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1. INTRODUCTION

Reduction to tridiagonal form is a major step in eigenvalue computations for sym-
metric matrices. If the matrix is full, the conventional Householder tridiagonal-
ization approach (e.g., [Golub and Van Loan 1989]) or a block variant thereof
[Dongarra et al. 1989] is usually considered the method of choice.

Hovever, for banded matrices this approach is not optimal if the semibandwidth
b (the number of the outmost nonzero off-diagonal) is very small compared with the
matrix dimension n, since the matrix being reduced has completely filled in after
n/b—1steps. It is well known that the algorithms of Rutishauser [1963] and Schwarz
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Figure 1. Rutishauser’s tridiagonalization with Householder transformations.

[1968] (called RS-algorithms in the rest of the paper) are more economical than the
standard approach when b < n. In these algorithms, elements are annihilated one
at a time by Givens rotations; Rutishauser’s algorithm annihilates the elements by
diagonals, whereas Schwarz’s algorithm proceeds by columns. Each Givens rotation
generates a fill-in element outside of the current band, and the fill-in 1s chased out
by a sequence of Givens rotations before more fill-in is introduced.

Rutishauser [1963] also suggested another band reduction scheme based on House-
holder transformations that annihilates all & — 1 elements of the current column
instead of only one. Rutishauser used an analogous scheme to chase the triangular
bulge generated by the reduction with a sequence of QR factorizations, as shown in
Figure 1. However, because of the significant work involved in chasing the triangu-
lar bulges, this algorithm is not competitive with the rotation-based RS-algorithms.
The Schwarz algorithm is the basis of the band reduction implementations in EIS-
PACK [Smith et al. 1976; Garbow et al. 1977]. Tt can be vectorized along the
diagonal [Kaufman 1984], and this variant is the basis of the band reduction algo-
rithm in LAPACK [Anderson et al. 1995].

The RS-algorithms require storage for one extra subdiagonal, and Rutishauser’s
Householder approach requires storage for & — 1 extra subdiagonals. To assess the
storage requirements of various algorithms, we introduce the concept of working
semibandwidth. The working semibandwidth of an algorithm for a symmetric band
matrix is the number of sub(super)diagonals accessed during the reduction. For
instance, the working semibandwidth is & + 1 for the RS-algorithms and 2b — 1 for
Rutishauser’s second algorithm with Householder transformations.

In both algorithmic approaches, each reduction step has two parts:

—annihilation of one or several elements, and

—bulge chasing to restore the banded form.

Either way, the bulk of computation 1s spent in bulge chasing. The tridiagonaliza-
tion algorithm described in [Murata and Horikoshi 1975] and, for parallel comput-
ers, in [Lang 1993] (called MHL-algorithm in the following) improves on the bulge
chasing strategy. It employs Householder transformations to eliminate all b — 1
subdiagonal entries in the current column, but instead of chasing out the whole
triangular bulge (only to have it reappear the next step) it chases only the first
column of the bulges. These are the columns that (if not removed) would increase



the working semibandwidth in the next step. The working semibandwidth for this
algorithm 1s also 26 — 1. By leaving the rest of the bulges in place, the algorithm
requires roughly the same number of floatingpoint operations (flops) as does the
RS-algorithms if the latter are implemented with Givens rotations, and 50% more
flops, if the RS-algorithms are based on fast Givens rotations. Using Householder
transformations considerably improves data locality, as compared with the rota-
tionbased algorithms. On the other hand, the RS-algorithms require less storage
and may be still preferable if storage is tight.

In this paper, we generalize the ideas behind the RS-algorithms and the MHL-
algorithm. We develop a band reduction algorithm that eliminates d subdiagonals
of a symmetric banded matrix with semibandwidth & (d < b), in a fashion akin to
the MHL tridiagonalization algorithm. Then, like the Rutishauser algorithm, the
band reduction algorithm is repeatedly used until the reduced matrix is tridiagonal.
Ifd =b—1,1t is the MHL-algorithm; and if d = 1 is used for each reduction step, it
results in the Rutishauser algorithm. However, d need not be chosen this way; in-
deed, exploiting the freedom we have in choosing d leads to a class of algorithms for
banded reduction and tridiagonalization with favorable computational properties.
In particular, we can derive algorithms with

(1) minimum algorithmic complexity,
minimum algorithmic complexity subject to limited storage, an
2) mini lgorithmi lexity subject to limited storag d

(3) enhanced scope for employing Level 3 BLAS kernels through blocked orthogonal
reductions.

