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We present a software toolbox for symmetric band reduction, together with a set of testing and
timing drivers. The toolbox contains routines for the reduction of full symmetric matrices to
banded form and the reduction of banded matrices to narrower banded or tridiagonal form, with
optional accumulation of the orthogonal transformations, as well as repacking routines for storage
rearrangement. The functionality and the calling sequences of the routines are described, with
a detailed discussion of the “control” parameters that allow adaptation of the codes to particu-
lar machine and matrix characteristics. We also briefly describe the testing and timing drivers
included in the toolbox.
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1. INTRODUCTION

Reduction to tridiagonal form is a major step in eigenvalue computations for sym-
metric matrices. The LAPACK library [Anderson et al. 1995] includes the blocked
Householder tridiagonalization algorithm for full matrices [Golub and Van Loan
1989; Dongarra et al. 1989] (routines _SYTRD for the reduction and _ORGTR for build-
ing the transformation matrix) and a variant of Schwarz’s rotation-based algorithm
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Figure 1. Different paths for reducing full and banded symmetric matrices to tridiagonal form.

[Schwarz 1968; Kaufman 1984] for banded matrices (routine _SBTRD).

In [Bischof et al. 1996] the authors gave evidence that one-step reduction is
not necessarily the most efficient way for tridiagonalizing either full or banded
matrices and proposed a framework of successive band reductions (SBR) to optimize
reduction algorithms with respect to complexity, data locality, and/or memory
requirements. As an example, consider reducing a full matrix to banded form
and then tridiagonalizing the banded matrix. The first step can be done almost
entirely by using Level 3 BLAS. Therefore, data locality is significantly improved
in comparison with the direct tridiagonalization, where one half of the operations
is confined to matrix-vector products. The second reduction step must be done
with Level 2 BLAS, but it accounts for only a small percentage of the total work.
Thus, the two-step approach can be superior on machines with a distinct memory
hierarchy.

The SBR toolbox is intended to complement the LAPACK routines, as illustrated
in Figure 1. All toolbox routines are available in single and double precision. For
the sake of brevity, we describe only the doubleprecision routines in this paper.
Their singleprecision twins are identical except for a leading “S” instead of “D” in
the routine’s name and REAL instead of DOUBLE PRECISION scalars and arrays in
the parameter list.

At the user level, the toolbox provides four (doubleprecision) computational rou-
tines:

—DSYRDB: reduction of a symmetric full matrix to banded form,

—DSYGTR: accumulation of the transformations from DSYRDB in an orthogonal ma-
trix,

—DSBRDB: reduction of a symmetric banded matrix to narrower banded form, and

—DSBRDT: reduction of a symmetric banded matrix to tridiagonal form with House-
holder transformations [Murata and Horikoshi 1975; Lang 1993],

and two routines for changing the data layout:

—DSY2SB: repacking of a symmetric banded matrix from conventional storage to
the LAPACK lower banded storage scheme, and



—DSB2SB: repacking of a symmetric banded matrix from the LAPACK (upper or
lower) banded storage scheme to lower banded storage with prescribed leading
dimension.

The storage formats employed here are described in detail by Anderson et al. Ander-
son, Bai, Bischof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKen-
ney, Ostrouchov, and Sorensen [1995, p. 107 I].

The software can be retrieved from http://www.mcs.anl.gov/projects/PRISM.

The routine DSBRDT routine offers the same functionality as the LAPACK routine
DSBTRD; it is included in the SBR toolbox because it features higher data locality
than does the rotation-based approach and therefore can significantly outperform
the latter if the bandwidth is not too small. In our experiments, the cross-over
point was at b & 10 if the transformations were not accumulated in another matrix
U. With accumulation, DSBRDT was competitive or superior for all b.

