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QRFigure 1. Rutishauser's tridiagonalization with Householder transformations.[1968] (called RS-algorithms in the rest of the paper) are more economical than thestandard approach when b� n. In these algorithms, elements are annihilated oneat a time by Givens rotations; Rutishauser's algorithm annihilates the elements bydiagonals, whereas Schwarz's algorithm proceeds by columns. Each Givens rotationgenerates a �ll-in element outside of the current band, and the �ll-in is chased outby a sequence of Givens rotations before more �ll-in is introduced.Rutishauser [1963] also suggested another band reduction scheme based on House-holder transformations that annihilates all b � 1 elements of the current columninstead of only one. Rutishauser used an analogous scheme to chase the triangularbulge generated by the reduction with a sequence of QR factorizations, as shown inFigure 1. However, because of the signi�cant work involved in chasing the triangu-lar bulges, this algorithm is not competitive with the rotation-based RS-algorithms.The Schwarz algorithm is the basis of the band reduction implementations in EIS-PACK [Smith et al. 1976; Garbow et al. 1977]. It can be vectorized along thediagonal [Kaufman 1984], and this variant is the basis of the band reduction algo-rithm in LAPACK [Anderson et al. 1995].The RS-algorithms require storage for one extra subdiagonal, and Rutishauser'sHouseholder approach requires storage for b� 1 extra subdiagonals. To assess thestorage requirements of various algorithms, we introduce the concept of workingsemibandwidth. The working semibandwidth of an algorithm for a symmetric bandmatrix is the number of sub(super)diagonals accessed during the reduction. Forinstance, the working semibandwidth is b+ 1 for the RS-algorithms and 2b� 1 forRutishauser's second algorithm with Householder transformations.In both algorithmic approaches, each reduction step has two parts:|annihilation of one or several elements, and|bulge chasing to restore the banded form.Either way, the bulk of computation is spent in bulge chasing. The tridiagonaliza-tion algorithm described in [Murata and Horikoshi 1975] and, for parallel comput-ers, in [Lang 1993] (called MHL-algorithm in the following) improves on the bulgechasing strategy. It employs Householder transformations to eliminate all b � 1subdiagonal entries in the current column, but instead of chasing out the wholetriangular bulge (only to have it reappear the next step) it chases only the �rstcolumn of the bulges. These are the columns that (if not removed) would increase



� 3the working semibandwidth in the next step. The working semibandwidth for thisalgorithm is also 2b � 1. By leaving the rest of the bulges in place, the algorithmrequires roughly the same number of oatingpoint operations (ops) as does theRS-algorithms if the latter are implemented with Givens rotations, and 50% moreops, if the RS-algorithms are based on fast Givens rotations. Using Householdertransformations considerably improves data locality, as compared with the rota-tionbased algorithms. On the other hand, the RS-algorithms require less storageand may be still preferable if storage is tight.In this paper, we generalize the ideas behind the RS-algorithms and the MHL-algorithm. We develop a band reduction algorithm that eliminates d subdiagonalsof a symmetric banded matrix with semibandwidth b (d < b), in a fashion akin tothe MHL tridiagonalization algorithm. Then, like the Rutishauser algorithm, theband reduction algorithm is repeatedly used until the reduced matrix is tridiagonal.If d = b�1, it is the MHL-algorithm; and if d = 1 is used for each reduction step, itresults in the Rutishauser algorithm. However, d need not be chosen this way; in-deed, exploiting the freedom we have in choosing d leads to a class of algorithms forbanded reduction and tridiagonalization with favorable computational properties.In particular, we can derive algorithms with(1) minimum algorithmic complexity,(2) minimum algorithmic complexity subject to limited storage, and(3) enhanced scope for employing Level 3 BLAS kernels through blocked orthogonalreductions.Setting b = n � 1 and d = b� 1 results in the (nonblocked) Householder tridiago-nalization for full matrices. Alternatively, we can �rst reduce the matrix to bandedform and then tridiagonalize the resulting band matrix. This latter approach sig-ni�cantly improves the data locality because almost all the computations can bedone with the Level 3 BLAS, in contrast to the blocked tridiagonalization [Don-garra et al. 1989], where half of the computation is spent in matrix-vector products.This paper extends the work of [Bischof and Sun 1992].The paper is organized as follows. In the next section, we introduce our frame-work for band reduction of symmetric matrices. In Section 3 we show that severalknown tridiagonalization algorithms can be interpreted as instances of this frame-work. Then we derive new algorithms that are optimal with respect to eithercomputational cost or space complexity. In Section 4 we discuss several techniquesfor blocking the update of an orthogonal matrix U ; this is required for eigenvectorcomputations. Then, in Section 5 we present some experimental results. Section 6sums up our �ndings.2. A FRAMEWORK FOR BAND REDUCTIONIn this section we describe a framework for band reduction of symmetric matrices.The basic idea is to repeatedly remove sets of o�-diagonals. Therefore, we �rstpresent an algorithm for peeling o� some diagonals from a banded matrix.Suppose an n-by-n symmetric band matrix A with semibandwidth b < n is tobe reduced to a band matrix with semibandwidth ~b = b � d, with 1 � d < b. Thatis, we want to eliminate the outermost d of the b nonzero sub(super)diagonals.