Setting b =n — 1 and d = b — 1 results in the (nonblocked) Householder tridiago-
nalization for full matrices. Alternatively, we can first reduce the matrix to banded
form and then tridiagonalize the resulting band matrix. This latter approach sig-
nificantly improves the data locality because almost all the computations can be
done with the Level 3 BLAS, in contrast to the blocked tridiagonalization [Don-
garra et al. 1989], where half of the computation is spent in matrix-vector products.
This paper extends the work of [Bischof and Sun 1992].

The paper is organized as follows. In the next section, we introduce our frame-
work for band reduction of symmetric matrices. In Section 3 we show that several
known tridiagonalization algorithms can be interpreted as instances of this frame-
work. Then we derive new algorithms that are optimal with respect to either
computational cost or space complexity. In Section 4 we discuss several techniques
for blocking the update of an orthogonal matrix U; this is required for eigenvector
computations. Then, in Section 5 we present some experimental results. Section 6
sums up our findings.

2. A FRAMEWORK FOR BAND REDUCTION

In this section we describe a framework for band reduction of symmetric matrices.
The basic 1dea 1s to repeatedly remove sets of off-diagonals. Therefore, we first
present an algorithm for peeling off some diagonals from a banded matrix.
Suppose an n-by-n symmetric band matrix A with semibandwidth & < n is to
be reduced to a band matrix with semibandwidth b = b — d, with 1 < d < b. That
is, we want to eliminate the outermost d of the b nonzero sub(super)diagonals.
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Figure 2. Annihilation and chasing in the first sweep of the band reduction algorithm. “QR”
stands for performing a QR decomposition, “Pre” and “Post” denote pre- and post-multiplication
with QT and Q, resp., and “Sym” indicates a symmetric update (Pre and Post). The last picture
shows the block partitioning before the second sweep.

Because of symmetry, it suffices to access either the upper or the lower triangle of
the matrix A; we will focus on the latter case.

Our algorithm is based on an “annihilate and chase” strategy, similar to the RS-
and MHL-algorithms for tridiagonalization. Asin the MHL-algorithm, Householder
transformations are used to annihilate unwanted elements, but in the case b> 1 we
are able to aggregate n; < b of the transformations into the WY or compact WY
representation [Bischof and Van Loan 1987; Schreiber and Van Loan 1989]. Thus,
data locality is further improved.

First, the d outmost subdiagonals are annihilated from the first n; columns of
A. This step can be done with a QR decomposition of an h X ny, b = d + ny,
upper trapezoidal block of A, as shown in the first picture of Figure 2. Then the
WY representation @ = I + WYT of the transformation matrix is generated. To
complete the similarity transformation, we must apply this block transform from
the left and from the right to A. This requires applying ¢ from the left to an
h x (d—nyp) block of A (“Pre”), from both sides to an h x h lower triangular block
(“Sym”), and from the right to a b x h block (“Post”).

The “Post” transformation generates fill-ins in d diagonals below the band. The
first ny columns of the fill-in are removed by another QR decomposition (second
picture in Figure 2), with “Pre”, “Sym”, and “Post” to complete the similarity
transformation. The process is then repeated on the newly generated fill-in, and so
on. Each step amounts to chasing nj columns of the fill-in down along the diagonal
by b diagonal elements until they are pushed off the matrix. Then we can start the
second “annihilate and chase” sweep.

Each sweep starts with a matrix that has the following properties:

—The remainder of the matrix, (i.e., the current trailing matrix) is block tridiag-
onal, with all diagonal blocks but the last one being of order b and the last one
being of order < b; see the last picture in Figure 2.

—FEvery subdiagonal block is upper triangular in its first b=1b—d columns.
—The matrix 1s banded with semibandwidth b + d.

Every similarity transformation within the sweep

—maintains the working semibandwidth & 4 d,



—involves the same number h of rows and columns, and

—restores the form described above in one subdiagonal block, while destroying it
in the next subdiagonal block.

We arrive at the following algorithm.
ALGORITHM 1. One-step band reduction bandri(n, A b, d, ny)

Input. An n x n symmetric matrix with semibandwidth b, 1 < b < n. The number
d, 1 < d < b, of subdiagonals to be eliminated, and a block size ny, 1 < np < b —d.

