
The Nexus Approach to Integrating Multithreadingand CommunicationIan Foster� Carl Kesselmany Steven Tuecke�AbstractLightweight threads have an important role to play in parallel systems: they can beused to exploit shared-memory parallelism, to mask communication and I/O latencies, toimplement remote memory access, and to support task-parallel and irregular applications.In this paper, we address the question of how to integrate threads and communication inhigh-performance distributed-memory systems. We propose an approach based on globalpointer and remote service request mechanisms, and explain how these mechanisms sup-port dynamic communication structures, asynchronous messaging, dynamic thread cre-ation and destruction, and a global memory model via interprocessor references. We alsoexplain how these mechanisms can be implemented in various environments. Our globalpointer and remote service request mechanisms have been incorporated in a runtime sys-tem called Nexus that is used as a compiler target for parallel languages and as a substratefor higher-level communication libraries. We report the results of performance studies con-ducted using a Nexus implementation; these results indicate that Nexus mechanisms canbe implemented e�ciently on commodity hardware and software systems.1 IntroductionLightweight threads are often used to simplify the design and implementation of applicationsthat must simulate or respond to events that can occur in an unpredictable sequence [32].They are also, increasingly, used to exploit �ne-grained concurrency in programs designed torun on shared-memory multiprocessors [19]. However, until recently lightweight threads werenot used extensively in high-performance distributed-memory parallel computing, in large partbecause the focus of application development in this environment was on regular problems andalgorithms. In these situations, the programmer can reasonably be assumed to have globalknowledge of computation and communication patterns; this knowledge can then be exploitedto develop programs in which a single thread per processor exchanges data by using send/receivecommunication libraries.A number of factors are leading to an increased interest in multithreading in parallel com-puting environments, notably more irregular, heterogeneous, and task-parallel applications,�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.yBeckman Institute, California Institute of Technology, Pasadena, CA 91125.1

in which communication patterns cannot be easily determined prior to execution; heteroge-neous environments, in which parallel computers are embedded into networks, with variableand unpredictable latencies; and the integration of parallel computers into client-server ap-plications. Multithreading has proven useful for overlapping computation and communicationor I/O [7, 21], for load balancing [14], and for implementing process abstractions in parallellanguages [10, 12, 25, 28, 33, 44].A di�cult issue that must be addressed if multithreading is to be used successfully indistributed-memory environments is the integration of threads and communication. In single-threaded send/receive communication models, a send operation in one process is matched bya receive in another, and serves both to transfer data and to enable execution in the otherprocess. What should happen in a multithreaded environment, where many threads may beexecuting in a remote address space? Should a message be directed to a thread, or shouldthreads and communication operations be decoupled? Should the code executed in response toan incoming message be speci�ed by the sender or the receiver of the message? In this paper, wepropose answers to these and other related questions. We advocate an approach in which globalpointers are used to represent communication structures and remote service requests are usedto e�ect data transfer and remote execution. We explain how these two mechanisms interactwith each other and with threads, and how they can be used to implement a wide variety ofparallel program structures.Our proposed global pointer and remote service request mechanisms have been incorporatedinto a multithreaded communication library called Nexus [26], which we and others have usedto build a variety of higher-level communication libraries [30, 27, 40] and to implement severalparallel languages [10, 39, 25]. We use a Nexus implementation to perform detailed performancestudies of our proposed communication mechanisms on several parallel platforms. The resultsof these studies provide insights into the costs associated with their implementation in di�erentenvironments.In brief, the principal contributions of this paper are threefold:1. The design of a simple set of mechanisms for constructing multithreaded computationson distributed-memory computers.2. Implementation techniques that permit e�cient execution on commodity systems.3. A detailed evaluation of the performance of these mechanisms on multiple platforms.2 BackgroundWe �rst review approaches to the problems of organizing computation, communication, andsynchronization in parallel and distributed systems. We categorize various approaches in termsof the degree of global knowledge assumed of the programmer or compiler. In the stronglyhomogeneous environment of single-program, multiple-data (SPMD) programming, the pro-grammer or compiler can reasonably be assumed to have global knowledge of the operationsperformed at each processor. This assumption allows the use of a message-passing model inwhich each communication operation involves the explicit participation of a sender and a re-ceiver. Because communication patterns are predictable, the programmer or compiler can placea matching receive for each send in a program. Libraries supporting this model, such as p4 [9],2

PVM [18], and MPI [24], are designed for programmer use but are also used as compiler tar-gets by data-parallel languages such as High Performance Fortran (HPF) [23], Fortran-D [36],Vienna Fortran [11], and pC++ [29].In less regular, loosely synchronous problems, a programmer or compiler may possess globalknowledge of the successive phases executed by a program, but not of the the precise sequenceof operations and communications performed in each phase on each processor. If the unknownsequence is repeated many times, a technique called runtime compilation can be used to obtainand cache knowledge about the communication patterns used in the program; this knowledgecan then be applied by an SPMD message-passing library. This approach is used in the CHAOSlibrary [41], for example. In other situations, the sequence of operations performed cannotfeasibly be determined or reused. In some such situations, an adequate solution is to extendthe message-passing model to allow single-sided operations. Here, a sender speci�es the datathat is to be transferred and a remote operation that is to be performed with the data. Thedata is then transferred and the remote operation performed without user code on the remoteprocessor executing an explicit receive operation. The remote operation may be performedby specialized hardware (e.g., remote memory put/get operations on the Cray T3D) or by aninterrupt handler. Active messages [43] are a well-known instantiation of this concept.The set of operations that can be performed by a single-sided communication mechanismsuch as active messages is typically restricted because of the need to run in an interrupt serviceroutine. For example, active messages cannot allocate memory or initiate communications toother processors. Yet we often wish to perform more complex operations on a remote processor:for example, allocate memory in order to expand a tree structure, or initiate another commu-nication in order to dereference a linked list. These requirements motivate the introduction ofmore full-featured remote operations, and speci�cally the ability for these operations to createnew execution contexts that can suspend, initiate communication, and so forth. This leadsus to a more general multithreaded execution model, in which a lightweight thread of controlis created for remote operations. These threads execute in a shared address space, with eachthread typically having its own program pointer and stack. Multithreading becomes even moreuseful on a shared-memory multiprocessor, as di�erent incoming requests can then execute inparallel with each other and with other computation.A second motivation for introducing multithreading into parallel computations occurs on thesending side of a remote operation. As the degree of regularity in a problem decreases, the e�ortrequired to keep track of outstanding communication requests increases. Lightweight threadscan address this problem by serving as loci of control for remote communication operations.For example, in a program in which several operations require remote values to proceed, eachoperation can be encapsulated in a separate suspended thread, to be resumed when the requiredremote value is available.3 Integrating Communication and MultithreadingWhen introducing multiple threads of control into a distributed-memory computation, onemust consider whether and how threads interact with low-level communication primitives. Aminimal approach would be simply to combine a message-passing communication library, suchas MPI [24], and a thread library, such as POSIX threads [37]. However, we argue that the3