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QRFigure 2. Annihilation and chasing in the �rst sweep of the band reduction algorithm. \QR"stands for performing a QR decomposition, \Pre" and \Post" denote pre- and post-multiplicationwith QT and Q, resp., and \Sym" indicates a symmetric update (Pre and Post). The last pictureshows the block partitioning before the second sweep.Because of symmetry, it su�ces to access either the upper or the lower triangle ofthe matrix A; we will focus on the latter case.Our algorithm is based on an \annihilate and chase" strategy, similar to the RS-and MHL-algorithms for tridiagonalization. As in the MHL-algorithm, Householdertransformations are used to annihilate unwanted elements, but in the case ~b > 1 weare able to aggregate nb � ~b of the transformations into the WY or compact WYrepresentation [Bischof and Van Loan 1987; Schreiber and Van Loan 1989]. Thus,data locality is further improved.First, the d outmost subdiagonals are annihilated from the �rst nb columns ofA. This step can be done with a QR decomposition of an h � nb, h = d + nb,upper trapezoidal block of A, as shown in the �rst picture of Figure 2. Then theWY representation Q = I +WY T of the transformation matrix is generated. Tocomplete the similarity transformation, we must apply this block transform fromthe left and from the right to A. This requires applying Q from the left to anh� (d� nb) block of A (\Pre"), from both sides to an h� h lower triangular block(\Sym"), and from the right to a b� h block (\Post").The \Post" transformation generates �ll-ins in d diagonals below the band. The�rst nb columns of the �ll-in are removed by another QR decomposition (secondpicture in Figure 2), with \Pre", \Sym", and \Post" to complete the similaritytransformation. The process is then repeated on the newly generated �ll-in, and soon. Each step amounts to chasing nb columns of the �ll-in down along the diagonalby b diagonal elements until they are pushed o� the matrix. Then we can start thesecond \annihilate and chase" sweep.Each sweep starts with a matrix that has the following properties:|The remainder of the matrix, (i.e., the current trailing matrix) is block tridiag-onal, with all diagonal blocks but the last one being of order b and the last onebeing of order � b; see the last picture in Figure 2.|Every subdiagonal block is upper triangular in its �rst ~b = b� d columns.|The matrix is banded with semibandwidth b+ d.Every similarity transformation within the sweep|maintains the working semibandwidth b+ d,



� 5|involves the same number h of rows and columns, and|restores the form described above in one subdiagonal block, while destroying itin the next subdiagonal block.We arrive at the following algorithm.Algorithm 1. One-step band reduction bandr1(n;A; b; d; nb)Input. An n � n symmetric matrix with semibandwidth b, 1 < b < n. The numberd, 1 � d < b, of subdiagonals to be eliminated, and a block size nb, 1 � nb � b� d.Output. An n� n symmetric matrix with semibandwidth b � d.~b = b� dfor j = 1 to n� ~b� 1 step nbj1 = j; j2 = j1 + nb � 1; i1 = j + ~b; i2 = min(j + b+ nb � 1; n)while i1 < nQR: Perform a QR decomposition of the block B � A(i1 : i2; j1 : j2)and replace B by � R0 �.Pre: Replace the block B � A(i1 : i2; j2 + 1 : i1 � 1) by QTB.Sym: Replace the block B � A(i1 : i2; i1 : i2) by QTBQ.Post: Replace the block B � A(i2 + 1 : min(i2 + b; n); i1 : i2) by BQ.j1 = i1; j2 = j1 + nb � 1; i1 = i1 + b; i2 = min(i2 + b; n)end whileend forThe working semibandwidth of the algorithm is b+d. Given the one-step band re-duction algorithm, we can