A whole family of multistep reduction algorithms for both full and banded matri-
ces can be derived by following different paths in Figure 1, as described by Bischof
et al. Bischof, Lang, and Sun [1996], for example,

—two-step tridiagonalization of full matrices: call DSYRDB to reduce the matrix
to banded form, DSY2SB to repack the band matrix from conventional to lower
banded storage, and DSBRDT to finally tridiagonalize it, or

—multistep tridiagonalization of banded matrices: call DSBRDB to reduce the band-
width, then (optionally) repack the band with DSB2SB; these two steps may be
repeated. Finally, DSBRDT (or DSBTRD, if the bandwidth is very small) is used to
tridiagonalize the banded matrix.

The optimal reduction path depends on characteristics of the machine (such as
the performance of the different BLAS levels), on the available workspace, and—in
some special cases—on properties of the matrix (e.g., its eigenvalue distribution).
Therefore, the SBR toolbox does not contain a “black box” driver algorithm that
handles all cases. Rather it provides an infrastructure for experimenting with differ-
ent reduction schemes that may be tailored to particular machines and applications.

The article is organized as follows. In Section 2 we describe the functionality
and the calling sequences of the main routines. in Section 3 two of the parameters
are discussed in some detail; they allow the user to optimize the performance of
the routines. Section 4 briefly describes the installation of the SBR, toolbox and
summarizes the testing and timing drivers. In Section 5, we summarize the main
points of the article.

2. CALLING SEQUENCES

In this section we describe the functionality and the calling sequences of the user-
level doubleprecision routines.

The semibandwith of a symmetric matrix is the number of its outmost nonzero
sub(super)diagonal. NB denotes a block size proposed by the user, whereas ny is
the block size that is eventually used in the computations (n; < NB).



2.1 Reduction from Full to Banded Form

SUBROUTINE DSYRDB( UPLO, JOB, N, B, A, LDA, DRPTOL,
U, LDU, NB, TAU, WORK, LWORK, INFO )

DSYRDB uses blocked Householder transformations to reduce an N x N symmetric
full matrix A to a symmetric banded matrix with semibandwidth B > 1: A —
QTAQ = Apana-

On entry, the matrix A must be provided in the array A (leading dimension LD4)
in conventional storage with either the upper (if UPLO = *U?) or lower (if UPLO =
L) triangle explicitly stored. The other triangle of A is not accessed during the
reduction.

On exit, the main diagonal and the first B super- (if UPLO = *U?) or subdiagonals
(UPLO = °L’) of A are overwritten with the upper or lower triangle of the banded
matrix Apand, again in conventional storage. The Householder vectors that were
used in the reduction are returned in the zeroed-out portion of A and an additional
vector TAU.

Optionally, if JOB = *U?’, all the transformations can also be applied to another
matrix U (stored in an array U with leading dimension LDU), that is, U — UQ. If
JOB = ’N’, the array U is not referenced.

Note. The use of JOB = U’ for accumulating the transformations is recom-
mended only if U is not the idenity matrix when entering DSYRDB. To generate
U “from scratch”, DSYGTR should be called after the reduction, because the back-
ward accumulation used in that routine takes significantly fewer flops and does not
require storage for a second full matrix.

The parameter NB < B may be used to control the level of blocking, that is,
the number of Householder transformations that are aggregated into a blocked
Householder transformation; see Section 3.

We can thus summarize the meaning of the parameters as follows:

UPLO (input) CHARACTER
Reference the upper (UPLO = °U’) or lower triangle (UPLO = °L’) of A?

JOB (input) CHARACTER
Update the matrix U (JOB = *U”’) or not (JOB = *N?)?
i} (input) INTEGER
Order of the matrix A.
B (input) INTEGER
Semibandwidth of the reduced matrix. B > 1.
A (input/output) DOUBLE PRECISION array, size (LDA, W)

On entry, the matrix A in conventional storage with either the upper
or lower triangle explicitly stored. On exit, the upper or lower trian-
gle of A is overwritten with the reduced matrix (main diagonal and B
super- or subdiagonals) and the Householder vectors that were used in
the reduction.



