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tions of the time-independent and time-dependent Ginzburg-Landau equations that de-
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1 Introduction

The physical state of a superconductor at equilibrium corresponds to a critical point of the
free-energy functional. In the framework of the Ginzburg-Landau (GL) theory, the state
is represented by a solution of the time-independent GL equations of superconductivity.
By applying a time-dependent gauge transformation, one can “lift” this representation to a
solution of the time-dependent GL (TDGL) equations (which constitute a nontrivial general-
ization of the time-independent GL equations). The state described by this solution, though
explicitly dependent on time, is physically indistinguishable from the equilibrium state. In
this article, we address the converse problem. Our objective is to compare the solutions
of the time-independent GL equations with those solutions of the TDGL equations that
represent the same stationary physical state. The comparison establishes an equivalence
relation between solutions of the time-independent and time-dependent GL equations. In
particular, a solution of the TDGL equations in the “¢ = —w(V - A)” gauge, which is gauge
equivalent with a stationary physical state, tends to a solution of the time-independent GL
equation in the London “V - A = 07 gauge as time goes to infinity, for all w > 0. The



“p = —w(V - A)” gauge generalizes the classical “¢ = —V - A” gauge and reduces to the
zero-electric potential gauge (¢ = 0) in the limit w = 0.

In Section 2, we briefly summarize the Ginzburg-Landau model of superconductivity
and the gauge invariance properties of the time-independent and time-dependent GI. equa-
tions. In Section 3, we define the functional framework for the GL equations. In Section 4,
we establish the equivalence relation. In Section 5, we analyze the large-time asymptotic
limit of a solution of the TDGL equations in the “¢ = —w(V - A)” gauge.

2 Ginzburg-Landau Model of Superconductivity

In the Ginzburg-Landau theory of phase transitions [1], the state of a superconductor is de-
scribed by a complex-valued order parameter i and a real vector-valued vector potential A.
The order parameter can be thought of as the wave function for the center-of-mass motion
of the “superelectrons” (Cooper pairs), whose density is n; = [¢|2. The vector potential

determines the magnetization, which is the difference between the induced magnetic field
B =V x A and the applied magnetic field H.

An equilibrium state corresponds to a critical point of the Helmholtz free-energy func-
tional. In the Ginzburg-Landau theory, this functional is given by the expression
2
do(z).

Eofu A= [ U(év +a)
(2.1)

Here, ) is the region occupied by the superconductor; we assume that £ is a bounded
domain in R (n = 2 or n = 3), with boundary 0. The vector potential A and the
applied magnetic field H take their values in R™. The (dimensionless) Ginzburg-Landau
parameter x is the ratio of the characteristic length scales for the vector potential and the
order parameter. The function v is defined on 99, and y(z) > 0 for z € Q. As usual,
V = grad, Vx = curl, V- = div, and V? = V-V = A; i is the imaginary unit, and a
superscript * denotes complex conjugation.
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A critical point of Ey = Fp[t), A] is a solution of the boundary-value problem
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—<£V+A) ¢+(1—|¢|2)¢:0 in Q, (2.2)
—VXVxA+J;,+VXH=0 inQ, (2.3)
n-(éV—l—A)lﬁ—l—’y%@b:O and nx(VxA—-H)=0 ondQ. (2.4)

Here, n is the local outer unit normal to 9€2. The vector J, is the supercurrent density,



which is a nonlinear function of ¥ and A,
T =0 A) = 5 (V0= V) - [PA = —Re [0 (S a) 0] 29)

We refer to the system of Eqs. (2.2)~(2.4) as the time-independent Ginzburg-Landau (GL)
equations. The trivial solution, v = 0 and B = H , represents the normal state, where all
superconducting properties have been lost. The GL equations embody, in a most simple
way, the macroscopic quantum-mechanical nature of the superconducting state; see [2, 3, 4].

The time-independent GL equations are invariant under a gauge transformation,
Gy (1, A) — (qpew, A+ VX) . (2.6)

The gauge x can be any (sufficiently smooth) real scalar-valued function of position. So-
lutions that are related through a gauge transformation are physically indistinguishable,
because they result in identical observable quantities (the current J = J,+V x H and the
induced magnetic field B = V x A). Mathematically, gauge invariance reflects a nonunique-
ness of the solution of the GL equations. Uniqueness is achieved by choosing a gauge and
thus constraining the solution to a specified manifold in the solution space. A common
choice is the London gauge [4, Chapter 4], where Y is a solution of Poisson’s equation,
Axy = =V - A in Q, satisfying the Neumann condition n - Vy = —n - A on 0. In this
gauge, the vector potential is divergence free in € and tangential at the boundary 0. In
general, one chooses a gauge to suit the problem under investigation; see [5] for an example
in a two-dimensional domain with periodic boundary conditions.