QOutput. An n X n symmetric matrix with semibandwidth b — d.
b=b—d
forj:lton—i)—lstep ny
Ji=Jija=g1+my—1d =7 +b ia =min(j +b+ny —1,n)
while 71 < n
QR:  Perform a QR decomposition of the block B = A(#; : 42,41 : j2)
R
0
Pre:  Replace the block B = A(iy :42,j2 +1:4; — 1) by QT B.
Sym: Replace the block B = A(i; : ia,4; : i2) by QT BQ.
Post: Replace the block B = A(iz + 1 : min(iz + b,n),4; : i2) by BQ.
Ji=1t1; j2=J1+mny—1; i1 =i +b; iy = min(is + b, n)
end while
end for

and replace B by (

The working semibandwidth of the algorithm is b+d. Given the one-step band re-
duction algorithm, we can now derive a framework for band reduction in a straight-
forward fashion by “peeling oft” subdiagonals in chunks.

ALGORITHM 2. Multistep band reduction bandr(n, A, b, {d®)}, {ngl)})

Input. An n X n symmetric matrix with semibandwidth b, 1 < b < n. A sequence
of positive integers {d)}5_, with d = 3" d¥) < b, and a sequence {ngl)}le of block
sizes, where ngl) < ) = — Zj’:l d®.

QOutput. An n X n symmetric matrix with semibandwidth b — d.

b(H) = b

fori=1to k
call bandrl( n, A, b9, d())
pli+1) — p(i) _ 4(2)

end for

The working semibandwidth for the multistep algorithm is

0 4 gy = W _ @)y,
a0+ A = b (& Zd

which is b+ d) if the d) satisfy

i—1
dD<dV 4> dV), 1<i<h (1)
ji=1



There is also a class of systolic array algorithms that use Givens rotations to
remove several outer diagonals at a time [Bojanczyk and Brent 1987; Ipsen 1984;
Schreiber 1990]. Here, d*) is chosen as large as b()/2 [Bojanczyk and Brent 1987]
in order to increase the parallel scope per systolic operation and hence minimize
the total number of systolic operations.

3. INSTANCES OF THE FRAMEWORK

In this section we discuss several instances of Algorithm 2, including the (non-
blocked) Householder tridiagonalization, Rutishauser’s algorithm, and the MHL-
algorithm for tridiagonalizing symmetric band matrices. In addition to these, the
multistep framework allows for new tridiagonalization methods featuring lower flops
count and/or better data locality.

3.1 One-step Tridiagonalization of Full Symmetric Matrices

A full symmetric matrix can be tridiagonalized with bandr(n, A,b=n —1, {d(l) =
b—1}, {ngl) = 1}). Note that b = 1 implies ny = 1. Then, the QR decomposition
and the Sym step of Algorithm 1 reduce to determining and applying a suitable
Householder transformation, while the Pre and Post steps vanish. Thus, we arrive
at the nonblocked standard Householder tridiagonalization.

3.2 Two-step Tridiagonalization of Full Symmetric Matrices

Another way to tridiagonalize a full symmetric matrix 1s the two-step sequence
bandr(n, A, b=n—1,{d") =b— bd® =b—1}, {ngl); ngz) =1}), where 1 < b<b
is some intermediate semibandwidth and ngl) < b. That is, we first reduce A to
banded form and then tridiagonalize the resulting banded matrix.

In contrast to the blocked Householder tridiagonalization [Dongarra et al. 1989],
where one half of the approximately 4/3n? flops for the reduction of A is confined to
matrix-vector products, almost all the operations in the reduction to banded form
can be done within the Level 3 BLAS. For b < n this first reduction constitutes the
vast majority of flops. Tridiagonalizing the banded matrix requires roughly 66n?
flops, which can be done with Level 2 BLAS.

Therefore, the two-step tridiagonalization may be superior on machines with a
distinct memory hierarchy (see Table T in Section 5.1).

3.3 One-step Tridiagonalization of Symmetric Band Matrices

As for full matrices, the simplest way to tridiagonalize a matrix with semibandwidth
b is the one-step sequence bandr(n, A, b, {d1) = b — 1},{7121) = 1}). Again, the
QR decomposition and the Sym steps reduce to determining and applying single
Householder transformations, and the Pre and Post steps vanish. This one-step
sequence is equivalent to the MHL-algorithm.

3.4 Tridiagonalization by Peeling off Single Diagonals

The sequence bandr(n, A, b, {dV) = ... = d®=D = 1}, {ngl) =...= ngb_l) =1})
tridiagonalizes a banded matrix by repeatedly peeling off single diagonals. This
corresponds to Rutishauser’s algorithm, except that the rotations are replaced with
length-2 Householder transformations.
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Figure 3. Nonzero structure of the matrices W and Y for d = np = 4.