now derive a framework for band reduction in a straight-forward fashion by \peeling o�" subdiagonals in chunks.Algorithm 2. Multistep band reduction bandr(n;A; b; fd(i)g; fn(i)b g)Input. An n � n symmetric matrix with semibandwidth b, 1 < b < n. A sequenceof positive integers fd(i)gki=1 with d =P d(i) < b, and a sequence fn(i)b gki=1 of blocksizes, where n(i)b � ~b(i) = b�Pij=1 d(i).Output. An n� n symmetric matrix with semibandwidth b � d.b(1) = bfor i = 1 to kcall bandr1( n, A, b(i), d(i) )b(i+1) = b(i) � d(i)end forThe working semibandwidth for the multistep algorithm ismax1�i�k(b(i) + d(i)) = b+ max1�i�k(d(i) � i�1Xj=1 d(j));which is b+ d(1) if the d(i) satisfyd(i) � d(1) + i�1Xj=1 d(j); 1 < i � k: (1)



� 6There is also a class of systolic array algorithms that use Givens rotations toremove several outer diagonals at a time [Bojanczyk and Brent 1987; Ipsen 1984;Schreiber 1990]. Here, d(i) is chosen as large as b(i)=2 [Bojanczyk and Brent 1987]in order to increase the parallel scope per systolic operation and hence minimizethe total number of systolic operations.3. INSTANCES OF THE FRAMEWORKIn this section we discuss several instances of Algorithm 2, including the (non-blocked) Householder tridiagonalization, Rutishauser's algorithm, and the MHL-algorithm for tridiagonalizing symmetric band matrices. In addition to these, themultistep framework allows for new tridiagonalizationmethods featuring lower opscount and/or better data locality.3.1 One-step Tridiagonalization of Full Symmetric MatricesA full symmetric matrix can be tridiagonalized with bandr(n;A; b = n� 1; fd(1) =b � 1g; fn(1)b = 1g). Note that ~b = 1 implies nb = 1. Then, the QR decompositionand the Sym step of Algorithm 1 reduce to determining and applying a suitableHouseholder transformation, while the Pre and Post steps vanish. Thus, we arriveat the nonblocked standard Householder tridiagonalization.3.2 Two-step Tridiagonalization of Full Symmetric MatricesAnother way to tridiagonalize a full symmetric matrix is the two-step sequencebandr(n;A; b = n� 1; fd(1) = b�~b; d(2) = ~b� 1g; fn(1)b ;n(2)b = 1g), where 1 < ~b < bis some intermediate semibandwidth and n(1)b � ~b. That is, we �rst reduce A tobanded form and then tridiagonalize the resulting banded matrix.In contrast to the blocked Householder tridiagonalization [Dongarra et al. 1989],where one half of the approximately 4=3n3 ops for the reduction of A is con�ned tomatrix-vector products, almost all the operations in the reduction to banded formcan be done within the Level 3 BLAS. For b� n this �rst reduction constitutes thevast majority of ops. Tridiagonalizing the banded matrix requires roughly 6bn2ops, which can be done with Level 2 BLAS.Therefore, the two-step tridiagonalization may be superior on machines with adistinct memory hierarchy (see Table I in Section 5.1).3.3 One-step Tridiagonalization of Symmetric Band MatricesAs for full matrices, the simplest way to tridiagonalize a matrix with semibandwidthb is the one-step sequence bandr(n;A; b; fd(1) = b � 1g; fn(1)b = 1g). Again, theQR decomposition and the Sym steps reduce to determining and applying singleHouseholder transformations, and the Pre and Post steps vanish. This one-stepsequence is equivalent to the MHL-algorithm.3.4 Tridiagonalization by Peeling o� Single DiagonalsThe sequence bandr(n;A; b; fd(1) = : : : = d(b�1) = 1g; fn(1)b = : : : = n(b�1)b = 1g)tridiagonalizes a banded matrix by repeatedly peeling o� single diagonals. Thiscorresponds to Rutishauser's algorithm, except that the rotations are replaced withlength-2 Householder transformations.