A generalization of the time-independent GL equations to the time-dependent case was
first proposed by ScHMID [6]. The generalization was subsequently analyzed by Gor’Kov
and ELIASHBERG [7] in the context of the microscopic Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity and validated in a narrow range of temperatures near the critical
temperature. Because of gauge invariance, the generalization is nontrivial.

In addition to the order parameter and the vector potential, a third variable is needed to
complete the description of the physical state of the system in a manner consistent with the
gauge invariance. This is the electric potential, ¢, a real scalar-valued function of position
and time. It is a diagnostic variable, as opposed to the prognostic variables ¢» and A. The
evolution of ¢ and A is described by the equations

a . ' 2 .

n(a—l—mqb) P =— (éV—I—A) W+ (1— |¢|2)¢ in © x (0,00), (2.7)
0A .
E—I—V(/ﬁ:—VXVXA—I—JS—I—VXH in © x (0,00), (2.8)

n-(éV—l—A)lﬁ—l—é’ylﬁ:O and nx(VxA-H)=0 onodQx(0,00). (2.9)



We refer to the system of Eqs. (2.7)—(2.9) as the time-dependent Ginzburg-Landau (TDGL)
equations.

The TDGL equations also have an invariance property, but the situation is more com-
plicated because of the presence of the electric potential. The TDGL equations are invariant
under a gauge transformation

Gy (1, A, ) — (Y™, A+ Vy,6 - dhy) , (2.10)

where the gauge x can be any (sufficiently smooth) real scalar-valued function of position
and time. One readily verifies that two states that, at any time ¢, are related by a gauge
transformation of the type (2.10) give identical values for the physically observable quantities
(the current J = J, 4V x H, the induced magnetic field B = V x A, and the electric field
E = -0;A —V¢). A gauge choice is necessary to eliminate the lack of uniqueness.

Various gauges have been proposed for the TDGL equations. In the zero-electric po-
tential gauge, one chooses x so the electric potential vanishes identically in Q at all times.
On the other hand, in the London gauge one chooses y so the vector potential is divergence
free in © and tangential at € at all times. It is not possible to satisfy both the zero-electric
potential gauge and the London gauge in €} simultaneously at all times, but one can choose
X80 ¢ =—=V-Ain  at all times. Again, the particular choice is made to suit the problem
under investigation. For example, DU [8] chose the zero-electric potential, while CHEN,
HorrMaNN, and L1aNG [9] used the “¢ = —V - A” gauge to prove existence and uniqueness
for the TDGL equations. LiaNG and Tanc [10] and Tang and Wana [11], who studied
the dynamics of the TDGL equations, both chose the London gauge, but neither addressed
the large-time asymptotic behavior. Consequently, there is no indication how solutions of
the TDGL equations relate to solutions of the time-independent GL equations. In fact, we
doubt that this problem can be studied in the London gauge. As TAKAC [12] first showed,
a gauge like the “¢ = —V .- A” gauge is more appropriate for the study of the dynamics and
the large-time asymptotics of the TDGL equations.

In [13], we introduced the “¢ = —w(V - A)” gauge, which is defined by the solution
X = Xw(@,t) of the boundary-value problem

(0 —wA)x=¢+w(V-A) in Qx(0,00), (2.11)
wn-Vyx)=—-w(n-A) on dQx(0,00). (2.12)
Here, w is a real nonnegative parameter. This gauge generalizes the “¢ = —V-A” gauge and

reduces to the zero-electric potential gauge in the limit w = 0. It results in the constraints
p=—-w(V-A) inQ2x(0,00), wn-A)=0 ondQx(0,00). (2.13)

The zero-electric potential gauge presents a somewhat exceptional case. In this gauge, one
obtains the TDGL equations from the time-independent GL equations by simply adding



the time derivatives of the order parameter and vector potential to the respective dif-
ferential equations. In this sense, the TDGL equations represent a trivial lifting of the
time-independent GL equations into the time-dependent domain. However, the analysis of
the TDGL equations in the zero-electric potential gauge is complicated by the fact that
the expression —V X VX does not define a uniformly elliptic operator. Consequently, the
solution lacks regularity, and the standard techniques to prove existence and uniqueness do
not apply. For these reasons we exclude this case from further consideration and consider
only the case w > 0.