communication primitives provided by current message-passing libraries are not an appropriatebasis for multithreaded applications. Reasons include the following:� Point-to-point communication routines assume that threads exist on both the sendingand receiving sides of a communication. While this assumption is reasonable in SPMDapplications, the design of irregular task-parallel multithreaded computations can be sig-ni�cantly complicated if they must ensure that a thread exists and is waiting on thereceive side. It is often more natural to imagine threads being created as a result ofcommunication.Another way of viewing this problem is that message-passing communication binds thedestination endpoint of a communication to a speci�c thread of control. However, in mul-tithreaded computations, communication could be serviced by (a) a preexisting thread,(b) one thread out of a collection of preexisting threads, or (c) a thread created speci�callyto service the communication. We believe that low-level mechanisms should support allthree alternatives.� Irregular, multithreaded computations will often create, and must be able to refer to andcommunicate with, large numbers of dynamically created entities. Yet because point-to-point communication mechanisms direct messages to processes, they provide only alimited namespace for communication. Message tags and communication contexts [24]help to some extent, but depend on either global knowledge of how the tag space will beused, or a synchronous, collective operation to establish a new context. Neither option isattractive in the dynamic, asynchronous environment one expects to see in multithreadedcomputations.� Message-passing communication implies a synchronization point at the receiving end. Inmultithreaded computations, such synchronization may not be desired or make sense.This is especially true when the purpose of a communication is to create dynamically anew thread of control in a remote location.We address these problems by introducing mechanisms that decouple the speci�cation ofa communication's destination endpoint from the speci�cation of the thread of control thatresponds to that communication. In our approach, a communication endpoint is representedby an object called a global pointer (GP), while communication is initiated and remote com-putation invoked by an operation called a remote service request (RSR: see Figure 1). Bystructuring computations in terms of these mechanisms, we are able to resolve the problemsjust enumerated. No thread need exist to receive an incoming communication; endpoints canbe created dynamically, without the involvement of other nodes; and remote operations can beperformed without synchronization at the receiving node.The GP and RSR mechanisms are implemented as part of a system called Nexus that wehave developed to support experimentation with multithreading and communication. Nexusis structured in terms of �ve basic abstractions: nodes, contexts, threads, GPs, and RSRs. Acomputation executes on a set of nodes, and consists of a set of threads, each executing in anaddress space called a context. (For the purposes of this paper, it su�ces to assume that acontext is equivalent to a process.) An individual thread executes a sequential program, whichmay read and write data shared with other threads executing in the same context.4

GP

(a)

(b)

send receive

RSRFigure 1: The message-passing and RSR communication models contrasted. The large rectanglesrepresent contexts, the circles threads, and the dashed lines local pointers. In (a), a thread usesmessage passing to send a message directly to another thread. In (b), a thread invokes an RSRon a GP referencing an endpoint in another context.In the rest of this section, we introduce the GP and RSR mechanisms, and explain howthey support computations in which processes, communication structures, and threads canbe created and destroyed dynamically, and in which threads can be created and destroyedindependently of the communication structures over which they transfer data.3.1 Global PointersAs stated above, a GP represents a communication endpoint: that is, it speci�es a destination towhich a communication operation can be directed by an RSR. GPs can be created dynamically;once created, a GP can be communicated between nodes by including it in an RSR. A GP canbe thought of as a capability [42] granting rights to operate on the associated endpoint.As its name implies, a GP is associated with a memory location in the address space (con-text) to which it refers. This association of an address with an endpoint is not essential tothe realization of the endpoint concept. However, the global address space that is providedby this association accommodates the requirements of the irregular applications that are likelyto exploit multithreading. SPMD computations naturally associate communication with thesection of code that consumes the data. Less regular computations need to associate commu-nication with a data structure or code segment known to the sender but not necessarily to thereceiver. These computations can use GPs to construct complex, distributed data structures.In addition, we note that GPs are consistent with the trend toward direct hardware supportfor a global shared namespace in distributed-memory computers.5

3.2 Remote Service RequestsAs explained in Section 2, irregular computations can often bene�t from the ability to performremote operations without the explicit intervention of user code on a remote processor. Thisrequirementmotivates the introduction of the remote service request (RSR). An RSR is invokedby specifying a handler function, a GP, and the data to be communicated; it causes the speci�edhandler function to execute in the context pointed to by the GP. The handler is invokedasynchronously in that context; no action, such as executing a receive, needs to take place inthe context in order for the handler to execute. The data transferred between contexts by anRSR is speci�ed by a bu�er and packing and unpacking functions similar to those found inMPI [24] and PVM [18]. As we will demonstrate in Section 5, the bu�er manipulation routinesfor RSRs can exploit the same bu�er management optimizations that are used by traditionalmessage passing systems; hence, no specialized data-transfer mechanisms are required. An RSRinvocation proceeds in three steps:1. The RSR is initialized by providing a GP and handler identi�er. In order to supportheterogeneous architectures and dynamic composition of programs, a handler identi�ercan be either a string or an integer identi�er. The initialization operation returns a bu�er.2. Data to be passed to the remote handler is placed into the bu�er; in addition to the usualdatatypes, GPs can be included. The bu�er uses the GP provided at initialization todetermine whether any data conversion or encoding is required.3. The RSR is performed, with the GP provided at initialization being used to determinewhich low-level protocols should be used to perform the communication. (For example, amachine-speci�c communication library is typically used if the node on which the contextresides is in the same computer, while TCP/IP is used in other circumstances.)The handler is invoked in the destination context with the local address component of the GPand the message bu�er as arguments. The passing of the local address component makes itpossible to distinguish between di�erent local objects.A di�cult issue that must be addressed in designing systems such as Nexus is the function-ality supported in a handler. In general, the less a handler is allowed to do, the faster it canexecute, since less must be done in order to create a local context for its execution. However,simpler is not necessarily better: if handler functionality is too constrained, applications mustimplement potentially complex protocols on top of the handler mechanism. Another compli-cating factor is that the range of things that can be done \cheaply" can vary signi�cantly fromsystem to system. Given these uncertainties, it is not surprising that researchers have inves-tigated a range of approaches. Remote-memory put/get operations and active messages areexamples of relatively high-performance, low-functionality mechanisms. Many systems supportonly nonblocking handlers [6, 15]. At the lower-performance, higher-functionality end of thescale we see systems such as Panda [3] and Isis [4], which create a new thread for every incomingRPC. Compromise approaches are also possible, such as optimistic active messages [45], whichcreates a thread only when runtime tests determine that a handler would suspend.In designing the Nexus system, we took into account the fact that we are targeting non-SPMD applications, in which relatively complex handler functions are commonplace. In addi-tion, we observe that programmers and compilers are often able to identify handler invocations|such as remote memory operations|that can be guaranteed not to suspend execution. Hence,6