LDA (input) INTEGER
Leading dimension of the array A.

DRPTOL  (input) DOUBLE PRECISION

For the use of this parameter, see Section 3.3.

U (input/output) DOUBLE PRECISION array, size (LDU, N)

Matrix for accumulating the transformations. Not accessed if JOB = *N’.
LDU (input) INTEGER

Leading dimension of the array U.
B (input) INTEGER

Suggested order for the blocked Householder transformations. For the
use of this parameter, see Section 3.1.

TAU (output) DOUBLE PRECISION array, size (1)
The “scaling factors” of the Householder transformations.

WORK (workspace) DOUBLE PRECISION array, size (LWORK)

LWORK  (input) INTEGER
Length of the workspace array. The minimum value is LWORK = 3N — 2B,
but the minimum workspace prevents the use of blocked transformations
and therefore degrades performance. For using ng-blocked Householder
transformations, we need LWORK > n(3N — 2B). As a rule, LWORK > 50N
should be fine.

INFO (output) INTEGER
On exit, a negative value INFO = —¢ indicates that the routine stopped
processing because of an error in the ith parameter, whereas a positive
value INFO = n; indicates successful reduction with block transformations
of order ny.

2.2 Generating the Transformation Matrix

SUBROUTINE DSYGTR( UPLO, N, B, A, LDA, TAU,
WORK, LWORK, INFO )

DSYGTR overwrites A with the orthogonal matrix ¢ that reduces A to banded
form, i.e., A — @, where QTAQ = Apand.

The parameters UPLO, N, B, A, LDA, and TAU must be the same as in the preceding
DSYRDB call.

Notes. (1) The banded matrix must be copied into another array with DSY2SB
before calling DSYGTR. (2) Since the orthogonal matrix @ is not symmetric, both
triangles of A are needed to store it. (3) DSYGTR does not have a parameter NB for
controlling the block size. This routine calls a suitable LAPACK routine, which
automatically sets the block size.

The meaning of the parameters is as follows:



A (input/output) DOUBLE PRECISION array, size (LDA, W)
On entry, A contains the Householder vectors that were used in the re-
duction, as returned by DSYRDB. On exit, A i1s overwritten with ).

WORK (workspace) DOUBLE PRECISION array, size (LWORK)

LWORK  (input) INTEGER
Length of the workspace array. The minimum value is LWORK = N — B,
but workspace this small prevents the use of blocked transformations
and therefore degrades performance. For using ng-blocked Householder
transformations, we need LWORK > n;(N — B). As a rule, LWORK > 20N
should be fine.

INFO (output) INTEGER
On exit, a negative value INFO = —¢ indicates that the routine stopped
processing because of an error in the ¢th parameter, whereas INFO = 1
indicates successful completion.

2.3 Reduction from Banded to Narrower Banded Form

SUBROUTINE DSBRDB( JOB, N, Bi, B2, A, LDA, DRPTOL,
U, LDU, NB, WORK, LWORK, INFO )

DSBRDB uses blocked Householder transformations to reduce a banded symmetric
matrix A; with semibandwidth B1 to narrower banded form: A; — Q74:Q = A,
where As has semibandwidth B2 < B1.

On entry, the array A (leading dimension LDA > 1+ (B1 — B2) 4+ B1) must contain
the matrix A; in the LAPACK lower symmetric banded storage scheme [Anderson
et al. 1995, p. 109]. That is, the columns (diagonals) of A;’s lower triangle are
stored in the first columns (rows) of &. On exit, & contains the matrix As in lower
banded storage.

Optionally (JOB = *U?), all the transformations can also be applied to another
matrix U (stored in an array U with leading dimension LDU), that is, U — UQ. If
JOB = ’N’, the array U is not referenced.

The parameter NB < B2 may be used to control the level of blocking, that is,
the number of Householder transformations that are aggregated into a blocked
Householder transformation; see Section 3.1.

