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DSY2SBFigure 1. Di�erent paths for reducing full and banded symmetric matrices to tridiagonal form.[Schwarz 1968; Kaufman 1984] for banded matrices (routine SBTRD).In [Bischof et al. 1996] the authors gave evidence that one-step reduction isnot necessarily the most e�cient way for tridiagonalizing either full or bandedmatrices and proposed a framework of successive band reductions (SBR) to optimizereduction algorithms with respect to complexity, data locality, and/or memoryrequirements. As an example, consider reducing a full matrix to banded formand then tridiagonalizing the banded matrix. The �rst step can be done almostentirely by using Level 3 BLAS. Therefore, data locality is signi�cantly improvedin comparison with the direct tridiagonalization, where one half of the operationsis con�ned to matrix-vector products. The second reduction step must be donewith Level 2 BLAS, but it accounts for only a small percentage of the total work.Thus, the two-step approach can be superior on machines with a distinct memoryhierarchy.The SBR toolbox is intended to complement the LAPACK routines, as illustratedin Figure 1. All toolbox routines are available in single and double precision. Forthe sake of brevity, we describe only the doubleprecision routines in this paper.Their singleprecision twins are identical except for a leading \S" instead of \D" inthe routine's name and REAL instead of DOUBLE PRECISION scalars and arrays inthe parameter list.At the user level, the toolbox provides four (doubleprecision) computational rou-tines:|DSYRDB: reduction of a symmetric full matrix to banded form,|DSYGTR: accumulation of the transformations from DSYRDB in an orthogonal ma-trix,|DSBRDB: reduction of a symmetric banded matrix to narrower banded form, and|DSBRDT: reduction of a symmetric banded matrix to tridiagonal form with House-holder transformations [Murata and Horikoshi 1975; Lang 1993],and two routines for changing the data layout:|DSY2SB: repacking of a symmetric banded matrix from conventional storage tothe LAPACK lower banded storage scheme, and



� 3|DSB2SB: repacking of a symmetric banded matrix from the LAPACK (upper orlower) banded storage scheme to lower banded storage with prescribed leadingdimension.The storage formats employed here are described in detail by Anderson et al. Ander-son, Bai, Bischof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKen-ney, Ostrouchov, and Sorensen [1995, p. 107 �.].The software can be retrieved from http://www.mcs.anl.gov/projects/PRISM.The routine DSBRDT routine o�ers the same functionality as the LAPACK routineDSBTRD; it is included in the SBR toolbox because it features higher data localitythan does the rotation-based approach and therefore can signi�cantly outperformthe latter if the bandwidth is not too small. In our experiments, the cross-overpoint was at b � 10 if the transformations were not accumulated in another matrixU . With accumulation, DSBRDT was competitive or superior for all b.A whole family of multistep reduction algorithms for both full and banded matri-ces can be derived by following di�erent paths in Figure 1, as described by Bischofet al. Bischof, Lang, and Sun [1996], for example,|two-step tridiagonalization of full matrices: call DSYRDB to reduce the matrixto banded form, DSY2SB to repack the band matrix from conventional to lowerbanded storage, and DSBRDT to �nally tridiagonalize it, or|multistep tridiagonalization of banded matrices: call DSBRDB to reduce the band-width, then (optionally) repack the band with DSB2SB; these two steps may berepeated. Finally, DSBRDT (or DSBTRD, if the bandwidth is very small) is used totridiagonalize the banded matrix.The optimal reduction path depends on characteristics of the machine (such asthe performance of the di�erent BLAS levels), on the available workspace, and|insome special cases|on properties of the matrix (e.g., its eigenvalue distribution).Therefore, the SBR toolbox does not contain a \black box" driver algorithm thathandles all cases. Rather it provides an infrastructure for experimenting with di�er-ent reduction schemes that may be tailored to particular machines and applications.The article is organized as follows. In Section 2 we describe the functionalityand the calling sequences of the main routines. in Section 3 two of the parametersare discussed in some detail; they allow the user to optimize the performance ofthe routines. Section 4 brie
y describes the installation of the SBR toolbox andsummarizes the testing and timing drivers. In Section 5, we summarize the mainpoints of the article.2. CALLING SEQUENCESIn this section we describe the functionality and the calling sequences of the user-level doubleprecision routines.The semibandwith of a symmetric matrix is the number of its outmost nonzerosub(super)diagonal. NB denotes a block size proposed by the user, whereas nb isthe block size that is eventually used in the computations (nb � NB).