we chose to support two types of RSR, the threaded RSR, in which a new thread of control iscreated to execute the handler, and the more lightweight nonthreaded RSR, which allows thehandler to execute in a preallocated thread. The programmer or compiler can use the latterform if they can guarantee that a handler will terminate without suspending.The nonthreaded RSR is an important optimization because it can avoid the need to allocatea new thread; in addition, if a parallel computer system allows handlers to read directly fromthe message interface, it avoids the copying to an intermediate bu�er that would otherwise benecessary for thread-safe execution. As an example, a handler that implements the get and putoperations found in Split-C [16] can take advantage of this optimization.In addition to the RSR mechanism just described, Nexus also provides routines for creatingand managing threads within a context. These functions are modeled on a subset of the POSIXthreads standard [37] and provide for local thread creation, termination, condition variables,mutual exclusion, yield of the current thread, etc. The use of a POSIX-compliant threadenhances portability; a disadvantage is that POSIX was designed as an application programinterface, with features such as real-time scheduling support that may add overhead for parallelsystems. A lower-level interface designed speci�cally as a compiler target would most likelyresult in better performance [1, 8, 20] and will be investigated in future research.3.3 DiscussionIt is instructive to compare and contrast Nexus mechanisms with other parallel programminglibraries that seek to integrate multithreading and communication.Distributed-memory computers are most commonly programmed by using communicationlibraries that support point-to-point and collective communication operations. Early librariesof this sort often incorporated implicit state such as default message bu�ers, and hence werenot easily integrated with thread libraries [13, 22]. The more modern Message Passing Interface(MPI) [31] is designed to be thread safe, but provides no explicit support for communicationbetween threads. The Chant runtime system [34] augments MPI calls with a thread identi�er.In Mach [46] and NewThreads [21], threads communicate by sending messages to speci�c ports;di�erent threads can receive from a port at di�erent times. Tags, communicators, threadidenti�ers, and ports all allow messages to be sent to or received from a speci�c thread. However,they do not provide the decoupling of communication and endpoint provided by the GP andRSR. In particular, each send must be matched by an explicit receive.The message-passing and RSR mechanisms are also distinguished by the techniques usedto support the dynamic integration of new computational resources into computations. Inmessage-passing systems, a thread with a well known name (the \initial thread") must becreated on each node; this initial thread then responds to requests to create new threads,etc. This requirement leads to a fundamental asymmetry in the multithreaded model: forexample, the initial thread presumably cannot be terminated. In Nexus, new contexts|createdat program startup time, or later|initially have no thread running in them. (The one exceptionis the initial context, which runs the main thread for the program.) When new contexts arecreated, a GP to the new context is returned. Additional threads can be created by usingthis GP to make RSRs to the new context. Hence, threads are created as a byproduct ofcommunication, and no initial threads are required to bootstrap a computation.Other systems with similar goals to Nexus are Panda [3], Cilk [6], Athapascan [15], and7

Converse [38]. Panda provides threads, RPCs, and ordered group communication as primitiveoperations. We discuss the suitability of RPC as a primitive below. Ordered group communi-cation can be an important primitive in distributed-computing applications [4], but is of lessrelevance in parallel computing. Cilk and Athapascan provide run-to-completion threads toprovide a substrate for automatic load-balancing algorithms; the more full-functioned threadsrequired for many parallel applications are not supported. Converse supports a message-drivenexecution model using a construct similar to an RSR, but does not support the concept of aGP.The RSR and GP mechanisms are also related to the remote procedure call (RPC) [5, 2].However, while research has identi�ed RPC as an important structuring principle for client-server systems, we argue that it is not an appropriate primitive mechanism for parallel comput-ing. Synchronous RPC has the advantage of semantic simplicity but imposes too much policyby enforcing an explicit two-way synchronization on every communication. Parallel programsare not typically structured in terms of synchronous requests for remote services. Rather, theyuse more complex, custom-designed synchronization patterns implemented in terms of one-waydata transfers or synchronization. The argument marshaling performed by RPCs upon calland return is another area in which RPC mechanisms prove too restrictive. The rich set ofmessage bu�er management mechanisms provided in MPI illustrates the importance of bu�ermanagement to high performance. A third disadvantage of the RPC is that it does not providean inherently multithreaded semantics. If we make two RPCs to a server, one to extract amessage from a list and the other to add a message to a list, we may not be guaranteed thatone will not block the other.In conclusion, we note that RSRs, message-passing, RPC, and other mechanisms can alsobe compared and contrasted with respect to the implementation complexity and performanceimplications of attempting to layer each one on top of the other. For example, an RPC isnaturally implemented a pair of RSRs, but an RSR implementation in terms of RPCs introducesunnecessary synchronization points. Similarly, message passing can be implemented in termsof RSR (a send makes an RSR to deposit data in a remote queue: Section 5 evaluates some ofthe costs involved), while a message-passing implementation of RSRs requires the introductionof a specialized thread dedicated to serving RSR requests.4 Implementation IssuesIn this section and the next, we �rst describe general implementation issues that arise in imple-mentations of the GP and RSR mechanisms, and then evaluate the cost of these mechanismsin several systems.As described in the preceding section, the RSR mechanism allows a thread to invoke com-putation in another context. A critical implementation issue relates to how the computationinvoked by the RSR is scheduled in the remote context. There can be complex tradeo�sbetween the rapidity with which an RSR can be scheduled for execution (and hence the time-liness of any response), the functionality supported in an RSR, and the overheads incurred inthe context in which the RSR executes. The techniques used in a particular system will dependalso on whether or not we wish (or are able) to modify operating system (OS) code, and onthe functionality supported by the OS and associated thread and communication systems. In8