Notes. (1) Calls to DSY2SB or DSB2SB may precede this routine in order to repack
the matrix from (upper or lower) conventional or upper banded storage to the lower
banded storage scheme. (2) DSBRDB should not be used for tridiagonalizing banded
matrices, since DSBRDT provides optimized code for this task.

The meaning of the parameters is as follows:

JOB (input) CHARACTER
Update the matrix U (JOB = *U”’) or not (JOB = *N?)?
i} (input) INTEGER

Order of the banded matrix A;.



B1

B2

LDA

DRPTOL

LDU

NB

WORK
LWORK

INFO

(input) INTEGER
Semibandwidth of the matrix A; before the reduction.

(input) INTEGER
Semibandwidth of the reduced matrix As.

(input/output) DOUBLE PRECISION array, size (LDA, W)
On entry, the main diagonal and the B1 nonzero subdiagonals of the
matrix A; are stored in the first B14 1 rows of & (LAPACK lower banded
storage). On exit, the first B2 + 1 rows of A contain the main diagonal
and the B2 nonzero subdiagonals of the reduced matrix As.

(input) INTEGER

Leading dimension of the array A. LDA > 1 4+ (B1 — B2) + B1; LDA this
small requires additional data movement when np-blocked Householder
transformations are used in the reduction. To avoid this overhead, provide
LDA > NB + (B1 — B2) + B1.

(input) DOUBLE PRECISION

For the use of this parameter, see Section 3.3.

(input/output) DOUBLE PRECISION array, size (LDU, N)
Matrix for accumulating the transformations. Not accessed if JOB = *N’.

(input) INTEGER

Leading dimension of the array U.

(input) INTEGER
Suggested order for the blocked Householder transformations. For the
use of this parameter, see Section 3.1.

(workspace) DOUBLE PRECISION array, size (LWORK)

(input) INTEGER

Length of the workspace array. The minimum value is LWORK > N+2(B1—
B2)+3 if U is required, and LWORK > 3(B1 —B2)+4 otherwise. Workspace
this small prevents the use of blocked transformations and therefore de-
grades performance. For using nj-blocked Householder transformations,
we need LWORK > 2.5n7 + (N + 2(B1 — B2) + 0.5)n; if U is required and
LWORK > 3.5n7 + (3(B1 — B2) + 0.5)n; otherwise. As a rule, LWORK > 10N
should be fine.

(output) INTEGER

On exit, a negative value INFO = —¢ indicates that the routine stopped
processing because of an error in the ith parameter, whereas a positive
value INFO = n; indicates successful reduction with blocked transforma-
tions of order ny.

2.4 Reduction from Banded to Tridiagonal Form

[ SUBROUTINE DSBRDT( JOB, N, B, A, LDA, DRPTOL,

D, E, U, LDU, NB, WORK, LWORK, INFO ) ]




DSBRDT uses Householder transformations to reduce a banded symmetric matrix
A with semibandwidth B to tridiagonal form: 4 — QTAQ =T.

On entry, the array 4 (leading dimension LDA > 2B) must contain the matrix A
in the LAPACK lower banded storage scheme, that is, the columns (diagonals) of
A’s lower triangle are stored in the first columns (rows) of A. On exit, D and FE
contain the main diagonal and the subdiagonal of T', respectively.

Optionally (JOB = *U?), all the transformations can also be applied to another
matrix U (stored in an array U with leading dimension LDU), that is, U — UQ. If
JOB = ’N’, the array U is not referenced. U is updated with blocked Householder
transformations. The parameter NB may be used to control the level of blocking,
that is, the number of Householder transformations that are aggregated into a
blocked Householder transformation; see Section 3.1.

Note. For very small bandwidths, and if U is not required, the LAPACK routine
DSBTRD should be used since it performs better in these cases.