� 42.1 Reduction from Full to Banded Form�� �
SUBROUTINE DSYRDB( UPLO, JOB, N, B, A, LDA, DRPTOL,U, LDU, NB, TAU, WORK, LWORK, INFO )DSYRDB uses blocked Householder transformations to reduce an N� N symmetricfull matrix A to a symmetric banded matrix with semibandwidth B � 1: A �!QTAQ = Aband.On entry, the matrix A must be provided in the array A (leading dimension LDA)in conventional storage with either the upper (if UPLO = 'U') or lower (if UPLO ='L') triangle explicitly stored. The other triangle of A is not accessed during thereduction.On exit, the main diagonal and the �rst B super- (if UPLO = 'U') or subdiagonals(UPLO = 'L') of A are overwritten with the upper or lower triangle of the bandedmatrix Aband, again in conventional storage. The Householder vectors that wereused in the reduction are returned in the zeroed-out portion of A and an additionalvector TAU.Optionally, if JOB = 'U', all the transformations can also be applied to anothermatrix U (stored in an array U with leading dimension LDU), that is, U  UQ. IfJOB = 'N', the array U is not referenced.Note. The use of JOB = 'U' for accumulating the transformations is recom-mended only if U is not the idenity matrix when entering DSYRDB. To generateU \from scratch", DSYGTR should be called after the reduction, because the back-ward accumulation used in that routine takes signi�cantly fewer 
ops and does notrequire storage for a second full matrix.The parameter NB � B may be used to control the level of blocking, that is,the number of Householder transformations that are aggregated into a blockedHouseholder transformation; see Section 3.We can thus summarize the meaning of the parameters as follows:UPLO (input) CHARACTERReference the upper (UPLO = 'U') or lower triangle (UPLO = 'L') of A?JOB (input) CHARACTERUpdate the matrix U (JOB = 'U') or not (JOB = 'N')?N (input) INTEGEROrder of the matrix A.B (input) INTEGERSemibandwidth of the reduced matrix. B � 1.A (input/output) DOUBLE PRECISION array, size (LDA, N)On entry, the matrix A in conventional storage with either the upperor lower triangle explicitly stored. On exit, the upper or lower trian-gle of A is overwritten with the reduced matrix (main diagonal and Bsuper- or subdiagonals) and the Householder vectors that were used inthe reduction.