3.5 Optimal Tridiagonalization Algorithms for Band Matrices

In the following, we derive tridiagonalization algorithms that have a minimum flops
count for a given working semibandwidth, that is,

minimize number of flops to tridiagonalize an n x n banded matrix
with semibandwidth b (2)
subject to working semibandwidth < s, where s > b+ 1.

For the reduction of banded matrices, blocking the transformations always sig-
nificantly increases the flops count. Figure 3 shows the nonzero pattern of the
(d4np) xnp matrices W and Y that result from aggregating ny length-(d+1) House-
holder transformations into a blocked Householder transformation. The nonzeros
in Y form a parallelogram, while W is upper trapezoidal. Multiplying W to the
columns of some m x (d 4 np) block B of A takes approximately ny(2d + np + 1)m
flops and multiplication with Y7 costs another 2n;(d + 1)m operations, even if the
multiplication routine _GEMM 1s able to take full advantage of zeros. Thus, in the
banded context, using the WY representation increases the overall flops count in
two ways. First, the W and Y factors must be generated. Second, applying the
blocked Householder transform requires more than the 4ny(d+ 1)m operations that
would be needed for the n; single length-(d+ 1) Householder transformations in W
and Y.

The same argument applies also to the compact WY representation @ = I +
YTY? [Schreiber and Van Loan 1989]. In addition, this blocking technique re-
quires one more matrix multiplication, W = YT. The cost for this additional
multiplication is not negligible in the banded case, in contrast to the reduction
of full matrices, where the average length of the Householder vectors significantly
exceeds ny. Therefore, we prefer the “standard” WY representation for blocking
the Householder transformations.

Because this section focuses on minimizing the flops count, we consider only

nonblocked reduction algorithms (i.e., ngl) =1 for all ¢). On machines with a dis-
tinct memory hierarchy, however, the higher performance of the Level 3 BLAS may
more than compensate for the overhead introduced by blocking the transforma-
tions. Thus, both flops count and BLAS performance should be taken into account
in order to minimize the execution ttme on such machines. For clarity in our analy-
sis, we omitted the resulting weighting of the various algorithmic components, but
the ideas presented here easily can be extended to this more general analysis.
In the nonblocked case, the arithmetic cost of Algorithm 1 in flops is

cost(n, b, d) ~ (4(d+ 1)+ (2d* +7d+5.5)/b) x (n(n — 1) = (b—d)(b—d + 1)) . (3)



For any band difference sequence {d(i)}, Algorithm 2 therefore requires

cost(n, b, d(i))
i=1
flops.

Given a limit on s, we can use dynamic programming [Aho et al. 1983] to de-
termine an optimal sequence {d)} from the cost function given in (3). By taking
storage requirements into account, we allow for space tradeoffs to best use the

available memory.

3.5.1 No Storage Constraints. We first consider Problem (2) with s > 2b — 1.
Here are no storage constraints, since the maximum working semibandwidth of
Algorithm 2 is 26 — 1. However, the optimal sequence {d(i)} is quite different from
the one-step sequence of the MHL-algorithm.

For example, for a 50, 000-by-50, 000 symmetric matrix with semibandwidth 300,
the optimal sequence 1s

{10,8,9,10,11,12,14, 15, 16,17, 18, 19, 20, 22, 23, 24, 25, 26}

the reduction requires 3.48-10'? floatingpoint operations, and the working semiband-
width is 310. In contrast, the MHL-algorithm requires 4.47 - 10'? flops, and its
working semibandwidth is 599. We also note that the constant sequence

{16,16,...,16,11}

requires 3.49 - 10'? flops, with a working semibandwidth of 316. Another constant
sequence

{32,32,...,32,11}

requires 3.56 - 102 flops, with a working semibandwidth of 332. Hence a constant-
stride sequence seems to be just as good a choice as the optimal one from a practical
point of view, and saves the dynamic programming overhead.

3.5.2 Minimum Storage. Now consider another extreme case of the constraint in
Problem (2): s = b+ 1. That is, we have space for at most one other subdiagonal.
Even for small b, the MHL-algorithm is not among the candidates, since its working
semibandwidth 1s 26—1 > b+ 1. Indeed, a candidate d-sequence for this case should
satisfy the condition (1) with d) = 1. The sequence d*) = 1 from Section 3.4
satisfies this condition. Instead, we suggest

d(l) = 1,
6D = 240, Lsi<k=[log (b= 1))

k
A = (b—1) — Zd(i)'
i=1

We call it the doubling-stride sequence, since the bandwidth reduction size doubles
in each round. For the example in the preceding subsection, the RS-algorithms
require 4.49 - 10'? flops, whereas the doubling-stride algorithm requires 3.90 - 102
flops.

