies the sum of the products of corresponding
components of the two vectors [9]. Wy is a weighting factor matrix, where Wg =
(W, W, Wey, Wo, W,, W, Wo ., Wo, )T for the 3-D ARPS with subscripts corresponding
to model variables, where u, v, and w are the Cartesian components of velocity, # is the
potential temperature, p is the pressure, ¢},, (). and @), are mixing ratios of water vapor,
cloud water, and rain water, respectively.
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The weight for the vertical velocity, W,,, for example, is computed following Wang [20],

-1

N K
(4) Wy =83 (war—wp )|,

n=1 k=1

with similar expressions for other variables. Here, & denotes the grid space index. In this
manner, the cost function is nondimensionalized and becomes unity at the beginning of the
variational data assimilation window.

4 3-D Storm Model and Control Run

Our experiments are performed using the sensitivity-enhanced code generated from Version
4.0 of the ARPS, which is three dimensional, fully compressible, and nonhydrostatic.
The prognostic variables, solved on the Arakawa C grid [1], include Cartesian velocity
components, perturbations of potential temperature and pressure, mixing ratios of water
vapor, cloud water, and rain water, and turbulent kinetic energy. The advective modes
are computed on large timesteps with a leap-frog time scheme and second-order centered
space differencing, whereas the acoustic modes are integrated on small timesteps with an
implicit scheme. Kessler-explicit warm-rain microphysics is employed [12]. An extensive
description of the model can be found in the ARPS users guide [22].

The computational domain consists of 53 x 53 grids in the horizontal with a grid size
of 1 km. In the vertical, a stretched grid system is employed for 35 grids with a resolution
of 150 m near the ground and 850 m at the top of the model domain. The model is run for
140 min, with a large timestep of 6 sec and a small timestep of 1 sec. The detailed model
configuration for our experiments is described in [15].

The simulation to verify the computation of derivatives by ADIFOR is made by using
the HALF4 (supercell) hodograph and thermodynamic sounding from [7], the latter of
which has a surface mixing ratio of 15 g/kg. This wind profile consists of a semi-circular
arc of 10 m/s radius that turns clockwise over the lowest 4 km starting with the surface
easterly winds. The (westerly) wind is constant, with height above 4 km at a speed of 10
m/s. The convection is initiated by a 4 K thermal perturbation placed in the boundary
layer. The simulated supercell develops rapidly during the first 30 minutes and becomes
quasi-steady thereafter, with a sustained updraft of around 47 m/s. In Figure 1, the surface
outflow boundary velocity and vertical velocity at 4 km are depicted for t = 50 and 120
min. The storm moves to the west initially and then turns northeastward as it grows in
vertical extent, forming a strong surface cold pool.

Another storm is triggered by convergence along the northern gust front. Also, as
the northeast part of the gust front intensifies, a new cell develops along it (¢ = 50 min;
Figure la), constituting three distinct cells. As the northern part of the gust front moves
northward out of the model domain by 60 min, the two northern storms decay, and other
weak secondary storms mill around the northern lateral boundary. The dominant storm
thereafter is the isolated supercell, which travels southeastward along the leading edge of
the expanding cold pool. A secondary storm develops northeast of the main storm after
100 min (Figure 1b), merging into the main storm by 140 min.

5 TLM Validation

Before we proceed to the sensitivity computation, we validate the TLM solutions computed
by the ADIFOR-generated code, which describe the linear evolution of perturbations. The
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perturbation in vorticity at t = 40 min for a 1 % perturbation in initial water vapor (in s71)

validation is carried out by comparison with the nonlinear perturbation (NLP) fields; the
difference fields computed between the nonlinear control run and another nonlinear run
whose initial state is slightly perturbed from it.

Figure 2 shows the TLM and NLP fields of vorticity at 40 min for a 1% perturbation
(bias-type) in water vapor over the whole model domain except for the lateral, top, and
bottom boundaries. They are plotted on an -y plane at z = 4.0 km.