� 5LDA (input) INTEGERLeading dimension of the array A.DRPTOL (input) DOUBLE PRECISIONFor the use of this parameter, see Section 3.3.U (input/output) DOUBLE PRECISION array, size (LDU, N)Matrix for accumulating the transformations. Not accessed if JOB = 'N'.LDU (input) INTEGERLeading dimension of the array U.NB (input) INTEGERSuggested order for the blocked Householder transformations. For theuse of this parameter, see Section 3.1.TAU (output) DOUBLE PRECISION array, size (N)The \scaling factors" of the Householder transformations.WORK (workspace) DOUBLE PRECISION array, size (LWORK)LWORK (input) INTEGERLength of the workspace array. The minimum value is LWORK = 3N� 2B,but the minimumworkspace prevents the use of blocked transformationsand therefore degrades performance. For using nb-blocked Householdertransformations, we need LWORK � nb(3N � 2B). As a rule, LWORK � 50Nshould be �ne.INFO (output) INTEGEROn exit, a negative value INFO = �i indicates that the routine stoppedprocessing because of an error in the ith parameter, whereas a positivevalue INFO = nb indicates successful reduction with block transformationsof order nb.2.2 Generating the Transformation Matrix�� �
SUBROUTINE DSYGTR( UPLO, N, B, A, LDA, TAU,WORK, LWORK, INFO )DSYGTR overwrites A with the orthogonal matrix Q that reduces A to bandedform, i.e., A Q, where QTAQ = Aband.The parameters UPLO, N, B, A, LDA, and TAU must be the same as in the precedingDSYRDB call.Notes. (1) The banded matrix must be copied into another array with DSY2SBbefore calling DSYGTR. (2) Since the orthogonal matrix Q is not symmetric, bothtriangles of A are needed to store it. (3) DSYGTR does not have a parameter NB forcontrolling the block size. This routine calls a suitable LAPACK routine, whichautomatically sets the block size.The meaning of the parameters is as follows:



� 6A (input/output) DOUBLE PRECISION array, size (LDA, N)On entry, A contains the Householder vectors that were used in the re-duction, as returned by DSYRDB. On exit, A is overwritten with Q.WORK (workspace) DOUBLE PRECISION array, size (LWORK)LWORK (input) INTEGERLength of the workspace array. The minimum value is LWORK = N � B,but workspace this small prevents the use of blocked transformationsand therefore degrades performance. For using nb-blocked Householdertransformations, we need LWORK � nb(N � B). As a rule, LWORK � 20Nshould be �ne.INFO (output) INTEGEROn exit, a negative value INFO = �i indicates that the routine stoppedprocessing because of an error in the ith parameter, whereas INFO = 1indicates successful completion.2.3 Reduction from Banded to Narrower Banded Form�� �
SUBROUTINE DSBRDB( JOB, N, B1, B2, A, LDA, DRPTOL,U, LDU, NB, WORK, LWORK, INFO )DSBRDB uses blocked Householder transformations to reduce a banded symmetricmatrix A1 with semibandwidth B1 to narrower banded form: A1 �! QTA1Q = A2,where A2 has semibandwidth B2 < B1.On entry, the array A (leading dimension LDA � 1+ (B1� B2)+ B1) must containthe matrix A1 in the LAPACK lower symmetric banded storage scheme [Andersonet al. 1995, p. 109]. That is, the columns (diagonals) of A1's lower triangle arestored in the �rst columns (rows) of A. On exit, A contains the matrix A2 in lowerbanded storage.Optionally (JOB = 'U'), all the transformations can also be applied to anothermatrix U (stored in an array U with leading dimension LDU), that is, U  UQ. IfJOB = 'N', the array U is not referenced.The parameter NB � B2 may be used to control the level of blocking, that is,the number of Householder transformations that are aggregated into a blockedHouseholder transformation; see Section 3.1.Notes. (1) Calls to DSY2SB or DSB2SBmay precede this routine in order to repackthe matrix from (upper or lower) conventional or upper banded storage to the lowerbanded storage scheme. (2) DSBRDB should not be used for tridiagonalizing bandedmatrices, since DSBRDT provides optimized code for this task.The meaning of the parameters is as follows:JOB (input) CHARACTERUpdate the matrix U (JOB = 'U') or not (JOB = 'N')?N (input) INTEGEROrder of the banded matrix A1.