(4)
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Figure 4. Data area visited by the MHL-algorithm.

3.5.3 Understanding Optimality. Rutishauser’s algorithm peels off subdiagonal
one by one and requires minimum storage, but it is not optimal among the algo-
rithms with minimum storage. On the other hand, although the MHL-algorithm
eliminates all subdiagonals in one step, it is also not optimal when & is large. In
the following, we give an intuitive explanation why the complexity of our scheme
is superior to both these approaches.

First, let us compare the MHL-algorithm and Algorithm 2 with a sequence {d, b—
d — 1}. During the bulge chasing following the reduction in column 1, the data
area accessed by the MHL-algorithm with rank-1 row and/or column updating
and symmetric rank-2 updating is shown in Figure 4. The data area accessed by
Algorithm 2 is shown in Figure 5. In comparing different bandreduction sequences,
we take the rank-1 updating as basic unit of computation and examine the total
data area visited by each algorithm for the purpose of rank-1 updating. Since a
rank-1 update applied to an m x n matrix requires approximately 4mn flops, the
area involved in a rank-1 update is a good measure of complexity. The symmetric
rank-2 update of a triangular n x n matrix is as expensive as a rank-1 update of a
full matrix of that size; both require about 4n? flops.

For the MHL-algorithm, the total area visited with rank-1 updates is

apMHL = 3nb.

For the two successive band reductions, it is
Qtwostep = {2n(d+ 1) + %(d +1)2} + 3n(b — d).
Denoting § = (d 4+ 1)/b, we obtain as the ratio
iwostep 02— 0 +3(14+ 1)

b)
aMHI, 3

which takes its minimum p* & 11/12 at §* = 1/2. Therefore, the two-step reduction
can save some 8% of the flops, as compared with the MHL-algorithm. Of course,
the same idea can then be applied recursively on the tridiagonal reduction for the
matrix with reduced semibandwidth & — d.
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Figure 5. Data area visited in the two steps bandrl(n, 4, b, d) and bandrl(n, A, b—d, b—d—1)
of Algorithm 2.

OOOX X X X X X

Figure 6. Data area visited by Rutishauser’s algorithm in the “elimination and bulge chasing”
rounds for the three outmost elements ag1, ag1, and a7y of the first column (light, medium, and
dark grey shading, resp.).

Let us consider now how often a row or column is repeatedly involved in a re-
duction or chasing step. The data area visited by Rutishauser’s algorithm for
annihilating 3 elements in the first column in 3 rounds is shown in Figure 6. We
see In particular that the total area visited in the first & x b block is almost twice
as big as the one by Algorithm 1 with d = 3, as a result of the revisiting of the first
row and column in the last visited area.

Thus, in comparison with Rutishauser’s and the MHL-algorithm, our algorithm
can be interpreted as balancing the counteracting goals of

—decreasing the number of times a column is revisited (by the use of Householder
transformations), and

—decreasing the area involved in updates (by peeling off subdiagonals in several

chunks).
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3.6 Bandwidth Reduction

In some contexts it is not necessary to fully reduce the banded matrix to tridiagonal
form. For example, in the invariant subspace decomposition approach (ISDA) for
eigensystem computations [Lederman et al. 1991], the spectrum of a matrix A is
condensed into two narrow clusters by repeatedly applying a function f to the
matrix. If f is a polynomial of degree 3, each application of f roughly triples A’s
bandwidth. Therefore, A will be full after a moderate number of iterations if no
countermeasures are taken. To prevent this situation, the bandwidth of A can be
periodically reduced to a “reasonable” value after a few applications of f.

This bandwidth reduction can also be done by using Algorithm 2, either in one
or multiple reduction steps.

4. AGGREGATING THE TRANSFORMATIONS

If the eigenvectors of the matrix A are required, too, then all the transformations
from Algorithm 1 must also be applied to another matrix, say, an n x n matrix U.
For banded matrices A, the update of U dominates the floating-point complexity
(2n® for updating U versus 6bn? for the reduction of A). Therefore, we should
strive to maximize the use of BLAS 3 kernels in the update of U to decrease the
total time.

In this section we discuss several techniques for updating U with blocked House-
holder transformations. Some of these methods are tailored to the cases b = 1,
where the transformations of A cannot be blocked.