The two fields agree quite well in both magnitude and location. However, after about
55 min, the solutions begin to diverge. That is, in reality, the perturbations and (time-
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evolving) nonlinear base state interact to a significant extent, and the absence of this
interaction in the TLM leads to erroneous results. The correlation drops rapidly below 0.9
after about 45 min. In a case without subgrid-scale turbulent mixing, which is a highly
nonlinear process, the time over which the two fields agree increases.

6 Sensitivity Results

We now investigate the effect of perturbations introduced in the water vapor field in
different regions of storm environments on storm dynamics. The water vapor field is a
major factor for storm life and morphology. We introduce four perturbation equations
following the equation (1) for four different regions in the model: (e;) inside the rain
region (), > le *g g™') above the cloud base, (e3) in the ambient environment outside
the rain region and above the cloud base, (e3) the updraft region (including w = 0)
in the subcloud layer, and (e4) the downdraft region in the subcloud layer. For the
cost function, sensitivities are computed for perturbations in all forecast aspects (i.e.,
€us €y, € €05 €p, €0, 5 €9, ald g, ) both inside and outside the rain region of the storm.

To investigate the sensitivity of our storms to perturbations in the water vapor, we
run the SE-ARPS starting at 50 min, i.e., the effect of the perturbation begins when the
storm is in its developing stage ( see Figure la). Among the many available results, we
investigate the sensitivity of ground rainfall (GR) to water vapor perturbations in the four
regions described above.

The cloud base at 50 min is around 640 m. Four model levels are involved in the
subcloud layer (excluding the bottom boundary). The numbers of grid points involved in
perturbation are 8280 for ey, 61720 for ez, 5972 for es, and 4028 for ey.

The amount and location of ground rainfall are among the most important quantities
in storm-scale prediction. Figure 3 shows the sensitivity of GR at 120 min with respect
to the previous four perturbations inserted at 50 min. Recall that, at 120 min, the main
updraft is located near the center of the domain with a lima-bean shape, while a secondary
storm develops to the west (see Figure 1b). Also, a prominent secondary storm exists to
the northeast of the main storm, along with another weak storm near the northern lateral
boundary.

Among all perturbations, the largest sensitivity of GR is due to the e; perturbation.
For vapor perturbations inside the rain region (e1), the major increase in GR occurs in
the secondary storm with a maximum of 527 mm (Figure 3a). The GR decreases at the
weak downdraft region to the north of the main storm with a minimum of —479 mm. This
indicates that a 1% moisture perturbation inside the rain region above the cloud base at
t = 50 min induces a maximum increase of 5.27 mm and a decrease of 4.79 mm in the
secondary storm rainfall at ¢ = 120 min.

The major influence of the e; perturbation occurs in the main storm area, with a large
increase beneath the main storm and a decrease in the western part and north of the storm
(Figure 3b). Both the e; and e4 perturbations result in a decrease below the main storm
and increase below the secondary storm in the west (Figures 3¢ and 3d). The sensitivity
to the es perturbation is about three times larger than that to the e4 perturbation. The ey
perturbation also increases GR at the region of north secondary storm.

Overall, the largest influence on GR comes from the e; perturbation, but at the
secondary storm to the north. For the main storm, while the moisture perturbation
in the ambient environment above the cloud base (e3) increases the ground rainfall, the
perturbations in both the updraft and downdraft region below the cloud base (es and e4)
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decrease the ground rainfall at 120 min.

We now discuss the sensitivity results in the cost function and their implications on data
assimilation. We consider the control simulation (see Figure 1) as our pseudo-observations.
The sensitivity period is 30 min, from ¢ = 80 min to ¢ = 110 min. A 1% perturbation is
added to all variables at all grid points at 80 min for the perturbation run, which serves as
the nonlinear basic field for the sensitivity computation.