� 7B1 (input) INTEGERSemibandwidth of the matrix A1 before the reduction.B2 (input) INTEGERSemibandwidth of the reduced matrix A2.A (input/output) DOUBLE PRECISION array, size (LDA, N)On entry, the main diagonal and the B1 nonzero subdiagonals of thematrixA1 are stored in the �rst B1+1 rows of A (LAPACK lower bandedstorage). On exit, the �rst B2 + 1 rows of A contain the main diagonaland the B2 nonzero subdiagonals of the reduced matrix A2.LDA (input) INTEGERLeading dimension of the array A. LDA � 1 + (B1 � B2) + B1; LDA thissmall requires additional data movement when nb-blocked Householdertransformations are used in the reduction. To avoid this overhead, provideLDA � NB+ (B1� B2) + B1.DRPTOL (input) DOUBLE PRECISIONFor the use of this parameter, see Section 3.3.U (input/output) DOUBLE PRECISION array, size (LDU, N)Matrix for accumulating the transformations. Not accessed if JOB = 'N'.LDU (input) INTEGERLeading dimension of the array U.NB (input) INTEGERSuggested order for the blocked Householder transformations. For theuse of this parameter, see Section 3.1.WORK (workspace) DOUBLE PRECISION array, size (LWORK)LWORK (input) INTEGERLength of the workspace array. The minimumvalue is LWORK � N+2(B1�B2)+3 if U is required, and LWORK � 3(B1�B2)+4 otherwise. Workspacethis small prevents the use of blocked transformations and therefore de-grades performance. For using nb-blocked Householder transformations,we need LWORK � 2:5n2b + (N + 2(B1 � B2) + 0:5)nb if U is required andLWORK � 3:5n2b + (3(B1� B2) + 0:5)nb otherwise. As a rule, LWORK � 10Nshould be �ne.INFO (output) INTEGEROn exit, a negative value INFO = �i indicates that the routine stoppedprocessing because of an error in the ith parameter, whereas a positivevalue INFO = nb indicates successful reduction with blocked transforma-tions of order nb.2.4 Reduction from Banded to Tridiagonal Form�� �
SUBROUTINE DSBRDT( JOB, N, B, A, LDA, DRPTOL,D, E, U, LDU, NB, WORK, LWORK, INFO )



� 8DSBRDT uses Householder transformations to reduce a banded symmetric matrixA with semibandwidth B to tridiagonal form: A �! QTAQ = T .On entry, the array A (leading dimension LDA � 2B) must contain the matrix Ain the LAPACK lower banded storage scheme, that is, the columns (diagonals) ofA's lower triangle are stored in the �rst columns (rows) of A. On exit, D and Econtain the main diagonal and the subdiagonal of T , respectively.Optionally (JOB = 'U'), all the transformations can also be applied to anothermatrix U (stored in an array U with leading dimension LDU), that is, U  UQ. IfJOB = 'N', the array U is not referenced. U is updated with blocked Householdertransformations. The parameter NB may be used to control the level of blocking,that is, the number of Householder transformations that are aggregated into ablocked Householder transformation; see Section 3.1.Note. For very small bandwidths, and if U is not required, the LAPACK routineDSBTRD should be used since it performs better in these cases.The meaning of the parameters is as follows:JOB (input) CHARACTERUpdate the matrix U (JOB = 'U') or not (JOB = 'N')?N (input) INTEGEROrder of the banded matrix A1.B (input) INTEGERSemibandwidth of the matrix A before the reduction.A (input/output) DOUBLE PRECISION array, size (LDA, N)On entry, the main diagonal and the B nonzero subdiagonals of the matrixA are stored in the �rst B+1 rows of A (LAPACK lower banded storage).On exit, A is destroyed.LDA (input) INTEGERLeading dimension of the array A. LDA � 2B.DRPTOL (input) DOUBLE PRECISIONFor the use of this parameter, see Section 3.3.D (output) DOUBLE PRECISION array, size (N)Main diagonal of the tridiagonal matrix T .E (output) DOUBLE PRECISION array, size (N�1)Subdiagonal of the tridiagonal matrix T .U (input/output) DOUBLE PRECISION array, size (LDU, N)Matrix for accumulating the transformations. Not accessed if JOB = 'N'.LDU (input) INTEGERLeading dimension of the array U.NB (input) INTEGERSuggested order for the blocked Householder transformations in the up-date of U . For the use of this parameter, see Section 3.1.