particular:� Can the operating system (OS) suspend a thread that is waiting for communication,and resume that thread when a message is detected? In many contemporary systems, athread that calls a blocking communication function will also block all other threads inthe process in which it executes.� Is the underlying communication system reentrant? Many contemporary communicationsystems are not, in which case locks must be used to ensure mutual exclusion duringcommunication calls, and care must be taken to prevent deadlock.� Are threads scheduled preemptively? (This means that a running thread can be desched-uled without an explicit yield, either because a timer interrupt signals end of a schedulertime slice, or because some other OS event causes a higher-priority thread to be sched-uled.) Many thread systems do not support preemption.� Are thread priorities supported by the scheduler? Many thread systems do not supportpriorities (which complicate the algorithm used to determine the runnable thread). In-stead, they support only nonprioritized FIFO scheduling (in the absence of preemption)or round-robin scheduling (if preemption is supported).In each case, an a�rmative answer tends to simplify RSR implementation, but also increasesthe cost of thread management and related operations, by requiring more complex logic in thescheduler and/or introducing more critical sections that must be protected by locking.In the following, we examine four general approaches to RSR scheduling, based on a probingcommunication thread, a blocking communication thread, computation-thread probing, andinterrupt handlers.4.1 A Probing Communication ThreadWe �rst discuss implementation approaches that are appropriate for systems (e.g., the MPLlibrary on the IBM SP2 running AIX 3.2) that do not support the blocking of a single threadon a communication operation. In these systems, it is necessary to perform nonblocking reads(probes) to detect pending RSRs. In the approach that we describe here, a specialized commu-nication thread performs these probes. The use of a dedicated communication thread allowsus to exploit a preemptive scheduler to ensure that probing is performed at regular intervals.It also avoids di�culties due to (for example) stack over
ow that might arise if a handlerwere executed in an existing thread. Notice that the communication thread is an artifact ofthe particular implementation strategy and is not visible to the application programmer. Thecommunication thread is de�ned as follows:for everprobe_for_incoming_rsrsyieldendfor 9

Each time it is scheduled, this communication thread checks for and processes any pendingmessages, and then relinquishes the processor. Notice that in this approach, the communicationthread may execute even when no RSRs are pending. A number of behaviors are possible,depending on the functionality of the thread system, and providing di�erent latency/overheadtradeo�s:1. If the thread system is preemptive and supports priorities, then by making the communi-cation thread high priority we can ensure that an RSR will be scheduled with a delay nogreater than the scheduler time slice. (This assumes that a yield allows a lower prioritythread to execute; a disadvantage is that we pay the cost of a communication threadschedule and poll at every timeslice or thread switch.)2. If the thread system is preemptive but does not support priorities, then an RSR can bedelayed by the product of the number of active threads and the scheduler time slice.3. If the thread system is nonpreemptive, then the delay will depend on when in the com-putation the next scheduling point occurs, and whether or not the scheduler supportspriorities.In Section 5 below, we evaluate the performance of the communication-thread strategy in annonpreemptive environment.If the thread scheduler supports priorities, then an alternative approach is possible in whicha low priority communication thread executes an in�nite loop that calls a blocking read and athread yield. Because it runs at low priority, this thread is scheduled only when no applicationthreads can execute, and then blocks until an RSR is available. Advantages of this approach arethat the communication thread runs only when there is no other work to do, and then does notconsume resources while waiting. In addition, a blocking receive often responds more quicklyto an incoming message than a polling loop. Because this approach can yield unbounded RSRdelays if used in isolation, it is typically most appropriately used in conjunction with probing(see below).4.2 Scheduling via ProbingWhile conceptually simple, the communication thread as just described provides only limitedcontrol over when RSRs are detected and processed. (Even if preemption is supported, atypical timeslice value is 1/10 of second.) An alternative approach that can provide greaterresponsiveness in some situations is to make computation threads perform probe operationsthat check for pending RSRs. Probe operations can be performed whenever a computationthread calls a thread or communication operation. (This approach is used successfully todispatch active message handlers in some implementations of active messages [43].) They canalso be introduced into user computation code automatically, by a compiler or object-codeinstrumentation tool. In both cases, it may be feasible for the computation thread that detectsRSRs to execute the handlers (or create threads) directly; alternatively, the computation threadcan enable a high-priority communication thread.Clearly, there are tradeo�s to be made between the frequency of probing and the respon-siveness with which RSRs are processed. On some machines, the cost of detecting a pending10