� 7W Y�-nb 6?d+ 16?d+ nbFigure 3. Nonzero structure of the matricesW and Y for d = nb = 4.3.5 Optimal Tridiagonalization Algorithms for Band MatricesIn the following, we derive tridiagonalization algorithms that have a minimumopscount for a given working semibandwidth, that is,minimize number of ops to tridiagonalize an n� n banded matrixwith semibandwidth bsubject to working semibandwidth � s, where s � b+ 1: (2)For the reduction of banded matrices, blocking the transformations always sig-ni�cantly increases the ops count. Figure 3 shows the nonzero pattern of the(d+nb)�nb matricesW and Y that result from aggregating nb length-(d+1) House-holder transformations into a blocked Householder transformation. The nonzerosin Y form a parallelogram, while W is upper trapezoidal. Multiplying W to thecolumns of some m� (d+ nb) block B of A takes approximately nb(2d+ nb + 1)mops and multiplication with Y T costs another 2nb(d+ 1)m operations, even if themultiplication routine GEMM is able to take full advantage of zeros. Thus, in thebanded context, using the WY representation increases the overall ops count intwo ways. First, the W and Y factors must be generated. Second, applying theblocked Householder transform requires more than the 4nb(d+1)m operations thatwould be needed for the nb single length-(d+1) Householder transformations inWand Y .The same argument applies also to the compact WY representation Q = I +Y TY T [Schreiber and Van Loan 1989]. In addition, this blocking technique re-quires one more matrix multiplication, W = Y T . The cost for this additionalmultiplication is not negligible in the banded case, in contrast to the reductionof full matrices, where the average length of the Householder vectors signi�cantlyexceeds nb. Therefore, we prefer the \standard" WY representation for blockingthe Householder transformations.Because this section focuses on minimizing the ops count, we consider onlynonblocked reduction algorithms (i.e., n(i)b = 1 for all i). On machines with a dis-tinct memory hierarchy, however, the higher performance of the Level 3 BLAS maymore than compensate for the overhead introduced by blocking the transforma-tions. Thus, both ops count and BLAS performance should be taken into accountin order to minimize the execution time on such machines. For clarity in our analy-sis, we omitted the resulting weighting of the various algorithmic components, butthe ideas presented here easily can be extended to this more general analysis.In the nonblocked case, the arithmetic cost of Algorithm 1 in ops iscost(n; b; d) � (4(d+1)+ (2d2+7d+5:5)=b)� (n(n� 1)� (b� d)(b� d+1)) : (3)



� 8For any band di�erence sequence fd(i)g, Algorithm 2 therefore requireskXi=1 cost(n; b(i); d(i))ops.Given a limit on s, we can use dynamic programming [Aho et al. 1983] to de-termine an optimal sequence fd(i)g from the cost function given in (3). By takingstorage requirements into account, we allow for space tradeo�s to best use theavailable memory.3.5.1 No Storage Constraints. We �rst consider Problem (2) with s � 2b � 1.Here are no storage constraints, since the maximum working semibandwidth ofAlgorithm 2 is 2b� 1. However, the optimal sequence fd(i)g is quite di�erent fromthe one-step sequence of the MHL-algorithm.For example, for a 50; 000-by-50;000 symmetric matrix with semibandwidth 300,the optimal sequence isf10; 8; 9; 10;11;12;14;15; 16; 17; 18; 19; 20; 22; 23; 24; 25; 26g;the reduction requires 3:48�1012 oatingpoint operations, and the working semiband-width is 310. In contrast, the MHL-algorithm requires 4:47 � 1012 ops, and itsworking semibandwidth is 599. We also note that the constant sequencef16; 16; : : : ; 16; 11grequires 3:49 � 1012 ops, with a working semibandwidth of 316. Another constantsequence f32; 32; : : : ; 32; 11grequires 3:56 � 1012 ops, with a working semibandwidth of 332. Hence a constant-stride sequence seems to be just as good a choice as the optimal one from a practicalpoint of view, and saves the dynamic programming overhead.3.5.2 Minimum Storage. Now consider another extreme case of the constraint inProblem (2): s = b+ 1. That is, we have space for at most one other subdiagonal.Even for small b, the MHL-algorithm is not among the candidates, since its workingsemibandwidth is 2b�1 > b+1. Indeed, a candidate d-sequence for this case shouldsatisfy the condition (1) with d(1) = 1. The sequence d(i) = 1 from Section 3.4satis�es this condition. Instead, we suggestd(1) = 1;d(i+1) = 2d(i); 1 � i < k = blog2(b� 1)cd(k+1) = (b� 1)� kXi=1 d(i): (4)We call it the doubling-stride sequence, since the bandwidth reduction size doublesin each round. For the example in the preceding subsection, the RS-algorithmsrequire 4:49 � 1012 ops, whereas the doubling-stride algorithm requires 3:90 � 1012ops.