The meaning of the parameters is as follows:

JOB (input) CHARACTER
Update the matrix U (JOB = *U”’) or not (JOB = *N?)?
i} (input) INTEGER
Order of the banded matrix A;.
B (input) INTEGER
Semibandwidth of the matrix A before the reduction.
A (input/output) DOUBLE PRECISION array, size (LDA, W)

On entry, the main diagonal and the B nonzero subdiagonals of the matrix
A are stored in the first B4+ 1 rows of A (LAPACK lower banded storage).
On exit, A is destroyed.

LDA (input) INTEGER
Leading dimension of the array A. LDA > 2B.

DRPTOL  (input) DOUBLE PRECISION

For the use of this parameter, see Section 3.3.

D (output) DOUBLE PRECISION array, size (1)
Main diagonal of the tridiagonal matrix 7'
E (output) DOUBLE PRECISION array, size (N—1)
Subdiagonal of the tridiagonal matrix 7.
U (input/output) DOUBLE PRECISION array, size (LDU, N)
Matrix for accumulating the transformations. Not accessed if JOB = *N’.
LDU (input) INTEGER
Leading dimension of the array U.
B (input) INTEGER

Suggested order for the blocked Householder transformations in the up-
date of U. For the use of this parameter, see Section 3.1.



WORK (workspace) DOUBLE PRECISION array, size (LWORK)

LWORK  (input) INTEGER
Length of the workspace array. LWORK > 2B, if U is not required. If U
is required, the minimum value is LWORK = B + N, but workspace this
small prevents the use of blocked transformations in the update of U
and therefore degrades performance. For using ng-blocked Householder
transformations, we need LWORK > 2n;(N+B+n; —1). As a rule, LWORK >
15N should be fine.

INFO (output) INTEGER
On exit, a negative value INFO = —¢ indicates that the routine stopped
processing because of an error in the ith parameter, whereas a positive
value INFO = n; indicates successful reduction and update with blocked
trasnformations of order n;.

2.5 Repacking from Conventional to Banded Storage

SUBROUTINE DSY2SB( UPLO, N, B, AFULL, LDFULL,
ABAND, LDBAND, INFO )

DSY2SB copies a symmetric banded matrix from conventional storage (with either
the upper or lower triangle explicitly stored) to LAPACK lower banded storage.

Note. The matrix may be repacked in place by setting ABAND equal to AFULL.

The meaning of the parameters is as follows:

UPLO (input) CHARACTER
A is provided in upper (UPLO = *U’) or lower (UPLO = *L?) full storage.

i} (input) INTEGER
Order of the matrix A.
B (input) INTEGER

Semibandwidth of the matrix A.

AFULL  (input) DOUBLE PRECISION array, size (LDFULL, N)
The main diagonal and the next B super(sub)diagonals contain the
banded matrix A in full storage.

LDFULL (input) INTEGER
Leading dimension of the array AFULL.

ABAND  (output) DOUBLE PRECISION array, size (LDBAND, W)
The first B + 1 rows of the array contain the matrix A in lower banded
storage.

LDBAND (input) INTEGER
Leading dimension of the array ABAND.
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INFO (output) INTEGER
On exit, a negative value INFO = —¢ indicates that the routine stopped
processing because of an error in the ¢th parameter, whereas INFO = 1
indicates successful completion.

2.6 Repacking from Banded to Banded Storage

SUBROUTINE DSB2SB( UPLO, N, B, ASRC, LDSRC,
ADST, LDDST, INFO )

DSB2SB copies a symmetric banded matrix from LAPACK (upper or lower)
banded storage to lower banded storage.

Note. The matrix may be repacked in place by setting ADST equal to ASRC.

The meaning of the parameters is as follows:

UPLO (input) CHARACTER
A is provided in upper (UPLO = °U’) or lower (UPLO = ’L’) banded

storage.
i} (input) INTEGER
Order of the matrix A.
B (input) INTEGER

Semibandwidth of the matrix A.

ASRC (input) DOUBLE PRECISION array, size (LDSRC, W)
The matrix A in (upper or lower) banded storage.

LDSRC  (input) INTEGER
Leading dimension of the array ASRC.