� 9WORK (workspace) DOUBLE PRECISION array, size (LWORK)LWORK (input) INTEGERLength of the workspace array. LWORK � 2B, if U is not required. If Uis required, the minimum value is LWORK = B + N, but workspace thissmall prevents the use of blocked transformations in the update of Uand therefore degrades performance. For using nb-blocked Householdertransformations, we need LWORK � 2nb(N+B+nb�1). As a rule, LWORK �15N should be �ne.INFO (output) INTEGEROn exit, a negative value INFO = �i indicates that the routine stoppedprocessing because of an error in the ith parameter, whereas a positivevalue INFO = nb indicates successful reduction and update with blockedtrasnformations of order nb.2.5 Repacking from Conventional to Banded Storage�� �
SUBROUTINE DSY2SB( UPLO, N, B, AFULL, LDFULL,ABAND, LDBAND, INFO )DSY2SB copies a symmetric banded matrix from conventional storage (with eitherthe upper or lower triangle explicitly stored) to LAPACK lower banded storage.Note. The matrix may be repacked in place by setting ABAND equal to AFULL.The meaning of the parameters is as follows:UPLO (input) CHARACTERA is provided in upper (UPLO = 'U') or lower (UPLO = 'L') full storage.N (input) INTEGEROrder of the matrix A.B (input) INTEGERSemibandwidth of the matrix A.AFULL (input) DOUBLE PRECISION array, size (LDFULL, N)The main diagonal and the next B super(sub)diagonals contain thebanded matrix A in full storage.LDFULL (input) INTEGERLeading dimension of the array AFULL.ABAND (output) DOUBLE PRECISION array, size (LDBAND, N)The �rst B + 1 rows of the array contain the matrix A in lower bandedstorage.LDBAND (input) INTEGERLeading dimension of the array ABAND.



� 10INFO (output) INTEGEROn exit, a negative value INFO = �i indicates that the routine stoppedprocessing because of an error in the ith parameter, whereas INFO = 1indicates successful completion.2.6 Repacking from Banded to Banded Storage�� �
SUBROUTINE DSB2SB( UPLO, N, B, ASRC, LDSRC,ADST, LDDST, INFO )DSB2SB copies a symmetric banded matrix from LAPACK (upper or lower)banded storage to lower banded storage.Note. The matrix may be repacked in place by setting ADST equal to ASRC.The meaning of the parameters is as follows:UPLO (input) CHARACTERA is provided in upper (UPLO = 'U') or lower (UPLO = 'L') bandedstorage.N (input) INTEGEROrder of the matrix A.B (input) INTEGERSemibandwidth of the matrix A.ASRC (input) DOUBLE PRECISION array, size (LDSRC, N)The matrix A in (upper or lower) banded storage.LDSRC (input) INTEGERLeading dimension of the array ASRC.ADST (output) DOUBLE PRECISION array, size (LDDST, N)The matrix A in lower banded storage.LDDST (input) INTEGERLeading dimension of the array ADST.INFO (output) INTEGEROn exit, a negative value INFO = �i indicates that the routine stoppedprocessing because of an error in the ith parameter, whereas INFO = 1indicates successful completion.3. OPTIMIZING THE PERFORMANCEIn this section we discuss several ways to improve the performance of the reductionalgorithms:|selecting a suitable blocking level for the blocked Householder transformationsto increase the performance of the Level 3 BLAS kernels,|repacking the band to improve the data locality, and



� 11|skipping some Householder transformations to reduce the 