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bFigure 4. Data area visited by the MHL-algorithm.3.5.3 Understanding Optimality. Rutishauser's algorithm peels o� subdiagonalone by one and requires minimum storage, but it is not optimal among the algo-rithms with minimum storage. On the other hand, although the MHL-algorithmeliminates all subdiagonals in one step, it is also not optimal when b is large. Inthe following, we give an intuitive explanation why the complexity of our schemeis superior to both these approaches.First, let us compare the MHL-algorithm and Algorithm 2 with a sequence fd; b�d � 1g. During the bulge chasing following the reduction in column 1, the dataarea accessed by the MHL-algorithm with rank-1 row and/or column updatingand symmetric rank-2 updating is shown in Figure 4. The data area accessed byAlgorithm 2 is shown in Figure 5. In comparing di�erent bandreduction sequences,we take the rank-1 updating as basic unit of computation and examine the totaldata area visited by each algorithm for the purpose of rank-1 updating. Since arank-1 update applied to an m � n matrix requires approximately 4mn ops, thearea involved in a rank-1 update is a good measure of complexity. The symmetricrank-2 update of a triangular n� n matrix is as expensive as a rank-1 update of afull matrix of that size; both require about 4n2 ops.For the MHL-algorithm, the total area visited with rank-1 updates isaMHL = 3nb:For the two successive band reductions, it isatwo�step = f2n(d+ 1) + nb (d+ 1)2g+ 3n(b� d):Denoting � = (d+ 1)=b, we obtain as the ratio� = atwo�stepaMHL = �2 � � + 3(1 + 1b )3 ;which takes its minimum�� � 11=12 at �� = 1=2. Therefore, the two-step reductioncan save some 8% of the ops, as compared with the MHL-algorithm. Of course,the same idea can then be applied recursively on the tridiagonal reduction for thematrix with reduced semibandwidth b� d.
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2Figure 6. Data area visited by Rutishauser's algorithm in the \elimination and bulge chasing"rounds for the three outmost elements a91, a81, and a71 of the �rst column (light, medium, anddark grey shading, resp.).Let us consider now how often a row or column is repeatedly involved in a re-duction or chasing step. The data area visited by Rutishauser's algorithm forannihilating 3 elements in the �rst column in 3 rounds is shown in Figure 6. Wesee in particular that the total area visited in the �rst b � b block is almost twiceas big as the one by Algorithm 1 with d = 3, as a result of the revisiting of the �rstrow and column in the last visited area.Thus, in comparison with Rutishauser's and the MHL-algorithm, our algorithmcan be interpreted as balancing the counteracting goals of|decreasing the number of times a column is revisited (by the use of Householdertransformations), and|decreasing the area involved in updates (by peeling o� subdiagonals in severalchunks).