RSR can be quite low: for example, an MPL probe can be performed in less than 0.5 �sec onthe IBM SP2. In other situations, probe operations are expensive (e.g., more than 100 �sec foran TCP/IP probe on the SP), in which case probing is less attractive.In preemptive systems a communication thread can be useful as an adjunct to probing, asit allows us to ensure that probe operations are performed within a bounded interval.4.3 Blocking ThreadsWe next consider the situation in which an OS allows a single thread to block waiting for acommunication operation, without blocking other threads in the computation. The OSF/ADOS used on the Intel Paragon is an example. When the communication operation completes,the OS is noti�ed and the blocked thread resumes execution. In this situation, we can de�ne acommunication thread as follows:for everblocking_receiveprocess_rsrendforWhen an RSR arrives, this thread can execute a nonthreaded handler directly, or create a newthread to execute a threaded handler.If priorities are not supported (this is the case on the Paragon, for example), then the delayin processing a pending RSR is bounded by the OS's thread scheduling preemption timeslice,multiplied by the number of active threads. If priorities are supported, we can reduce thedelay between RSR arrival and processing by running the communication at high priority sothat an incoming RSR preempts the execution of computation threads. However, while certainspecialized systems support low-overhead preemption (e.g., the MIT J Machine [17]), in mostexisting systems preemption is an expensive operation involving a processor interrupt.4.4 Interrupt-driven SchedulingA fourth approach to RSR implementation uses a processor interrupt to notify a thread sched-uler of a pending RSR. In principle, an interrupt can be used to stop the currently executingthread so that the thread scheduler can examine the system state and decide when to processthe RSR. In practice, the cost of delivering an interrupt up through the OS to an applicationis high. For example, on an IBM SP2 the time to deliver a zero-length message using aninterrupt-driven mechanism (the MPL RECVNCALL function) is 220 �sec. For comparison,one-way latency for a conventional message-passing communication is 60 �sec. In addition, theinterrupt-driven mechanism, like an active message, places restrictions on the actions that afunction can perform, hence restricting the range of applications for which it is useful.Franke and Rivi�ere (personal communication, 1995) have implemented a specialized multi-threading and communication system on the IBM SP2 in which an incoming communicationuses an interrupt to perform a preemptive thread switch to a designated communication thread.This thread executes nonthreaded RSRs directly and creates threads for threaded RSRs. Thisapproach allows full-featured RSRs, but incurs the cost of an interrupt-driven receive plusadditional thread management costs associated with the switch to the communication thread.11

4.5 DiscussionThe above discussion emphasizes the wide range of implementation strategies that may beapplied when implementing systems that integrate threads and communication. In principle,one might wish to switch between alternative strategies dynamically, according to applicationrequirements. Nevertheless, it has been our experience that sensible defaults work well for awide variety of applications. In essence, these defaults correspond to the use of a communi-cation thread in all environments; the use of preemptive scheduling, when this is available, tobound latency; the use of blocking communication, when this is available; and the use of probeoperations in Nexus calls, and also in the communication thread if blocking communication isnot supported.The one problematic issue that remains in our implementation of the RSR mechanism is thepotentially high latencies that can be encountered, particularly in computations that do notmake frequent communication calls. This issue become particularly important in applicationsthat use RSRs to achieve remote memory access, and when we attempt to provide fast collectiveoperations among threads, as is required (for example) when a multithreaded computationincorporates SPMD components [35]. A general solution to this problem will require new OSstructures that integrate communication and multithreading more tightly than current systems.We are also hopeful that automatic insertion of probe operations will be helpful in this regard,and propose to investigate this technique in future research.5 Performance StudiesWe noted in Section 4 that di�erent RSR implementation approaches can have radically di�erentperformance characteristics. In this section, we report results of experiments that enable us toquantify some of these costs in selected environments.We emphasize that these experiments are performed not with an arti�cial test harness, butwith a full-featured multithreaded communication library that is in regular use in a variety oflarge-scale application projects and compiler research projects. Parallel libraries and languagesthat use Nexus include nPerl [27], an RPC extension to the Perl 5 scripting language usedfor writing systems administration and management programs; an implementation of the MPImessage-passing standard based on the MPICH [30] framework; the CAVEcomm communica-tion library [40], used to achieve client-server interactions between high-performance computingapplications and the CAVE virtual reality system; and a variety of high level parallel program-ming languages including CC++ [10], CYES-C++ [39], and Fortran M [25].The experiments that we describe use simple benchmark programs that perform point-to-point communication between two threads using a variety of mechanisms. These apparentlytrivial benchmark programs are valuable because they allow us to measure accurately theoverheads associated with various forms of RSR. Notice that this single-threaded, synchronousscenario represents a worst case situation for a multithreaded system, in that threads cannot beused to advantage and a native message-passing code has complete knowledge of when data willarrive. Hence, we should not be surprised that our results are expressed in terms of overheadsrelative to low-level message passing.Three di�erent machines were used for the experiments: an IBM SP2 with Power 2 proces-sors and running AIX 3.2.5 (referred to as the SP in the following), an Intel Paragon/MP, and12

1e-05

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000 100000 1e+06

T
im

e
(s

ec
s)

Message Length

IBM SP2
Sun Sparc-10 (ethernet)

Figure 2: One-way message latency as a function of message size using low-level messageprotocols on the SP and Sparc. Notice the use of log scales. On the SP, communication isachieved using the MPL library's blocking send (mpc bsend) and blocking receive (mpc brecv)functions. On the Sparc, we use read and write operations to communicate over a TCP stream.two Sparc-10 workstations running Solaris 2.3 and connected by an Ethernet (referred to asthe Sparc). Since Paragon results mirrored SP results in most respects, for brevity we reportresults only for the SP and Sparc.The nodes on each machine run a multitasking operating system. On the Sparc, threadsare supported within the kernel and can block on a communication operation without blockingother threads executing in the same process. On the SP, threads are implemented by a user-levellibrary, and blocking is not supported.5.1 Native CommunicationTo provide a basis for comparison, a native test code was constructed that bounces a vectorof �xed size back and forth between two processors a large number of times. This nativecode uses the MPL message-passing libraries on the SP and TCP sockets on the Sparc. Everyattempt was made to optimize performance: for example, blocking receives were used on theSP. Figure 2 summarizes the one-way communication costs measured with this code. Noticethat these results represent a best case for the native communication library, since data is notcopied. In realistic situations, copy operations will often be required on the sending and/orreceiving processor to move data to and from complex data structures.13