The TDGL equations in the “¢ = —w(V - A)” gauge define a dynamical process in the
general case where the applied magnetic field H varies with time; if H is time independent,
the dynamical process becomes a dynamical system. In the following analysis, we restrict
ourselves to the latter case, so the TDGL equations define a dynamical system and every
solution is attracted to a set of stationary solutions, which are divergence free [14].

3 Functional Formulation

In this section, we establish a functional framework for the time-independent and time-
dependent Ginzburg-Landau equations.

We briefly explain our notation. All Banach spaces are taken to be real. Complex-
valued functions are interpreted as vector-valued functions with two real components. The
Banach spaces in this investigation are the standard ones (Lebesgue, Sobolev, etc.); defini-
tions are given in [14]. Functions of space and time are considered as mappings from the
time domain [0, o) into a Banach space of functions on the spatial domain .

The framework for the time-independent GL equations is a function space X" of ordered
pairs (10, A), where the first element is a complex-valued (that is, a two-dimensional real
vector-valued) function and the second an n-dimensional real vector-valued function (with
n = 2orn = 3), both defined on Q. The regularity requirements for ¢» and A are the same,
so X is of the form X' = X? x X", where X is a space of real scalar-valued functions. A
suitable framework for the functional analysis of the time-independent GL equations is

Wl-l—oz,Z = [Wl—l—a,Z(Q)]Z % [Vvl-l—oz,Z(Q)]n7

with % < a < 1. This space is continuously imbedded in W»?N L. A weak solution of the
time-independent GL equations is a function (¢, A) € W1+2:2 that satisfies Eqs. (2.2)—(2.4)
in the sense of distributions.

The TDGL equations give rise to an abstract initial-value problem for the function

(v, A, 0): [0,00) — W2 x L?



in Wh2x L2, A weak solution of the TDGL equations on the interval (0,7), for some T > 0,
is a function (15, A, 6) € C(0, T3 W2 L2), with values (1, 4, 6)() = (1(1), (1), 6(1)) &
WiteZ s [2 which satisfies Eqs. (2.7)—(2.9) in the sense of distributions for each ¢ € (0,7).

The functional analog of the gauge transformation (2.6) is a continuous affine trans-
formation G of W!? into itself, which is defined in terms of a gauge x € W?22(Q2),

(G, A) (2) = (D(2)e™ D, A(x) + Vx(2)), 7€Q (v, A) e W (3.1)

It has the property G, G_, = G_,G, = I, where I is the identity mapping in W12 Two
states (1, A) € WH2 and (¢, A’) € WL? are gauge equivalent (and physically indistin-
guishable) if there exists a gauge x such that (¢, A') = G\ (¢, A) in W2,

The generalization to a time-dependent gauge is obtained by considering y as a mapping
from the time domain into an appropriate space of functions on Q. Specifically, we take
X € L3 ([0,00); W22(Q)) N WE2([0,00); LA(€)). Thus, the gauge transformation (2.10)
becomes a mapping (&, from [0, 0o) into the space of continuous affine mappings of W2 x .2
into itself,

(G, A.0)) (1) = Gy (¥, A 9)(1), 120, (¥, A, 9) € WH x L, (3.2)
where x(t) = x(-,1) and

(G, A, 0)(D) (2) = (b(z, e, Az, 1) + Vx(2,1), 6(2,1) = dx(w,1)), w € Q.

Obviously, G\ (1yG_y (1) = G_y)Gy) = I, for each {. Note that gauge equivalence is a
property shared by two states at a fized instance. If the gauge equivalence holds at all
times ¢ > 0 (with respect to the same gauge x), we may write (¢, A’, ¢') = G (¢, A, ¢).

Unless indicated otherwise, we assume that the data satisfy the following conditions:
Q C R" (n =2orn = 3)is bounded, with 9Q of class C''! (that is, 9 is a compact (n—1)-
manifold described by Lipschitz-continuously differentiable charts); v : 9 — R is Lipschitz
continuous, with y(z) > 0 for all z € 9Q; w is a constant, w > 0; and H € [L%(Q)]".