ops count when pos-sible and allowed.These techniques minimize the execution time of each single reduction step. Asuitably chosen reduction sequence can further improve the performance of theoverall reduction process; see [Bischof et al. 1996].3.1 Blocked Householder TransformationsThe computational routines are designed to use blocked Householder transforma-tions in the reduction of A (DSYRDB and DSBRDB) and in the update of the matrix U(DSYRDB, DSBRDB, and DSBRDT). Since nb (the number of Householder transforma-tions that are aggregated into a blocked transform) can have signi�cant impact onthe performance, the parameter NB allows the user to control the level of blocking.Note that the routines automatically reduce the block size nb if the workspace isnot su�cient (see the parameters LWORK in Section 2). On exit, INFO returns thevalue nb that was used in the reduction and/or update.3.1.1 Using the Default Values. If it is not important to squeeze the highest per-formance out of the routines, or if the SBR toolbox was optimized upon installation,use NB = 0.Then the auxiliary routine NBDFLT is called to obtain a default block size nb. Ina standard installation of the toolbox the default values arenb = 8>><>>: 16; for DSYRDB6; for DSBRDB6; for DSBRDT; if B � 61; for DSBRDT; if B < 6These values may be changed when installing the toolbox; see Section 4.2.3.1.2 Providing a Block Size in the Procedure Call. In some cases, the defaultnb values may not be appropriate. Since blocking signi�cantly increases the 
opscount when the bandwidth is very small, nonblocked transformations may be fasterin this case. On the other hand, for larger bandwidths it may be better to increasethe block size, since the Level 3 BLAS usually deliver better performance. Figure 2illustrates these issues.The user may provide a \preferred" block size by calling the routine with NB > 0.In general, the routine will then use NB-blocked Householder transformations in thereduction of A and/or the update of U . It may, however, be forced to reduce theblock size to a value nb < NB for two reasons:|Algorithmic restrictions: nb � B in DSYRDB and nb � B2 in DSBRDB (see the rightpicture of Figure 2; in the reduction from bandwidth b1 = 16 to b2 = 8 = d, allNB > 8 were reduced to nb = 8). The tridiagonalization routine DSBRDT cannotblock the transformations in the reduction, but there is no restriction on nb inthe update of U .|Workspace restrictions: LWORK is too small to allow NB-blocked Householder trans-formations; see the discussion of LWORK in Section 2.The routine will never increase the block size except when NB = 0. In particular,NB = 1 will force nonblocked Householder transformations. The block size nb used
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d = 64Figure 2. Speedup of tridiagonalization (left picture, including the update of U) and bandwidthreduction from b1 = 2d to b2 = d (right picture, no update) with di�erent block sizes NB ascompared with using the default block size nb = 6. The timings were made on a single node ofthe IBM SP.Table I. Timings (in seconds) for the two-step tridiagonalization of banded matrices of ordern = 1200 on one node of the IBM SP. B = 64, LDA = 128 B = 128, LDA = 256No repacking 14.76 23.67Repacking to LDA = 64 before DSBRDT 14.31 21.32Repacking before DSBRDB and before DSBRDT 13.57 20.03in the reduction/update is returned in the status indicator INFO.3.2 Repacking the BandThe data locality in the bandwidth reduction algorithms can be improved by pro-viding the band as tightly packed as possible (that is, LDA = 2B for SBRDT and LDA= NB+ (B1� B2) + B1 for SBRDB).This repacking does not require much time, and it may signi�cantly speed upthe reduction, see Table I. Here, the matrix was provided in a slightly oversizedarray (LDA = 2B); the intermediate