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000 10000 100000 1e+06

R
at

io
 to

 N
at

iv
e

Message Length

H-to-H
Th H-to-H

T-to-T

Figure 3: One-way message latency on the SP as a function of message size, relative to latenciesachieved using low-level protocols, for three di�erent cases, explained in the text: nonthreadedhandler-to-handler, threaded handler-to-threaded handler, and thread-to-thread.5.2 Handler-to-Handler CommunicationThe �rst Nexus benchmark is a nonthreaded handler-to-handler test case, H-to-H, in whichthe send/receive pair in the native test case is replaced by an RSR to the remote node. TheRSR handler that executes on the remote node invokes an RSR back on the originating node.This code typi�es the behavior of a program placing data in a remote location, as no newthreads are created to execute handlers. The line labeled H-to-H in Figures 3 and 4 shows theoverhead associated with this code, expressed as a ratio of execution time to that of the nativecommunication test.To provide greater insight into the costs of using the RSR mechanism, we examine itsperformance in detail on the SP. For a zero-length message, native one-way latency is 44 �sec.H-to-H takes 79 �sec: 35 �sec (80%) longer. As messages get larger, the time spent in actualcommunication increases, and the H-to-H overhead decreases. For 100,000 byte messages, theoverhead is 327 �sec (10%). Clearly, the overhead associated with the RSR mechanism issigni�cant only for small messages, and then is not large in absolute terms.As H-to-H overhead is highest for zero-length messages, we focus on this case and attemptto identify the nature and costs of the additional operations performed on the H-to-H criticalpath. We �rst say a few words about the techniques used to implement RSRs. As discussed inSection 4, a nonthreaded RSR handler can be executed in an existing thread. In this experiment,the RSR handler executes in a communication thread created by the Nexus implementation for14

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 10 100 1000 10000 100000 1e+06

R
at

io
 to

 N
at

iv
e

Message Length

H-to-H
Th H-to-H

T-to-T

Figure 4: One-way message latency on the Sparc as a function of message size, relative tolatencies achieved using low-level protocols, for three di�erent cases, explained in the text: non-threaded handler-to-handler, threaded handler-to-threaded handler, and thread-to-thread.
15

this purpose. Hence, H-to-H incurs no thread creation or scheduling costs. Overhead consistsof additional costs initiating and transferring the RSR to the remote processor, and additionalcosts incurred receiving the RSR and dispatching the handler. These costs are explained below.We also need to understand the protocol used to transfer the data associated with an RSR.We consider the case in which a high-level language compiler has indicated that data is to beplaced into the address pointed to by the GP. This allows the Nexus implementation to avoidadditional copy operations that would otherwise be necessary on systems such as the SP thatdo not allow user-level code to read directly from a communication channel. For generality,Nexus also allows an RSR handler to place data in other locations. This would be required,for example, if the data received was to be stored in a complex data structure such as a tree.However, note that in this situation a message-passing library must also copy data: so, inabsolute terms, the Nexus abstractions do not incur additional overhead.If the RSR data is small, a single message is generated containing both an RSR header andthe data. If RSR data is large (>2500 bytes on the SP), the header is sent in a single messageand the data in a subsequent message. This two-phase protocol keeps overheads small for allmessage sizes. For small messages, we incur the cost of an additional copy on the sending andreceiving side; for large messages, we incur the cost of one additional communication. Notethat all receive operations can be posted ahead; this avoids copy operations from system bu�erson some machines.We now examine the overhead incurred by the processor that generates an RSR. A commu-nication operation in a high-level program is compiled to an Init RSR call followed by a seriesof Put calls, and terminated by a Send RSR call. The Init RSR call obtains an RSR header(20 bytes) and a default data bu�er from a free list. Since we are operating in a multithreadedenvironment, the free list must be protected by a lock (1.1 �sec). Once the bu�er is obtained,a small number of copies must be performed to initialize the header. Init RSR takes about5 �sec, of which about 2.5 �sec is spent moving data into the header. We note that the lockis not strictly necessary. A minor modi�cation of the Init RSR call interface would allow thecompiler to allocate message headers and bu�ers without locking.On non-zero length messages, Put routines are used to transfer data into the RSR bu�er.These routines are constructed so as to prevent any copying additional to that performed bythe underlying communication system. Finally, a Send RSR call is made to dispatch the RSR.This call costs 4 �sec more than the corresponding native send. Part of this overhead is becausea lock must be used to protect the nonthread-safe SP communication library.Overhead is also incurred on the processor to which the RSR is sent. As discussed above,the RSR is serviced by a dedicated communication thread. In H-to-H, this is the only threadexecuting. The communication thread posts a receive and then uses a blocking \messagedone" function to detect the arrival of an RSR. The use of the message done function ratherthan the blocking receive used in the native code incurs an overhead of 5 �sec. The RSRheader is decoded to identify the handler function that is to be executed, the handler functionpointer is retrieved, and the handler is invoked. On completion of the handler function, thecommunication thread again polls for new requests; however, since the handler has alreadyissued an RSR back to the initial node, this poll is not in the critical path. This RSR dispatchprocess takes about 7 �sec on the SP. The dispatch of the handler is protected by a lock untilthe handler function is called. In addition, calls to the POSIX functions \get speci�c" and \setspeci�c" (1.2 �sec) are required to update the context pointer that Nexus associates with each16

thread.In summary, we can account for an overhead of 9 �sec on the sending side and 12 �sec onthe receiving side, for a total of 21 out of an observed di�erence of 33 �sec. We suspect, buthave not been able to demonstrate, that the unaccounted-for overhead is due in part to cachee�ects. The native code consists of a tight loop in which a send call is immediately followedby a receive. In more realistic situations, data references between the send and receive wouldlikely degrade cache performance, increasing native communication times.A similar analysis can be performed on the Sparc. The overhead is large: about 700 �sec fora zero-length message. About 124 �sec is due to an extra read (for the header: 62 �sec), bu�ermanagement costs (41 �sec), and the handler call (21 �sec). The rest is due to speci�c attributesof the H-to-H test case that should not apply in realistic programs. Because Solaris supportsblocking of a thread in a communication library, the Nexus implementation on the Sparc canreplace the polling loop in the communication thread with a blocking socket read. (In general,a Nexus thread must block rather than poll, to avoid taking resources from other concurrentlyexecuting threads.) In contrast, the native test case uses a polling loop built on nonblockingreads. In H-to-H, only one thread active at is a time, and hence a blocking read results in acontext switch from the reading process to some other process. As a result, context switchesincrease from 1.1 to 1.8 per round trip, and performance decreases accordingly. Realisticprograms typically have other threads that can continue execution when the communicationthread blocks, and furthermore perform less frequent communication. Hence, we would notexpect to encounter this problem in most practical situations.5.3 Thread-to-Thread CommunicationThe second Nexus benchmark generalizes H-to-H so that data is passed between two compu-tation threads. The RSR handler uses a condition variable to enable a blocked thread whichissues an RSR back to the originating processor. This RSR in turn enables a blocked thread onthat processor. This code typi�es the behavior of a program in which two long-lived threads ex-change data using a message-passing model. The results of this experiment are labeled T-to-Tin Figures 3 and 4.The cost of thread-to-thread communication is higher than the cost of hander-to-handlercommunication. For a zero-length message on the SP, the di�erence is about 50 �sec. Thisadditional cost results from synchronization using condition variables, switching between thecommunication thread and the thread that issues the reply RSR (a yield costs 5.5 �sec), andcommunication thread operations that were not in the critical path in H-to-H. In particular,polling for new RSR requests is now in the critical path, since the reply RSR is issued from thethread and not the handler as in H-to-H.5.4 Remote Thread CreationIn the previous two experiments, we examined the cost of RSR-based communication betweentwo preexisting threads. The third benchmark examines the cost of combining thread creationwith RSR execution. H-to-H is modi�ed to use a threaded handler. The resulting programtypi�es the behavior of programs that use RSRs to implement long-lived remote computations.The results of this experiment are labeled Th H-to-H in Figures 3 and 4.17