ADST (output) DOUBLE PRECISION array, size (LDDST, N)
The matrix A in lower banded storage.

LDDST  (input) INTEGER
Leading dimension of the array ADST.

INFO (output) INTEGER
On exit, a negative value INFO = —¢ indicates that the routine stopped
processing because of an error in the ¢th parameter, whereas INFO = 1
indicates successful completion.

3. OPTIMIZING THE PERFORMANCE

In this section we discuss several ways to improve the performance of the reduction
algorithms:

—selecting a suitable blocking level for the blocked Householder transformations
to increase the performance of the Level 3 BLAS kernels,

—repacking the band to improve the data locality, and
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—skipping some Householder transformations to reduce the flops count when pos-
sible and allowed.

These techniques minimize the execution time of each single reduction step. A
suitably chosen reduction sequence can further improve the performance of the
overall reduction process; see [Bischof et al. 1996].

3.1 Blocked Householder Transformations

The computational routines are designed to use blocked Householder transforma-
tions in the reduction of A (DSYRDB and DSBRDB) and in the update of the matrix U
(DSYRDB, DSBRDB, and DSBRDT). Since n; (the number of Householder transforma-
tions that are aggregated into a blocked transform) can have significant impact on
the performance, the parameter NB allows the user to control the level of blocking.

Note that the routines automatically reduce the block size n; if the workspace 1s
not sufficient (see the parameters LWORK in Section 2). On exit, INFO returns the
value n; that was used in the reduction and/or update.

3.1.1 Using the Default Values. If it is not important to squeeze the highest per-
formance out of the routines, or if the SBR toolbox was optimized upon installation,
use NB = 0.

Then the auxiliary routine NBDFLT is called to obtain a default block size ny. In
a standard installation of the toolbox the default values are

16, for DSYRDB

6, for DSBRDB

6, for DSBRDT, if B > 6
1, for DSBRDT, if B < 6

Ny =

These values may be changed when installing the toolbox; see Section 4.2.

3.1.2 Providing a Block Size in the Procedure Call. In some cases, the default
ny values may not be appropriate. Since blocking significantly increases the flops
count when the bandwidth is very small, nonblocked transformations may be faster
in this case. On the other hand, for larger bandwidths it may be better to increase
the block size, since the Level 3 BLAS usually deliver better performance. Figure 2
illustrates these issues.

The user may provide a “preferred” block size by calling the routine with NB > 0.
In general, the routine will then use NB-blocked Householder transformations in the
reduction of A and/or the update of U. It may, however, be forced to reduce the
block size to a value n; < NB for two reasons:

—Algorithmic restrictions: ny < B in DSYRDB and n; < B2 in DSBRDB (see the right
picture of Figure 2; in the reduction from bandwidth b; = 16 to bs = 8 = d, all
NB > 8 were reduced to ny = 8). The tridiagonalization routine DSBRDT cannot
block the transformations in the reduction, but there is no restriction on n; in
the update of U.

—Workspace restrictions: LWORK is too small to allow NB-blocked Householder trans-
formations; see the discussion of LWORK in Section 2.

The routine will never increase the block size except when NB = 0. In particular,
NB = 1 will force nonblocked Householder transformations. The block size n; used
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Figure 2. Speedup of tridiagonalization (left picture, including the update of U) and bandwidth
reduction from by = 2d to by = d (right picture, no update) with different block sizes NB as
compared with using the default block size np = 6. The timings were made on a single node of

the IBM SP.

Table I. Timings (in seconds) for the two-step tridiagonalization of banded matrices of order
n = 1200 on one node of the IBM SP.
| B=64,LDA =128 | B =128, LDA = 256

No repacking 14.76 23.67
Repacking to LDA = 64 before DSBRDT 14.31 21.32
Repacking before DSBRDB and before DSBRDT 13.57 20.03

in the reduction/update is returned in the status indicator INFO.