bandwidth was B2 = 32, and NB = 0 (defaultblocking). Note that the timings include the repacking, but not the update of U .3.3 Skipping TransformationsThe reduction routines DSYRDB, DSBRDB, and DSBRDT have a parameter DRPTOL thatmay be used to reduce the number of arithmetic operations by skipping selectedHouseholder transformations.More precisely, let x = (x1; x2; : : : ; xk)T be some vector in the matrixA that mustbe reduced to a multiple ~x = �e1 of the �rst unit vector. If jj(x2; : : : ; xk)T jj2 >DRPTOL, we determine a Householder transformation H to zero out these ele-ments and apply the transformation to the matrix A (and, optionally, to U ). Ifjj(x2; : : : ; xk)T jj2 � DRPTOL, we simply set ~x = (x1; 0; : : : ; 0)T , without computingand applying any Householder transformation.The amount of savings from skipping transformations depends very much onthe distribution of A's spectrum. When the eigenvalues of A are contained in afew rather narrow clusters considerable speedup can be obtained [Bischof and Sun1995]. Such matrices arise, e.g., in the invariant subspace decomposition approach



� 13Table II. Timings (in seconds) for tridiagonalizing ISDA-type matrices with ! = 1000 � " (" �1:11 � 10�16 is the machine precision) on one node of the IBM SP.n = 400 n = 1200b = 8 b = 64 b = 8 b = 64LAPACK routine DSBTRDwithout update 0.36 4.58 5.30 35.81with update 5.46 9.50 134.52 183.21DSBRDT with DRPTOL = 0without update 0.93 1.45 8.54 15.45with update 5.34 3.93 137.81 84.95DSBRDT with DRPTOL = pn � "without update 0.90 0.98 8.37 10.36with update 5.22 2.83 134.95 58.41DSBRDT with DRPTOL = n � "without update 0.77 0.55 7.12 8.17with update 4.48 1.75 116.14 46.81Table III. Residual jjUTAU � T jj and orthogonality jjUTU � Ijj (in multiples of the machineprecision " � 1:11 � 10�16) for tridiagonalizing an ISDA-type matrix with n = 400, b = 8, and! = 1000 � " on one node of the IBM SP. jjUTAU � T jj=" jjUTU � Ijj="LAPACK routine DSBTRD 344 291DSBRDT with DRPTOL = 0 345 349DSBRDT with DRPTOL = pn � " 381 413DSBRDT with DRPTOL = n � " 4590 424(ISDA) for eigensystem computations [Lederman et al. 1991]. In this method, thespectrum of a matrix is condensed into two narrow clusters by repeatedly applyinga function f to the matrix.Table II shows the timings for tridiagonalizing ISDA-type matrices; half of theeigenvalues are randomly chosen from [0; !]; the other eigenvalues are in [1� !; 1],where ! is the width of the clusters.As may be observed from Table III, a large skipping threshold can signi�cantlyincrease the reduction residual jjUTAU �T jj, whereas the orthogonality jjUTU �Ijjof the transformation matrix is not a�ected. We propose to choose DRPTOL smallerthan p, where p is the uncertainty already contained in the original matrix or theperturbation introduced in the \standard" reduction (without skipping).For matrices with a more uniform eigenvalue distribution, the potential for skip-ping transformations is very limited. Therefore, if no a priori information of thespectrum is available or if this feature should not be used, set DRPTOL = 0.4. INSTALLATIONThe SBR toolbox comes with a UNIX make�le for easy installation and a set oftesting and timing drivers for validation and performance tuning.In this section we brie
y describe the \standard" installation procedure. Moreinformation (e.g., how to run only a subset of the testing and timing drivers) maybe found in the README �le distributed with the software.4.1 Installing the SBR ToolboxThe installation consists of the following steps.