� 113.6 Bandwidth ReductionIn some contexts it is not necessary to fully reduce the banded matrix to tridiagonalform. For example, in the invariant subspace decomposition approach (ISDA) foreigensystem computations [Lederman et al. 1991], the spectrum of a matrix A iscondensed into two narrow clusters by repeatedly applying a function f to thematrix. If f is a polynomial of degree 3, each application of f roughly triples A'sbandwidth. Therefore, A will be full after a moderate number of iterations if nocountermeasures are taken. To prevent this situation, the bandwidth of A can beperiodically reduced to a \reasonable" value after a few applications of f .This bandwidth reduction can also be done by using Algorithm 2, either in oneor multiple reduction steps.4. AGGREGATING THE TRANSFORMATIONSIf the eigenvectors of the matrix A are required, too, then all the transformationsfrom Algorithm 1 must also be applied to another matrix, say, an n� n matrix U .For banded matrices A, the update of U dominates the oating-point complexity(2n3 for updating U versus 6bn2 for the reduction of A). Therefore, we shouldstrive to maximize the use of BLAS 3 kernels in the update of U to decrease thetotal time.In this section we discuss several techniques for updating U with blocked House-holder transformations. Some of these methods are tailored to the cases ~b = 1,where the transformations of A cannot be blocked.4.1 On-the-Fly UpdateThe update can easily be incorporated in the reduction by inserting the linesif the aggregate transformation matrix U is requiredReplace U (:; i1 : i2) by U (:; i1 : i2)Q.between the QR and Pre steps of Algorithm 1. That is, each transformation isapplied to U as soon as it is generated and applied to A (on-the-y update).If the matrix is not reduced to tridiagonal form, i.e., ~b = b� d > 1 then the workon A and U can be done with blocked Householder transformations, thus enablingthe use of the Level 3 BLAS.4.2 Backward AccumulationFor tridiagonalization, however, ~b = 1 implies nb = 1, which means that the workon A cannot be done in a blocked fashion.At �rst glance, this fact seems also to preclude the use of Level 3 BLAS in theupdate of U . Fortunately, however, the obstacle can be circumvented by decouplingthe work on U from the reduction of A.Let us �rst consider the tridiagonalization of a full symmetric matrix A. As inthe LAPACK routine SYTRD, the update of U can be delayed until the reductionof A is completed. Then, the Householder transformations are aggregated intoblocked Householder transforms with arbitrary nUb , and these are applied to U . Inaddition to enabling the use of the Level 3 BLAS, the decoupling of the updatefrom the reduction allows reducing the op count by reverting the order of thetransformations (backward accumulation).



� 12For complexity reasons, the backward accumulation technique should also beused in the reduction from full to banded form, even if the on-the-y update canalso be done with blocked Householder transforms.4.3 Update in the Tridiagonalization of Banded MatricesWhen a full matrix is reduced to either banded or tridiagonal form, the Householdervectors can be stored conveniently in the zeroed-out portions of A and an additionalvector � . In the tridiagonalization of banded matrices, this strategy is no longerpossible: eliminating one length-(b � 1) column of the band requires n=b length-b Householder vectors, because of the bulge chasing. Therefore, it is impracticalto delay the update of U until A is completely tridiagonalized. We use anothertechnique [Bischof et al. 1994] in this case.Let Hjk denote the kth Householder transformation that is generated in the jthsweep of Algorithm 1. That is, Hj1 eliminates the �rst column of the remainingband, and Hj2, Hj3, . . . are generated during the bulge chasing.During the reduction, the transformations of each sweep must be determinedand applied to A in the canonical order Hj1 , Hj2 , Hj3, . . . , because each Hjk dependson data modi�ed in the Post step of Hjk�1. Once the transformations are known,this dependence no longer exists. Since the transformations from one sweep involvedisjoint sets of U 's columns, they may be applied to U in any order (see Figure 7).We are, however, not entirely free to mix transformations from di�erent sweeps.Hjk must be preceded by Hj�1k�1 and Hj�1k , since it a�ects columns that are modi�edby these two transformations in sweep j � 1 (intersweep dependence).sweep1 2 3 4H11H12H13H14H15H16 H21H22H23H24H25H26 H31H32H33H34H35H36 H41H42H43H44H45H4666666 66666 66666 66666��	��	��	��	��	 ��	��	��	��	��	 ��	��	��	��	��	