3.2 Repacking the Band

The data locality in the bandwidth reduction algorithms can be improved by pro-
viding the band as tightly packed as possible (that is; LDA = 2B for _SBRDT and LDA
= NB + (B1 — B2) + B1 for _SBRDB).

This repacking does not require much time, and it may significantly speed up
the reduction, see Table I. Here, the matrix was provided in a slightly oversized
array (LDA = 2B); the intermediate bandwidth was B2 = 32, and NB = 0 (default
blocking). Note that the timings include the repacking, but not the update of U.

3.3 Skipping Transformations

The reduction routines DSYRDB, DSBRDB, and DSBRDT have a parameter DRPTOL that
may be used to reduce the number of arithmetic operations by skipping selected
Householder transformations.

More precisely, let # = (z1, 3, ..., z;)T be some vector in the matrix A that must
be reduced to a multiple & = £ey of the first unit vector. If ||(z2,...,zx)T|]2 >
DRPTOL, we determine a Householder transformation H to zero out these ele-
ments and apply the transformation to the matrix A (and, optionally, to U). If
[[(z2,...,zx)T]|2 < DRPTOL, we simply set & = (21,0,...,0)7, without computing
and applying any Householder transformation.

The amount of savings from skipping transformations depends very much on
the distribution of A’s spectrum. When the eigenvalues of A are contained in a
few rather narrow clusters considerable speedup can be obtained [Bischof and Sun
1995]. Such matrices arise, e.g., in the invariant subspace decomposition approach
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Table II. Timings (in seconds) for tridiagonalizing ISDA-type matrices with w = 1000 - ¢ (¢ =
1.11 10718 is the machine precision) on one node of the IBM SP.

n = 400 n = 1200
b=8 b=264 b=8 b=264

LAPACK routine DSBTRD

without update 0.36 4.58 5.30 35.81

with update 5.46 9.50 | 134.52 183.21
DSBRDT with DRPTOL = O

without update 0.93 1.45 8.54 15.45

with update 5.34 3.93 | 137.81 84.95
DSBRDT with DRPTOL = ﬁ -€

without update 0.90 0.98 8.37 10.36

with update 5.22 2.83 | 134.95 58.41
DSBRDT with DRPTOL = n - ¢

without update 0.77 0.55 7.12 8.17

with update 4.48 1.75 | 116.14 46.81

Table TT11.  Residual |[UTAU — T|| and orthogonality ||[UTU — I|| (in multiples of the machine
precision ¢ & 1.11 - 10_16) for tridiagonalizing an ISDA-type matrix with n = 400, b = 8, and
w = 1000 - £ on one node of the IBM SP.

| NUTAU = T/ | WU ~ 1]/

LAPACK routine DSBTRD 344 291
DSBRDT with DRPTOL = O 345 349
DSBRDT with DRPTOL = ﬁ ce 381 413
DSBRDT with DRPTOL = n - & 4590 424

(ISDA) for eigensystem computations [Lederman et al. 1991]. In this method, the
spectrum of a matrix is condensed into two narrow clusters by repeatedly applying
a function f to the matrix.

Table II shows the timings for tridiagonalizing ISDA-type matrices; half of the
eigenvalues are randomly chosen from [0,w]; the other eigenvalues are in [1 —w, 1],
where w i1s the width of the clusters.

As may be observed from Table III, a large skipping threshold can significantly
increase the reduction residual ||[UTAU —T1|, whereas the orthogonality ||[UTU — I||
of the transformation matrix is not affected. We propose to choose DRPTOL smaller
than p, where p is the uncertainty already contained in the original matrix or the
perturbation introduced in the “standard” reduction (without skipping).

For matrices with a more uniform eigenvalue distribution, the potential for skip-
ping transformations is very limited. Therefore, if no a priori information of the
spectrum is available or if this feature should not be used, set DRPTOL = 0.

4. INSTALLATION

The SBR toolbox comes with a UNIX makefile for easy installation and a set of
testing and timing drivers for validation and performance tuning.