4.1 On-the-Fly Update
The update can easily be incorporated in the reduction by inserting the lines

if the aggregate transformation matrix U is required

Replace U(:, i1 :ia) by U(:, i1 1 42)Q.

between the QR and Pre steps of Algorithm 1. That is, each transformation is
applied to U as soon as it is generated and applied to A (on-the-fly update).

If the matrix 1s not reduced to tridiagonal form, 1.e., b=>b—d > 1 then the work
on A and U can be done with blocked Householder transformations, thus enabling

the use of the Level 3 BLAS.

4.2 Backward Accumulation

For tridiagonalization, however, b=1 implies ny = 1, which means that the work
on A cannot be done in a blocked fashion.

At first glance, this fact seems also to preclude the use of Level 3 BLAS in the
update of U. Fortunately, however, the obstacle can be circumvented by decoupling
the work on U from the reduction of A.

Let us first consider the tridiagonalization of a full symmetric matrix A. As in
the LAPACK routine _SYTRD, the update of U can be delayed until the reduction
of A is completed. Then, the Householder transformations are aggregated into
blocked Householder transforms with arbitrary nij, and these are applied to U. In
addition to enabling the use of the Level 3 BLAS, the decoupling of the update
from the reduction allows reducing the flop count by reverting the order of the
transformations (backward accumulation).
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For complexity reasons, the backward accumulation technique should also be
used in the reduction from full to banded form, even if the on-the-fly update can
also be done with blocked Householder transforms.

4.3 Update in the Tridiagonalization of Banded Matrices

When a full matrix is reduced to either banded or tridiagonal form, the Householder
vectors can be stored conveniently in the zeroed-out portions of A and an additional
vector 7. In the tridiagonalization of banded matrices, this strategy is no longer
possible: eliminating one length-(b — 1) column of the band requires n/b length-
b Householder vectors, because of the bulge chasing. Therefore, it is impractical
to delay the update of U until A is completely tridiagonalized. We use another
technique [Bischof et al. 1994] in this case.

Let Hi denote the kth Householder transformation that is generated in the jth
sweep of Algorithm 1. That is, H{ eliminates the first column of the remaining
band, and Hg, Hé, ...are generated during the bulge chasing.

During the reduction, the transformations of each sweep must be determined
and applied to A in the canonical order H{, Hj, H}, ..., because each [} depends
on data modified in the Post step of Hi_l. Once the transformations are known,
this dependence no longer exists. Since the transformations from one sweep involve
disjoint sets of U’s columns, they may be applied to U in any order (see Figure 7).
We are, however, not entirely free to mix transformations from different sweeps.
H{ must be preceded by Hij and Hi_l, since it affects columns that are modified
by these two transformations in sweep j — 1 (intersweep dependence).

sweep sweep
1 2 3 4 1 2 3 4
IPEVAaVal
IPAVard
t/ 1
IFAVArda

4 1 ¢ 2 < 3 4
6 H6 H6 H6 H6

Figure 7. Interdependence of the Householder transformations Hé for the work on A (left picture)

and on U (right picture). “H «— H” indicates that H cannot be determined and applied to A
(cannot be applied to U) until H has been applied to A (to U).

To make use of the additional freedom, we delay the work on U until a certain
number n,[]] of reduction sweeps 5,7+ 1, ..., J =j+ n,[]] — 1 are completed. Then
the update of U is done bottom up by applying the transformations in the order
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columns
1 =
% 1 % =
. E H 5., B =
= =+ = 3 =
- - R <P
11 H Il =
42 2
H2 H3
2 H4
2
16 1
H3 H2
3 H3
3 H4
3
21 )
H,
4 2
H4 H3
4 4
26 % !
H} =
5 2
H5 73
31 1y H;)l
H} 2
6 Hg 3 4
36 6 Hy

Figure 8. Columns of U affected by each transformation Hé of the first four reduction sweeps.

In this example, n = 36 and b = 6. The transformations with the same hatching pattern can be
aggregated into a blocked Householder transformation.

J+1 J J J+1 J J J+1
, Hk y e, Hy oo Hkmx_l, Hkmx_l, ceey Hkmx_l, S Hy H{YL oL

bz¢]
kmax max max
H{. That is, the transformations in Figure 7 would be applied in the order H},

HZ HE HE Hi HZ ..., Hi{, H? H} Hi. This order preserves the inter-sweep
dependence mentioned above. In addition, the n; transformations H} with the
same index k can be aggregated into a blocked Householder transformation. In
Figure 8, the transformations contributing to the same block transformation are
hatched i1dentically.