With this perturbation, model solutions show little difference from the observations.
Note that ARPS actually predicts the perturbations of potential temperature (#) and
pressure (p). Since the total fields of  and p are observed in practice (i.e., base state
+ perturbation), we specify their total fields as independent variables for the sensitivity
computation rather than using the perturbation fields.
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TABLE 1

Sensitivity of cost function at 110 min with respect to the perturbations of forecast aspects at 80
min both inside (IN) and outside (OUT) the rain region

aJ/oe, 0J]/0e, 0J]0e, 0J]/0eq 0J]0e, 0J[0eq, 0J]0eq. 0J/0eq,
IN .0069 -.281 .043 143.4 25.47 3.78 -.013 -.32
ouT -.68 188 -.003  -107.7 =74 -4.63 .0008 -.0011

The weight functions computed from (4) for this experiment are W, = 7.21 x 1078
(m/s)™, W, = 5.12 x 1078 (m/s)™%, W,, = 9.66 x 1075 (m/s)™*, Wy = 3.02 x 1077 K72,
W, = 2.66 x 107" Pa=2 Wg, = 1.90 (g/g)"%, Wo. = 14.36 (g/g)" %, and Wy, = 0.87
(g/g)_Q. As defined in (4), the weight function of any variable is inversely proportional
to the amount of forecast error in that variable, which is summed from the perturbation
insertion time to the verification time.

In Table 1, we show the adjoint sensitivities of the cost function (/) at 110 min to
perturbations at 80 min in specified variables both inside (IN) and outside (OUT) the rain
region. Because they are nondimensional and the cost function is unity at this time (110
min), we can compare the relative importance among variables.

For the perturbations inside the rain region, the largest sensitivity in the cost function
(i.e., forecasting error) is due to errors in potential temperature (8), followed by pressure (p)
and water vapor (), ). The sensitivities are positive for all three perturbations. Among all
variables, the cloud water (Q).) perturbation exerts the smallest effect on the cost function.
Among the moisture variables inside the cloud, water vapor exerts the largest influence on
J, followed by rainwater (@), ) and cloud water.

Perturbations in the momentum variables (u, v and w) inside the rain region yield small
changes in J. Among them, the largest sensitivity of J is due to the v perturbation, and
the smallest is due to the u perturbation. For perturbations outside the rain region, the
sensitivities are generally smaller than those for perturbations inside the rain region, except
for the sensitivity to the u perturbation. Note the prominent decrease in the influence on
J of perturbations in p. Since (). and @), are effectively zero in the environment, the
sensitivities of J to them are extremely small. The largest sensitivity in the cost function
is due to 8, followed by @, and p.

The perturbations in 8, ¢}, and v outside the rain region induce similar changes in
J, but in different directions compared with those inside the rain region. Other variables
demonstrate significant changes in sensitivity values. For example, the absolute sensitivity
of the cost function to the u perturbation outside the rain region is about 100 times larger
than inside the rain region, while the sensitivity to the ¢}, perturbation is about 1.2 times
larger.

In both cases, the p field has the largest effect on the cost function during the early
sensitivity period (not shown). This is because p is directly responsible for the mass
balance through the pressure gradient forces in the momentum equations. When p is
perturbed, the flow accelerates until terms involving the velocity become comparable with
the pressure gradient force. Therefore, the flow immediately and significantly responds to
the p perturbations. In contrast, perturbations in # affect the system initially through only
buoyancy term in the vertical momentum equation. That is, p affects all three components
of velocity simultaneously through the pressure gradient force, while 6 affects only the
vertical velocity initially and then other variables through mass continuity. Hence, during
the early sensitivity period, the p perturbations exert the largest influence on forecast
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errors among all variables. However, the increased buoyancy through the # perturbation
eventually influences storm dynamics and forecast error.