� 14(1) Get the SBR toolbox from the software directory at http://www.mcs.anl.gov,and unpack it withzcat sbr.tar.Z | tar xf -This command puts all the SBR software into a new directory sbr.(2) Edit the �rst few lines of the makefile to match your system setup (e.g., thelocation of the LAPACK library, if the latter is installed on your machine).(3) Typemake libraryThis command will build the library (called libSBR.a if you did not changethe name).(4) (Optional.) Fine-tune the performance of the algorithms; see Section 4.2.(5) (Recommended.) Run the validation tests; see Section 4.3.(6) (Optional.) Run the timings; see Section 4.4.(7) (Optional.) Move the SBR library to a directory searched by the linker.4.2 Performance TuningThe performance of the computational routines can be optimized at installationtime by modifying the �le nbdflt.f, which sets the default block sizes (see Sec-tion 3.1.1).For the reduction of banded matrices, the optimum block size is determinedmainly by the number d of diagonals to be removed, by the precision (the BLASmay feature di�erent optimizations for single or double precision), and by the valueof JOB (is U updated or not?). To a lesser extent, the matrix size may also in
uencethe optimum block size. The \template" NBDFLT routine included in the SBRtoolbox does not make use of these parameters. This routine may be tailored to aparticular machine in the following way.The commandmake tuningproduces timings for a fairly comprehensive set of combinations of the above pa-rameters. By analyzing the output �le corresponding to each reduction routine,a simple function f(n; d; precision; JOB) is derived that gives an (almost) optimumblock size, and nbdflt.f is changed accordingly. Some advice on how to constructf is given in the README �le.4.3 Running the Testing DriversThe testing drivers provide the residuals jjUTAU � ~Ajj, the orthogonality errorsjjUTU � Ijj, and the timings for the reduction of a symmetric (full or banded)matrix A to a (narrower) banded or tridiagonal matrix ~A for matrices of ordern � 600 and di�erent semibandwidths. The commandmake checkswill run the testing drivers for the following (successive) reduction algorithms (thetwo-step and multistep reductions are discussed by Bischof et al. Bischof, Lang,and Sun [1996]):|one-step tridiagonalization of symmetric full matrices: SYTRD and ORGTR;



� 15|two-step tridiagonalization of symmetric full matrices: SYRDB (with JOB = 'U'to accumulate the transformations), SY2SB, and SBRDT;|two-step tridiagonalization of symmetric full matrices: SYRDB (with JOB = 'N'),SYGTR (to accumulate the transformations), SY2SB, and SBRDT;|one-step tridiagonalization of symmetric banded matrices: SBTRD;|one-step tridiagonalization of symmetric banded matrices: SBRDT;|two-step tridiagonalization of symmetric banded matrices: SBRDB and SBRDT;|multistep tridiagonalization of symmetric banded matrices with the doubling-stride sequence: multiple calls to SBRDB and one call to SBRDT.This command produces 14 output �les. For example, DSbrdbSbrdt.chk containsthe data for the two-step tridiagonalization of symmetric banded matrices in doubleprecision. Note that the residuals and the orthogonality errors are not available ifthe matrix U is not accumulated.4.4 Running the Timing DriversThe timing drivers run the reduction algorithms listed in Section 4.3 on largermatrices (n � 1200) and hence take signi�cantly longer to complete. Therefore,make timingsshould be used only if the timings provided by the testing drivers are not su�-cient. For memory reasons the timing drivers do not compute the residuals and theorthogonality errors.5. CONCLUSIONSWe presented a software toolbox for symmetric band reduction. The toolbox con-tains routines for the reduction of full symmetric matrices to banded form and thereduction of banded matrices to narrower banded or tridiagonal form, with optionalaccumulation of the orthogonal transformations, as well as repacking routines forstorage rearrangement. The software is available from http://www.mcs.anl.govand is intended to enable computational practitioners to experiment with the SBRapproach.ReferencesAnderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Green-baum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. 1995.LAPACK User's Guide (2nd ed.). SIAM, Philadelphia.Bischof, C. H., Lang, B., and Sun, X. 1996. A framework for symmetric band reduction.Preprint ANL/MCS-P586-0496, Mathematics and Computer Science Division, ArgonneNational Laboratory.Bischof, C. H. and Sun, X. 1995. On tridiagonalizing and diagonalizing symmetric ma-trices with repeated eigenvalues. Preprint ANL/MCS-P5454-1095, Mathematics and Com-puter Science Division, Argonne National Laboratory.Dongarra, J. J., Hammarling, S. J., and Sorensen, D. C. 1989. Block reduction ofmatrices to condensed forms for eigenvalue computations. J. Comput. Appl. Math. 27,215{227.Golub, G. H. and Van Loan, C. F. 1989. Matrix Computations (2nd ed.). The JohnsHopkins University Press, Baltimore.Kaufman, L. 1984. Banded eigenvalue solvers on vector machines. ACM Trans. Math.Soft. 10, 1 (March), 73{86.
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