A similar technique can also be used, for example, in the QR algorithm for com-
puting the eigensystem of a symmetric tridiagonal matrix [Lang 1995]. Tt allows
updating the eigenvector matrix with matrix-matrix products instead of single ro-
tations.

bl

5. EXPERIMENTAL RESULTS

The numerical experiments were performed on single nodes of the IBM SP parallel
computer located at the High-Performance Computing Research Facility, Mathe-
matics and Computer Science Division, Argonne National Laboratory, and on single
nodes of the Intel Paragon located at the Zentralinstitut fir Angewandte Mathe-
matik, Forschungszentrum Julich GmbH.

All timings are for computations in double precision. The matrices had random
entries chosen from [0, 1]; since none of the algorithms is sensitive to the actual
matrix entries, the following timings can be considered as representative.

Five codes were used in the experiments:

—DSYTRD: LAPACK routine for blocked tridiagonalization of full symmetric matri-
ces [Dongarra et al. 1989],
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Table I. Timings (in seconds) on one node of the IBM SP for the one-step (LAPACK routine
DSYTRD) and two-step reduction (routines DSYRDB and DSBRDT) of full symmetric matrices of order
n = 3000 to tridiagonal form. The timings do not include the update of U. The intermediate
semibandwidth in the two-step reduction was always 5(2) = 24.

One-Step Reduction Two-Step Reduction
np DSYTRD Total Time  full — banded banded — tridiagonal
1 838 1831 1787 44
4 761 797 753 44
8 635 593 549 44
16 591 496 452 44
24 627 477 433 44

—DSBTRD: LAPACK routine for tridiagonalizing banded matrices using Kaufman’s
modification of Schwarz’s algorithm [Schwarz 1968; Kaufman 1984] (called SK-
algorithm in the following) to improve vectorization,

—DSYRDB: blocked reduction of full symmetric matrices to banded form (Algo-
rithm 1),

—DSBRDB: blocked reduction of banded matrices to narrower banded form (Algo-
rithm 1), and

—DSBRDT: tridiagonalization of banded matrices (MHL-algorithm with the tech-
nique from Section 4.3 for updating U).

The latter three codes are described in more detail in [Bischof et al. 1996].

All programs are written in Fortran 77. For the IBM SP node, which for our
purposes can be viewed as a 66 MHz IBM RS/6000 workstation, the codes were
compiled with x1f -03 -gstrict and linked with -lessl for the vendor-supplied
BLAS. For the Intel Paragon node, the compilation was done with i£77 -Mvect
-04 -nx, and the BLAS were linked in with -1kmath.

The data presented in this section demonstrate that it may be advantageous to
consider multistep reductions instead of conventional direct methods. In particular,
on machines with memory hierarchies, it is not clear a priori which approach is
superior for a given problem.

5.1 Tridiagonalization of Full Matrices

We first compared the one-step tridiagonalization routine DSYTRD from LAPACK
with the two-step reduction (routines DSYRDB and DSBRDT) from Section 3.2. Table I
shows that for large matrices, the two-step reduction can make better use of the
Level 3 BLAS than can the direct tridiagonalization, where onehalf of the operations
is confined to matrix-vector products. The reduction to banded form runs at up to
83 MFlops, which is close to the peak performance of the IBM SP node. Note that
the tridiagonalization of the banded matrix cannot be blocked; therefore, the block
size ny affects only the reduction to banded form. The bad performance of this
reduction with n; = 1 is due to the fact that the routine DSYRDB does not provide
optimized code for the nonblocked case.

If the transformation matrix U is required, too, then direct tridiagonalization is
always superior because it has a significantly lower flops count.
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Figure 9. Speedup of the MHL-algorithm (routine DSBRDT) for tridiagonalizing banded matrices
over the SK-algorithm (LAPACK routine DSBTRD) with and without updating the matrix U (left
and right pictures, resp.). In the update, néj = 6 Householder transformations were aggregated
into a block transform.

5.2 One-step Tridiagonalization of Banded Matrices

Next, we compared the SK-algorithm (LAPACK routine DSBTRD) with the MHL-
algorithm DSBRDT. Both are one-step tridiagonalization algorithms for band matri-
ces. In the MHL-algorithm, the update of U was done by using blocked Householder
transformations with the default block size n} = 6. Figure 9 shows the results for
various matrix dimensions and semibandwidths on both machines.