sweep1 2 3 4H11H12H13H14H15H16 H21H22H23H24H25H26 H31H32H33H34H35H36 H41H42H43H44H45H46� � �� � �� � �� � �� � �� � ���	��	��	��	��	 ��	��	��	��	��	 ��	��	��	��	��	Figure 7. Interdependenceof the Householder transformationsHjk for the work on A (left picture)and on U (right picture). \H  ~H" indicates that ~H cannot be determined and applied to A(cannot be applied to U) until H has been applied to A (to U).To make use of the additional freedom, we delay the work on U until a certainnumber nUb of reduction sweeps j, j + 1, . . . , J = j + nUb � 1 are completed. Thenthe update of U is done bottom up by applying the transformations in the order



� 13H11 H21 H31 H41H12 H22 H32 H42H13 H23 H33 H43H14 H24 H34 H44H15 H25 H35 H45H16 H26 H36 H46
columns16111621263136Figure 8. Columns of U a�ected by each transformation Hjk of the �rst four reduction sweeps.In this example, n = 36 and b = 6. The transformations with the same hatching pattern can beaggregated into a blocked Householder transformation.Hjkmax, Hj+1kmax, . . . , HJkmax, Hjkmax�1, Hj+1kmax�1, . . . , HJkmax�1, . . . , Hj1 , Hj+11 , . . . ,HJ1 . That is, the transformations in Figure 7 would be applied in the order H16 ,H26 , H36 , H46 , H15 , H25 , . . . , H11 , H21 , H31 , H41 . This order preserves the inter-sweepdependence mentioned above. In addition, the nb transformations H�k with thesame index k can be aggregated into a blocked Householder transformation. InFigure 8, the transformations contributing to the same block transformation arehatched identically.A similar technique can also be used, for example, in the QR algorithm for com-puting the eigensystem of a symmetric tridiagonal matrix [Lang 1995]. It allowsupdating the eigenvector matrix with matrix-matrix products instead of single ro-tations.5. EXPERIMENTAL RESULTSThe numerical experiments were performed on single nodes of the IBM SP parallelcomputer located at the High-Performance Computing Research Facility, Mathe-matics and Computer Science Division, Argonne National Laboratory, and on singlenodes of the Intel Paragon located at the Zentralinstitut f�ur Angewandte Mathe-matik, Forschungszentrum J�ulich GmbH.All timings are for computations in double precision. The matrices had randomentries chosen from [0; 1]; since none of the algorithms is sensitive to the actualmatrix entries, the following timings can be considered as representative.Five codes were used in the experiments:|DSYTRD: LAPACK routine for blocked tridiagonalization of full symmetric matri-ces [Dongarra et al. 1989],



� 14Table I. Timings (in seconds) on one node of the IBM SP for the one-step (LAPACK routineDSYTRD) and two-step reduction (routines DSYRDB and DSBRDT) of full symmetric matrices of ordern = 3000 to tridiagonal form. The timings do not include the update of U . The intermediatesemibandwidth in the two-step reduction was always b(2) = 24.One-Step Reduction Two-Step Reductionnb DSYTRD Total Time full �! banded banded �! tridiagonal1 838 1831 1787 444 761 797 753 448 635 593 549 4416 591 496 452 4424 627 477 433 44|DSBTRD: LAPACK routine for tridiagonalizing banded matrices using Kaufman'smodi�cation of Schwarz's algorithm [Schwarz 1968; Kaufman 1984] (called SK-algorithm in the following) to improve vectorization,|DSYRDB: blocked reduction of full symmetric matrices to banded form (Algo-rithm 1),|DSBRDB: blocked reduction of banded matrices to narrower banded form (Algo-rithm 1), and|DSBRDT: tridiagonalization of banded matrices (MHL-algorithm with the tech-nique from Section 4.3 for updating U ).The latter three codes are described in more detail in [Bischof et al. 1996].All programs are written in Fortran 77. For the IBM SP node, which for ourpurposes can be viewed as a 66 MHz IBM RS/6000 workstation, the codes werecompiled with xlf -O3 -qstrict and linked with -lessl for the vendor-suppliedBLAS. For the Intel Paragon node, the compilation was done with if77 -Mvect-O4 -nx, and the BLAS were linked in with -lkmath.The data presented in this section demonstrate that it may be advantageous toconsider multistep reductions instead of conventional direct methods. In particular,on machines with memory hierarchies, it is not clear a priori which approach issuperior for a given problem.5.1 Tridiagonalization of Full MatricesWe �rst compared the one-step tridiagonalization routine DSYTRD from LAPACKwith the two-step reduction (routines DSYRDB and DSBRDT) from Section 3.2. Table Ishows that for large matrices, the two-step reduction can make better use of theLevel 3 BLAS than can the direct tridiagonalization, where onehalf of the operationsis con�ned to matrix-vector products. The reduction to banded form runs at up to83 MFlops, which is close to the peak performance of the IBM SP node. Note thatthe tridiagonalization of the banded matrix cannot be blocked; therefore, the blocksize nb a�ects only the reduction to banded form. The bad performance of thisreduction with nb = 1 is due to the fact that the routine DSYRDB does not provideoptimized code for the nonblocked case.If the transformation matrix U is required, too, then direct tridiagonalization isalways superior because it has a signi�cantly lower ops count.