4 Equivalence Relation

To motivate the discussion, assume that (g, Ag) € W% is a weak solution of the time-
independent GL equations (2.2)-(2.4). We extend (¢, Ag) trivially to (¢, Ag,0) € W% x
L? and define the function (¢, A, @) : [0,00) — W12 x L? by the expression

(0, A, 6)(1) = Gy ()(to, Ao, 0) = (0e™ W), Ag + Vx(1), ~0x(1)), t20.  (4.1)

Here, x € L2 ([0, 00); W22(Q)) 0 W,-2([0,00); LX) is any time-dependent gauge. Then

loc

it is trivial to verify that (¢, A, ¢) is a weak solution of the TDGL equations (2.7)-(2.9).



This solution is gauge equivalent with and therefore physically indistinguishable from the
stationary solution (v, Ag,0) € WhH2 x L2

The following theorem shows that we are, in fact, dealing with an “if and only if”
situation.

Theorem 1 A stationary state (1o, Ag, do) € WH2 x L? with 19 # 0 is a weak solution
of the TDGL equations (2.7)-(2.9) if and only if ¢o = 0 a.e. in Q and (o, Ag) is a weak
solution of the time-independent GL equations (2.2)-(2.4).

Proof. It suffices to prove the “only if” part. The fact that (19, Ao, ¢o) is a solution of the
TDGL equations implies that the functions g, Ag, and ¢g must be such that the equations

- 2
. ? .
inkPotho = — (EV + Ao) Yo + (1 - |¢0|2) Yo in £, (4.2)
Voo=—-VXVXxAy+J,0+VXH inQ, (4.3)
n- <£V+Ao) ¢0+£7¢0:0 and nx(VxAg—H)=0 on 09, (4.4)

are satisfied. Here, J, is a nonlinear function of 19 and Ao,

T = Tooltns Ao) = 3o (65¥ b0 = tu¥65) = [l Ao = —Re [45 (£ + Ao o]
(4.5)

cf. Eq. (2.5). From these equations we obtain a differential equation for ¢q in the following
way. First we take the divergence of Eq. (4.3) and obtain the equation A¢g = V - J; ¢ in
Q. An expression for V - J; follows readily from Eq. (4.5),

i 2
AV J570 = —k Im [¢S (EV + Ao) ¢0] . (46)

We use Eq. (4.2) to evaluate this expression and find V - J o = nr?[1bg|*¢g. Thus,
Aqbo = 77/432|¢0|2¢0 in Q. (47)

We obtain a boundary condition for ¢ at any point 2 € 0, where the local unit normal
vector is n(z), by considering the component of Eq. (4.3) in the direction of n(z) at an
interior point y € © and letting y approach z. Because 02 is locally the level surface (or
curve) of a C'll-function @ : R® — R, the unit normal vector is n = |V®|~1V®, where V&
is nonvanishing and Lipschitz continuous near every point of Q2. Hence, n-(V x n) =0
on d€. But V x Ag — H and n are colinear on 92, by the second boundary condition in
Eq. (4.4), so it must be the case that n-V X (Vx Ag—H) = 0on 0Q. Also, n-J,;o=0on



09, as follows immediately from the definition (4.5) of J, o and the first of the boundary
conditions (4.4). Thus,
n-Vog=0 on 0Q. (4.8)

Obviously, the Neumann problem (4.7)-(4.8) forces the energy equation

/Q|V¢0|2dx +/Q77“2|¢0|2¢3 dz = 0, (4.9)

so Vg = 0 and 1opg = 0 a.e. in Q. Thus, Eqs. (4.2)-(4.4) reduce to the time-independent
GL equations (2.2)—(2.4). Furthermore, because the state (1o, Ao, ¢o) is nontrivial, it must
be the case that ¢g = 0 a.e. in Q. 1

The theorem gives a complete characterization of those stationary states in W2 x L?
that are gauge equivalent with a solution (¢, A, ¢) of the TDGL equations. They must be
of the form (1, Ag,0), where (109, Ag) is a solution of the time-independent GL equations.
The gauge equivalence is expressed by Eq. (4.1).