Lang [1993] already noted that the LAPACK implementation is not optimal
except for very small semibandwidths. The reason is that the bulk of computations
must be done in explicit Fortran loops, since no appropriate BLAS routines cover
them. Therefore, the routine runs at Fortran speed, whereas the MHL-algorithm
can rely on the Level 2 BLAS for the reduction and Level 3 BLAS for the update
of U.

On the SP node, the MHL-algorithm runs at up to 45 MFlops in the reduction and
53 MFlops in the update, while DSBTRD only reaches 20 and 30 Mflops, respectively.
(In addition, the SK-algorithm requires 50% more flops when U is updated.) This
situation may be different on some vector machines because DSBTRD features vector
operations with a higher average vector length, albeit with nonunit stride.
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Table II.  Timings (in seconds) on one node of the IBM SP for tridiagonalizing banded symmetric
matrices of order n = 1200. The intermediate semibandwidth in the two-step reduction was
b2 =p/2.
| b=32 | b=64 | b=128
One-step reduction with DSBRDT 8.3 15.0 25.0
Two-step reduction with DSBRDB and DSBRDT ‘ 11.3 ‘ 13.6 ‘ 22.9

5.3 Two-step Tridiagonalization of Banded Matrices

In Section 3.5.3 we showed that peeling off the diagonals in two equal chunks re-
quires fewer flops than direct tridiagonalization with the MHL-algorithm. Table IT
shows that the time for the two-step approach can be lower, too, if the semiband-
width is large enough.

In contrast to the theoretical results, however, the intermediate semibandwidth
b2 = b/2 is not always optimal. For example, it took only 20.03 seconds to first
reduce the semibandwidth from b = 128 to 5(*) = 32 and then tridiagonalize that
matrix.

The explanation is that in the case 52) = 32 more of the work is done in
the bandwidth reduction, which can rely on blocked Householder transformations,
whereas the final tridiagonalization cannot. Therefore, the higher performance of
the Level 3 BLAS more than compensates for the slighly higher flops count as
compared with b(*) = b/2 = 64.

For small semibandwidths b, the lower flops count of the two-step scheme was
outweighed by the lower overhead (e.g., fewer calls to the BLAS with larger subma-
trices) of the one-step reduction. As in the reduction of full matrices, the one-step
tridiagonalization 1s always superior when U is required, too.

5.4 Doubling-stride Tridiagonalization of Banded Matrices

While the MHL-algorithm is clearly superior on machines where the BLAS perfor-
mance significantly exceeds that of pure Fortran code, it may not be applicable if
storage 1s tight. Therefore, we also compared two algorithms that need only one
additional subdiagonal as working space:

—the SK-algorithm (routine DSBTRD from LAPACK), and

—the doubling-stride sequence from Section 3.5.2: multiple calls to DSBRDB (with
ny = 6 for the reduction of A and the update of U/) and one call to DSBRDT (with
U
ny =6).

The results given in Figure 10 show that the doubling-sequence tridiagonalization,
too, can well outperform the SK-algorithm on both machines.

6. CONCLUSIONS

We introduced a framework for band reduction that generalizes the ideas under-
lying the Householder tridiagonalization for full matrices and Rutishauser’s algo-
rithm and the MHL-algorithm for banded matrices. By “peeling off” subdiagonals
in chunks, we arrived at algorithms that require fewer floating-point operations and
less storage. We also provided an intuitive explanation of why our approach, which
eliminates subdiagonals in groups, has a lower computational complexity than that
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Figure 10. Speedup of the doubling-sequence tridiagonalization (routines DSBRDB and DSBRDT
with ny = néj = 6) over the SK-algorithm (LAPACK routine DSBTRD) with and without updating

the matrix U (left and right pictures, resp.).

of the previous algorithms for banded matrices, which eliminated subdiagonals ei-
ther one by one or all at once. The successive bandreduction (SBR) approach
improves the scope for block operations. In particular, the update of the transfor-
mation matrix U can always be done with blocked Householder transformations.

We also presented results that show that SBR approaches can provide better
performance, by either using less memory to achieve almost the same speed, or by
achieving higher performance. Our experience suggests that it is hard to provide a
“rule of thumb” for selecting the parameters of an optemal bandreduction algorithm.
While the flops count can be minimized by using the cost function (3), the actual
performance of an implementation depends on the machine-dependent issues of
floating-point versus memory access cost. In our experience, developing a more
realistic performance model for advanced computer architectures is difficult (see,
for example [Bischof and Lacroute 1990]), even for simpler problems. Another paper
[Bischof et al. 1996] describes the implementation issues of a public-domain SBR
toolbox enabling computational practioners to experiment with the SBR, approach
on problems of interest.
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