For a zero-length message on the SP, one-way latency in this experiment is about 60 �secgreater than in T-to-T. The principal additional cost incurred in the critical path is the creationof a new thread to execute the RSR handler. On the SP, thread creation costs at least 32 �sec.Presumably this cost could be reduced by using a lighter-weight thread package.5.5 DiscussionThe results reported in this section suggest that the basic Nexus mechanisms can be imple-mented with reasonable e�ciency on a range of commodity systems. With a moderate level ofoptimization, we achieve, in a worst-case scenario, overheads relative to low-level message pass-ing of a few tens of microseconds for small messages, and a few percent for large messages. Onmulticomputers, except for small messages, the overhead is signi�cantly less than is incurredby introducing a single additional copy on either the sending or receiving side. The resultsalso provide insights into where optimization e�orts should be directed in future systems. Forexample, high thread creation costs have a signi�cant impact on threaded handler performance.The signi�cance of these results is that a program that uses Nexus mechanisms to per-form message-passing operations will be only slightly slower than an equivalent single-threadedprogram that uses low-level message-passing libraries. Multithreaded programs that use othertechniques to provide thread-to-thread communication will certainly incur most of the overheadmeasured for the T-to-T case, because of the need to �rst receive and then deliver messages tospeci�c threads. These programs may incur other overheads also, depending on the tool used.6 ConclusionsWe have proposed an approach to the integration of multithreading and communication basedon global pointers and remote service requests. We have explained how these constructs can beused to develop a wide variety of parallel program structures, and how they can be implementedon a variety of hardware and software platforms. We have also evaluated costs associated withimplementations of these mechanisms on several commodity systems.Threads, global pointers, and remote service requests are fundamental components of theNexus runtime system, a parallel library that also supports dynamic management of com-putational resources and address spaces. Nexus has been implemented on a wide range ofparallel and distributed computer systems, and is used as a runtime library by numerous par-allel language and parallel library projects. These experiences demonstrate the robustness ofthe mechanisms and implementation.In future work, we will investigate re�nements to the GP and RSR mechanisms. For ex-ample, an expanded interface can allow certain bu�er allocation, initialization, and lockingoperations to be avoided or amortized over multiple RSRs. The size of the header can be re-duced if a linker can provide unique handler identi�ers. In TCP/IP protocol modules, we caneliminate one of two reads currently used when receiving messages, if we perform some simplebu�ering. We are also investigating extensions to the underlying protocol architecture, withthe goal of supporting additional low-level protocols (e.g., multicast and unreliable unicast)and higher-level functionality (e.g., security).More signi�cant performance improvements can be achieved by modi�cations to the under-lying system software or hardware. A thread-safe communication library can reduce the need18

for locks, as can a tighter integration of messaging, threading, and other system functions. Thecost of thread creation and scheduling can be reduced by using lighter-weight threads [8, 20].It also appears straightforward to map certain classes of RSR to hardware get and put opera-tions when these are available. Hence, we anticipate future developments in both software andhardware tending to reduce the overhead associated with Nexus mechanisms.AcknowledgmentsWe are grateful to Hubertus Franke, John Garnett, Jonathan Geisler, David Kohr, Tal Lan-caster, Robert Olson, and James Patton for their input to the Nexus design and implementation.This work was supported by the Mathematical, Information, and Computational Sciences Di-vision subprogram of the O�ce of Computational and Technology Research, U.S. Departmentof Energy, under Contract W-31-109-Eng-38; and by the National Science Foundation's Centerfor Research in Parallel Computation under Contract CCR-8809615.References[1] T. Anderson, E. Lazowska, and H. Levy. The performance implications of thread man-agement alternatives for shared-memory multiprocessors. IEEE Trans. on Computers,38(12):1631{1644, 1989.[2] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. User-level interpro-cess communication for shared memory multiprocessors. ACM Transactions on ComputerSystems, 9(2):175{198, May 1991.[3] R. Bhoedjang, T. Rumlhl, R. Hofman, K. Langendoen, and H. Bal. Panda: A portableplatform to support parallel programming languages. In Symposium on Experiences withDistributed and Multiprocessor Systems IV, pages 213{226, September 1993.[4] K. Birman. The process group approach to reliable distributed computing. CACM,36(12):37{53, 1993.[5] A. Birrell and B. Nelson. Implementing remote procedure calls. ACM Trans. on Comput.Syst., 2:39{59, 1984.[6] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk: Ane�cient multithreaded runtime system. In Proc. Symp. on Principles and Practice ofParallel Programming, pages 207{216. ACM, 1995.[7] R. Boothe and A. Ranade. Improved multithreading techniques for hiding communicationlatency in multiprocessors. ACM SIGARCH Computer Architecture News, 20(2), 1992.[8] P. Buhr and R. Stroobosscher. The �system: Providing light-weight concurrency onshared-memory multiprocessor systems running Unix. Software Practice and Experience,pages 929{964, September 1990. 19