7 Discussion

For the deep convective storm studied here, the tangent linear solutions, which describe
the evolution of perturbations along trajectories of a time-dependent nonlinear base state,
represent the corresponding nonlinear perturbation fields very accurately up to about 50
min for a 1% moisture perturbation. Considering the highly nonlinear and discontinuous
properties of solutions in a full-physics nonhydrostatic cloud model such as ARPS, these
results are encouraging for future studies of storm predictability, data assimilation, Doppler
radar retrieval, and ensemble forecasting, all of which require derivative or sensitivity
information.

In the supercell simulation, bias-type errors in the water vapor in different regions of
the model exert influences on storm dynamics in different ways. Perturbations introduced
inside the rain region above cloud base mostly affect the secondary cells, while those outside
the rain region mainly influence the main storm. When the perturbations are introduced
in the subcloud layer, both the main and secondary cells are affected. Among the vapor
perturbations in different regions, the perturbations inside the rain region have the largest
influence on storm dynamics.

These results imply that we may need high-quality vapor data from either observations
or retrievals in order to obtain accurate predictions of storm behavior. The required
accuracy of water vapor can be estimated once the criteria on the forecast accuracy is
determined. For example, suppose that a relative sensitivity of the forecast error [15] to
water vapor is 20, which implies that the forecast error changes by 20% as a result of a 1%
error in water vapor. If one wishes a forecast with only a 10% error, the observation for
water vapor should have an error smaller than 0.5%.

For perturbations inside the rain region, the cost function showed the largest sensitivity
with respect to temperature, followed by pressure and then water vapor. For perturbations
in ambient environment, the cost function showed the largest sensitivity to temperature,
followed by water vapor and then pressure. All other variables have almost negligible effect
on the cost function. This result is also demonstrated in our 1-D experiments [16].

When applied to variational data assimilation, sensitivity information, especially
derivatives of the cost function with respect to all initial fields, can indicate which initial
field must be modified by a large amount and which may be altered by only a small amount
to change a specific amount of cost function on the way to its minimum state. With this
information, the minimization algorithm can be appled in a selective way to save computing
times: that is, a variable that exerts little influence on the cost function may be put in the
minimization process in a larger iteration step, while a variable with strong effect (especially
temperature) may be applied in every step.

Even though ADIFOR does not produce the adjoint, it gives more information than
handcoded tangent linear or adjoint models. In our experience, an AD tool dispenses
with much labor and time in handcoding the adjoint model, yet provides a great amount
of gradient information needed for sensitivity analysis and data assimilation. Compared
with the divided-difference approach, AD avoids the difficulty of choosing an optimal
perturbation size, to which the solutions of cloud model are extremely sensitive, and also
saves a great amount of computing time by avoiding numerous runs with full numerical
model. The ADIFOR-generated code is especially efficient and useful for investigating
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how a perturbation inserted at any given intermediate time propagates through the model
variables at later times. Furthermore, it is demonstrated that automatic differentiation can
be applied with no problem to a compressible model using a mode-splitting time integration
technique.

In the context of data assimilation especially for 3-D models, however, we note that
it is computationally impractical to compute sensitivities with respect to all model grid
variables through the ADIFOR-generated code, mainly because of memory limitations.
For example, the nonlinear ARPS with 53 x 53 x 35 grids requires about 9.5 MWords on a
Cray-C90, while that machine in the Pittsburgh Supercomputing Center has a maximum
memory of 512 MWords. Therefore, the maximum number of IVs that can be computed
through the SE-ARPS is only about 50. In data assimilation and Doppler radar retrieval,
we usually require the gradient information of the cost function with respect to all model
grid variables, which constitutes 98315 IVs for only one forecast aspect in our case.

Furthermore, for the purpose of data assimilation, the ADIFOR-generated code is
computationally very expensive compared with the pure adjoint model. The reason is
that the former is basically a forward model and thus repeats the sensitivity computation
implicitly for the number of IVs. Although we may save computing time by applying the
sparse matrix option in generating the derivative codes and by using the pseudo-adjoint
technique [6], a comparative study has not been performed yet for a 3-D model.
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