5 Large-Time Asymptotics

We now refine the result of the preceding section by imposing an additional constraint,
namely that the TDGL equations be considered in the “¢ = —w(V - A)” gauge. We recall
the characteristic constraints of this gauge, Eq. (2.13); if w > 0, they simplify to

p=—-w(V-A) inQ2x(0,00), m-A=0 ondQx(0,00). (5.1)
Theorem 2 Let (¢, A, ¢) : (0,00) — W2 x L? be a weak solution of the TDGL equa-
tions (2.7)-(2.9) in the “p = —w(V-A)” gauge. If (¢, A, ¢) is gauge equivalent with a non-
trivial stationary state (o, Ag, ¢o) € WH2 x L2, then ¢g = 0 a.e. in Q, lim;_, (¢, A, $) ()

exists in WH2 x L?, and

lim (1, A, §) (1) = (Ye: Asc,0)  in Wh? x 12, (5.2)
There exists a time-independent gauge xo € WH2(Q), such that

(¢oov AOO) = GXO(¢07 AO) = (QboeiHXOvAO + VXO) . (53)

Furthermore,

V- Ae=0 inQ, m-A,=0 on 0. (5.4)



Proof. It follows from Theorem 1 that ¢g = 0 a.e. in Q. Furthermore, there exists a gauge

X € LE,([0,00); WHA(Q)) N W, 2([0, 00); LX(2)) such that

(¢7 A, (b)(t) = Gx(t)(lbov Ao, 0) = (¢0eiHX(t)v Ao + VX(t)v _815X(t)) , t>0. (55)

The fact that (¢, A, ¢) satisfies the characteristic constraints (5.1) of the “¢ = —w(V - A)”
gauge implies that the gauge x in Eq. (5.5) satisfies the boundary-value problem

dix —wAY =w(V-Ag) in Qx(0,00), (5.6)
n-Vy=-n-A4p on dQ x(0,00). (5.7)
We look for a solution of the form
x(@,t) = xo(z) + 2(2,1), (5.8)
where o € W12(Q) satisfies the equations
—Axp=V-Ay inQ, n-Vys=-—-n-Ag on 0. (5.9)

We render yg unique by imposing the normalization condition

/QXO(x)dx:/Qx(x,O)dx. (5.10)

The function yo thus defined satisfies the regularity condition yo € W22(Q).
With these definitions, z must satisfy the homogeneous boundary-value problem
Oz —wAz =0 in Qx(0,00), (5.11)
n-Vz=0 on dQx(0,00), (5.12)
with initial data z(z,0) = x(2,0) — xo(z) for 2 € Q.

The boundary-value problem (5.11)—(5.12), with the initial data z(-,0) = x(-,0) — xo,
gives rise to an abstract initial-value problem in L?(Q). If Ay denotes the self-adjoint
Neumann Laplacian in L?(Q), then

2(t) = e (x(0) = x0), t2>0. (5.13)

From the spectral decomposition of Ax and the Krein-Rutman theorem we infer that
0 € C is the principal eigenvalue of Ap, which is isolated and simple with the constant
1 eigenfunction. Then it follows from the spectral mapping theorem for the exponential
function and the normalization condition (5.10) that [|z(¢)||;2@q) — 0 as ¢ — oo; hence,
|12(Ollw22(q) — 0 as t — oo, by regularity, and therefore

Jim (|02 = 0. Jim (V2O = 0. Jim [(0)(Dll iz = 0. (5.14)



It follows that
lim (v, 4,6) (1) = (QboemXO,Ao + VXO,O) in W2 x [, (5.15)

The identities (5.4) are an immediate consequence of Eqgs. (5.9). §

Theorem 2 shows that the large-time asymptotic limit (o, Aso, Po) Of (1, A, )(1) in
W2 x [? satisfies the zero-electric potential gauge (o, = 0 in ) for all values of w (w > 0).
Moreover, the element (1o, As,) € WH? is a weak solution of the time-independent GL
equations in the London gauge (V- A, =0in Q, n- A, = 0 on 0Q).

6 Summary

In this article we have given a characterization of those stationary states in W% x L? that
are gauge equivalent with a solution (¢, A, ¢) of the TDGL equations. They must be of
the form (19, Ag,0), where (19, Ag) is a solution of the time-independent GL equations.
We have also shown that a weak solution of the TDGL equations in the “¢ = —w(V - A)”
gauge (w > 0) defines a weak solution of the time-independent GL equations in the limit of
large times. The latter satisfies the London gauge.
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