[9] R. Butler and E. Lusk. Monitors, message, and clusters: The p4 parallel programmingsystem. Parallel Computing, 20:547{564, April 1994.[10] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object oriented pro-gramming notation. In Research Directions in Object Oriented Programming. MIT Press,1993.[11] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scienti�cProgramming, 1(1):31{50, 1992.[12] B. M. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A software architec-ture of multidisciplinary applications: Integrating task and data parallelism. In Proc.CONPAR94-VAPP VI 3rd Intl Conf. on Vector and Parallel Processing, LNCS 854, pages664{676. Springer Verlag, September 1994.[13] A. Chowdappa, A. Skjellum, and N. Doss. Thread-safe message passing with p4 and MPI.Technical Report TR-CS-941025, Computer Science Department and NSF EngineeringResearch Center, Mississippi State University, 1994.[14] N.P. Chrisochoides. A uni�ed appoach for static and dynamic load balancing of compu-tations for parallel numerical grid generation. In Proc. 4th Intl Conf. on Numerical GridGeneration in Computational Fluid Dynamics and Related Fields, 1994.[15] M. Cristaller, J. Briat, and M. Rivi�ere. ATHAPASCAN-0: Concepts structurants simplespour une programmation parall�ele e�cace. Calculateurs Parall�eles, 7(2):173{196, 1995.[16] D. Culler et al. Parallel programming in Split-C. In Proc. Supercomputing '93. ACM,1993.[17] W. J. Dally et al. The J-Machine: A �ne-grain concurrent computer. In InformationProcessing 89, 1989.[18] J. Dongarra, G. Geist, R. Manchek, and V. Sunderam. Integrated PVM framework sup-ports heterogeneous network computing. In Computers in Physics, April 1993.[19] N. Suzuki (ed.). Shared Memory Multiprocessing. MIT Press, 1992.[20] D. Engler, G. Andrews, and D. Lowenthal. Filaments: E�cient support for �ne-grainedparallelism. Technical Report 93-13, Dept. of Computer Science, U. Arizona, Tuscon,Ariz., 1993.[21] E. Felton and D. McNamee. Improving the performance of message-passing applications bymultithreading. In Proc. 1992 Scalable High Performance Computing Conf., pages 84{89.IEEE, 1992.[22] A. Ferrari and V. S. Sunderam. TPVM: Distributed concurrent computing with lightweightprocesses. Technical Report CSTR-940802, University of Virginia, 1994.20

[23] High Performance Fortran Forum. High performance Fortran language speci�cation, ver-sion 1.0. Technical Report CRPC-TR92225, Center for Research on Parallel Computation,Rice University, Houston, Texas, January 1993.[24] Message Passing Interface Forum. Document for a standard message-passing interface,March 1994. (available from netlib).[25] I. Foster and K. M. Chandy. Fortran M: A language for modular parallel programming.J. Parallel and Distributed Computing, 25(1), 1994.[26] I. Foster, C. Kesselman, R. Olson, and S. Tuecke. Nexus: An interoperability toolkit forparallel and distributed computer systems. Technical Report ANL/MCS-TM-189, ArgonneNational Laboratory, 1993.[27] I. Foster and R. Olson. A guide to parallel and distributed programming in nPerl. Technicalreport, Argonne National Laboratory, 1995. http://www.mcs.anl.gov/nexus/nperl/.[28] I. Foster and S. Taylor. A compiler approach to scalable concurrent program design. ACMTOPLAS, 1994. to appear.[29] D. Gannon et al. Implementing a parallel C++ runtime system for scalable parallel sys-tems. In Proc. Supercomputing '93, November 1993.[30] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementa-tion of the MPI message-passing interface standard. Technical report, Argonne NationalLaboratory, 1996.[31] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with theMessage Passing Interface. MIT Press, 1995.[32] D. Grunwald. A user's guide to AWESIME: An object-oriented parallel programming andsumulation system. Technical Report CU-CS-552-91, Department of Computer Science,University of Colorado at Boulder, 1991.[33] M. Haines and W. Bohm. An evaluation of software multithreading in a conventionaldistributed-memory multiprocessor. In Proc. IEEE Symp. on Parallel and DistributedProcessing, pages 106{113. IEEE, 1993.[34] M. Haines, D. Cronk, and P. Mehrotra. On the design of Chant: A talking threads package.In Proc. Supercomputing '94, pages 350{359, November 1993.[35] M. Haines, P. Mehrotra, and D. Cronk. Ropes: Support for collective operations amongdistributed threads. Technical Report 95-36, ICASE, 1995.[36] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD distributedmemory machines. Communications of the ACM, 35(8):66{80, August 1992.[37] IEEE. IEEE P1003.1c/D10: Draft standard for information technology { portable oper-ating systems interface (POSIX), September 1994.21

[38] L. V. Kale, M. Bhandarkar, N. K. Jagathesan, and S. Krishnan. Converse: An interoper-able framework for parallel programming. Technical report, Dept. of Computer Science,UIUC, 1994.[39] R. Pandey. A Compositional Approach to Concurrent Programming. PhD thesis, TheUniversity of Texas at Austin, August 1995.[40] M. Papka. The CAVEcomm library. Technical report, Argonne National Laboratory, 1995.http://www.mcs.anl.gov/FUTURES LAB/VR/APPS/C2C/.[41] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime-compilation techniques for datapartitioning and communication schedule reuse. Computer Science Technical Report CS-TR-3055, University of Maryland, 1993.[42] A. Silberschatz, J. Peterson, and P. Galvin. Operating Systems Concepts. Addison-Wesley,1991.[43] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: a mechanism forintegrated communication and computation. In Proc. 19th Int'l Symposium on ComputerArchitecture, May 1992.[44] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. TAM | a compiler controlledthreaded abstract machine. J. Parallel and Distributed Computing, 1992.[45] D. A. Wallach, W. C. Hsieh, K. Johnson, M. F. Kaashoek, and W. E. Weihl. Optimisticactive messages: A mechanism for scheduling communication with computation. Technicalreport, MIT Laboratory for Computer Science, 1995.[46] M. Young et al. The duality of memory and communication in Mach. In Proc. 11th Symp.on Operating System Principles, pages 63{76. ACM, 1987.
22