In this section we briefly describe the “standard” installation procedure. More
information (e.g., how to run only a subset of the testing and timing drivers) may
be found in the README file distributed with the software.

4.1 Installing the SBR Toolbox

The installation consists of the following steps.
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(1) Get the SBR toolbox from the software directory at http://www.mcs.anl.gov,
and unpack it with

zcat sbr.tar.Z | tar xf -
This command puts all the SBR, software into a new directory sbr.

(2) Edit the first few lines of the makefile to match your system setup (e.g., the
location of the LAPACK library, if the latter is installed on your machine).

(3) Type
make library

This command will build the library (called 1ibSBR.a if you did not change
the name).

4.2 Performance Tuning

The performance of the computational routines can be optimized at installation
time by modifying the file nbdf1lt.f, which sets the default block sizes (see Sec-
tion 3.1.1).

For the reduction of banded matrices, the optimum block size is determined
mainly by the number d of diagonals to be removed, by the precision (the BLAS
may feature different optimizations for single or double precision), and by the value
of JOB (is U updated or not?). To a lesser extent, the matrix size may also influence
the optimum block size. The “template” NBDFLT routine included in the SBR
toolbox does not make use of these parameters. This routine may be tailored to a
particular machine in the following way.

The command

make tuning

produces timings for a fairly comprehensive set of combinations of the above pa-
rameters. By analyzing the output file corresponding to each reduction routine,
a simple function f(n,d, precision, JOB) is derived that gives an (almost) optimum
block size, and nbdflt. £ is changed accordingly. Some advice on how to construct
f 1s given in the README file.

4.3 Running the Testing Drivers

The testing drivers provide the residuals ||[UTAU — A||, the orthogonality errors
||UTU — I||, and the timings for the reduction of a symmetric (full or banded)
matrix A to a (narrower) banded or tridiagonal matrix A for matrices of order
n < 600 and different semibandwidths. The command

make checks

will run the testing drivers for the following (successive) reduction algorithms (the
two-step and multistep reductions are discussed by Bischof et al. Bischof, Lang,

and Sun [1996]):

—one-step tridiagonalization of symmetric full matrices: _SYTRD and _ORGTR;
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—two-step tridiagonalization of symmetric full matrices: _SYRDB (with JOB = *U’
to accumulate the transformations), SY2SB, and _SBRDT;

—two-step tridiagonalization of symmetric full matrices: _SYRDB (with JOB = *N?),
_SYGTR (to accumulate the transformations), SY2SB, and _SBRDT;

—one-step tridiagonalization of symmetric banded matrices: _SBTRD;
—one-step tridiagonalization of symmetric banded matrices: _SBRDT;
—two-step tridiagonalization of symmetric banded matrices: _SBRDB and _SBRDT;

—multistep tridiagonalization of symmetric banded matrices with the doubling-
stride sequence: multiple calls to _SBRDB and one call to _SBRDT.

This command produces 14 output files. For example, DSbrdbSbrdt . chk contains
the data for the two-step tridiagonalization of symmetric banded matrices in double
precision. Note that the residuals and the orthogonality errors are not available if
the matrix U is not accumulated.

4.4 Running the Timing Drivers

The timing drivers run the reduction algorithms listed in Section 4.3 on larger
matrices (n < 1200) and hence take significantly longer to complete. Therefore,

make timings

should be used only if the timings provided by the testing drivers are not suffi-
cient. For memory reasons the timing drivers do not compute the residuals and the
orthogonality errors.

5. CONCLUSIONS

We presented a software toolbox for symmetric band reduction. The toolbox con-
tains routines for the reduction of full symmetric matrices to banded form and the
reduction of banded matrices to narrower banded or tridiagonal form, with optional
accumulation of the orthogonal transformations, as well as repacking routines for
storage rearrangement. The software is available from http://www.mcs.anl.gov
and 1s intended to enable computational practitioners to experiment with the SBR
approach.
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