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b = 128Figure 9. Speedup of the MHL-algorithm (routine DSBRDT) for tridiagonalizing banded matricesover the SK-algorithm (LAPACK routine DSBTRD) with and without updating the matrix U (leftand right pictures, resp.). In the update, nUb = 6 Householder transformations were aggregatedinto a block transform.5.2 One-step Tridiagonalization of Banded MatricesNext, we compared the SK-algorithm (LAPACK routine DSBTRD) with the MHL-algorithm DSBRDT. Both are one-step tridiagonalization algorithms for band matri-ces. In the MHL-algorithm, the update of U was done by using blocked Householdertransformations with the default block size nUb = 6. Figure 9 shows the results forvarious matrix dimensions and semibandwidths on both machines.Lang [1993] already noted that the LAPACK implementation is not optimalexcept for very small semibandwidths. The reason is that the bulk of computationsmust be done in explicit Fortran loops, since no appropriate BLAS routines coverthem. Therefore, the routine runs at Fortran speed, whereas the MHL-algorithmcan rely on the Level 2 BLAS for the reduction and Level 3 BLAS for the updateof U .On the SP node, the MHL-algorithm runs at up to 45 MFlops in the reduction and53 MFlops in the update, while DSBTRD only reaches 20 and 30 Mops, respectively.(In addition, the SK-algorithm requires 50% more ops when U is updated.) Thissituation may be di�erent on some vector machines because DSBTRD features vectoroperations with a higher average vector length, albeit with nonunit stride.



� 16Table II. Timings (in seconds) on one node of the IBM SP for tridiagonalizing banded symmetricmatrices of order n = 1200. The intermediate semibandwidth in the two-step reduction wasb(2) = b=2. b = 32 b = 64 b = 128One-step reduction with DSBRDT 8.3 15.0 25.0Two-step reduction with DSBRDB and DSBRDT 11.3 13.6 22.95.3 Two-step Tridiagonalization of Banded MatricesIn Section 3.5.3 we showed that peeling o� the diagonals in two equal chunks re-quires fewer ops than direct tridiagonalization with the MHL-algorithm. Table IIshows that the time for the two-step approach can be lower, too, if the semiband-width is large enough.In contrast to the theoretical results, however, the intermediate semibandwidthb(2) = b=2 is not always optimal. For example, it took only 20.03 seconds to �rstreduce the semibandwidth from b = 128 to b(2) = 32 and then tridiagonalize thatmatrix.The explanation is that in the case b(2) = 32, more of the work is done inthe bandwidth reduction, which can rely on blocked Householder transformations,whereas the �nal tridiagonalization cannot. Therefore, the higher performance ofthe Level 3 BLAS more than compensates for the slighly higher ops count ascompared with b(2) = b=2 = 64.For small semibandwidths b, the lower ops count of the two-step scheme wasoutweighed by the lower overhead (e.g., fewer calls to the BLAS with larger subma-trices) of the one-step reduction. As in the reduction of full matrices, the one-steptridiagonalization is always superior when U is required, too.5.4 Doubling-stride Tridiagonalization of Banded MatricesWhile the MHL-algorithm is clearly superior on machines where the BLAS perfor-mance signi�cantly exceeds that of pure Fortran code, it may not be applicable ifstorage is tight. Therefore, we also compared two algorithms that need only oneadditional subdiagonal as working space:|the SK-algorithm (routine DSBTRD from LAPACK), and|the doubling-stride sequence from Section 3.5.2: multiple calls to DSBRDB (withnb = 6 for the reduction of A and the update of U ) and one call to DSBRDT (withnUb = 6).The results given in Figure 10 show that the doubling-sequence tridiagonalization,too, can well outperform the SK-algorithm on both machines.6. CONCLUSIONSWe introduced a framework for band reduction that generalizes the ideas under-lying the Householder tridiagonalization for full matrices and Rutishauser's algo-rithm and the MHL-algorithm for banded matrices. By \peeling o�" subdiagonalsin chunks, we arrived at algorithms that require fewer oating-point operations andless storage. We also provided an intuitive explanation of why our approach, whicheliminates subdiagonals in groups, has a lower computational complexity than that
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