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\� = �!(r �A)" gauge generalizes the classical \� = �r �A" gauge and reduces to thezero-electric potential gauge (� = 0) in the limit ! = 0.In Section 2, we briey summarize the Ginzburg-Landau model of superconductivityand the gauge invariance properties of the time-independent and time-dependent GL equa-tions. In Section 3, we de�ne the functional framework for the GL equations. In Section 4,we establish the equivalence relation. In Section 5, we analyze the large-time asymptoticlimit of a solution of the TDGL equations in the \� = �!(r �A)" gauge.2 Ginzburg-Landau Model of SuperconductivityIn the Ginzburg-Landau theory of phase transitions [1], the state of a superconductor is de-scribed by a complex-valued order parameter  and a real vector-valued vector potential A.The order parameter can be thought of as the wave function for the center-of-mass motionof the \superelectrons" (Cooper pairs), whose density is ns = j j2. The vector potentialdetermines the magnetization, which is the di�erence between the induced magnetic �eldB = r�A and the applied magnetic �eld H.An equilibrium state corresponds to a critical point of the Helmholtz free-energy func-tional. In the Ginzburg-Landau theory, this functional is given by the expressionE0[ ;A] = Z
 "����� i�r+A� ����2 + 12 �1� j j2�2 + jr �A�H j2# dx+ Z@
  ���� i� ����2 d�(x):(2:1)Here, 
 is the region occupied by the superconductor; we assume that 
 is a boundeddomain in Rn (n = 2 or n = 3), with boundary @
. The vector potential A and theapplied magnetic �eld H take their values in Rn. The (dimensionless) Ginzburg-Landauparameter � is the ratio of the characteristic length scales for the vector potential and theorder parameter. The function  is de�ned on @
, and (x) � 0 for x 2 @
. As usual,r � grad, r� � curl, r� � div, and r2 = r � r � �; i is the imaginary unit, and asuperscript � denotes complex conjugation.A critical point of E0 � E0[ ;A] is a solution of the boundary-value problem� � i�r+A�2  + �1� j j2� = 0 in 
; (2:2)�r�r�A+ Js +r�H = 0 in 
; (2:3)n � � i�r+A� +  i� = 0 and n� (r�A�H) = 0 on @
: (2:4)Here, n is the local outer unit normal to @
. The vector J s is the supercurrent density,2



which is a nonlinear function of  and A,J s � Js( ;A) = 12i� ( �r �  r �)� j j2A = �Re � �� i�r+A� � : (2:5)We refer to the system of Eqs. (2.2){(2.4) as the time-independent Ginzburg-Landau (GL)equations. The trivial solution,  = 0 and B = H, represents the normal state, where allsuperconducting properties have been lost. The GL equations embody, in a most simpleway, the macroscopic quantum-mechanical nature of the superconducting state; see [2, 3, 4].The time-independent GL equations are invariant under a gauge transformation,G� : ( ;A) 7! � ei��;A+r�� : (2:6)The gauge � can be any (su�ciently smooth) real scalar-valued function of position. So-lutions that are related through a gauge transformation are physically indistinguishable,because they result in identical observable quantities (the current J = Js+r�H and theinduced magnetic �eld B = r�A). Mathematically, gauge invariance reects a nonunique-ness of the solution of the GL equations. Uniqueness is achieved by choosing a gauge andthus constraining the solution to a speci�ed manifold in the solution space. A commonchoice is the London gauge [4, Chapter 4], where � is a solution of Poisson's equation,�� = �r �A in 
, satisfying the Neumann condition n � r� = �n �A on @
. In thisgauge, the vector potential is divergence free in 
 and tangential at the boundary @
. Ingeneral, one chooses a gauge to suit the problem under investigation; see [5] for an examplein a two-dimensional domain with periodic boundary conditions.A generalization of the time-independent GL equations to the time-dependent case was�rst proposed by Schmid [6]. The generalization was subsequently analyzed by Gor'kovand Eliashberg [7] in the context of the microscopic Bardeen-Cooper-Schrie�er (BCS)theory of superconductivity and validated in a narrow range of temperatures near the criticaltemperature. Because of gauge invariance, the generalization is nontrivial.In addition to the order parameter and the vector potential, a third variable is needed tocomplete the description of the physical state of the system in a manner consistent with thegauge invariance. This is the electric potential, �, a real scalar-valued function of positionand time. It is a diagnostic variable, as opposed to the prognostic variables  and A. Theevolution of  and A is described by the equations�� @@t + i��� = �� i�r+A�2  + �1� j j2� in 
� (0;1); (2:7)@A@t +r� = �r�r�A+ J s +r�H in 
� (0;1); (2:8)n � � i�r+A� + i� = 0 and n � (r�A�H) = 0 on @
� (0;1): (2:9)3



We refer to the system of Eqs. (2.7){(2.9) as the time-dependent Ginzburg-Landau (TDGL)equations.The TDGL equations also have an invariance property, but the situation is more com-plicated because of the presence of the electric potential. The TDGL equations are invariantunder a gauge transformationG� : ( ;A; �) 7! � ei��;A+r�; �� @t�� ; (2:10)where the gauge � can be any (su�ciently smooth) real scalar-valued function of positionand time. One readily veri�es that two states that, at any time t, are related by a gaugetransformation of the type (2.10) give identical values for the physically observable quantities(the current J = Js+r�H , the induced magnetic �eld B = r�A, and the electric �eldE = �@tA�r�). A gauge choice is necessary to eliminate the lack of uniqueness.Various gauges have been proposed for the TDGL equations. In the zero-electric po-tential gauge, one chooses � so the electric potential vanishes identically in 
 at all times.On the other hand, in the London gauge one chooses � so the vector potential is divergencefree in 
 and tangential at @
 at all times. It is not possible to satisfy both the zero-electricpotential gauge and the London gauge in 
 simultaneously at all times, but one can choose� so � = �r�A in 
 at all times. Again, the particular choice is made to suit the problemunder investigation. For example, Du [8] chose the zero-electric potential, while Chen,Hoffmann, and Liang [9] used the \� = �r�A" gauge to prove existence and uniquenessfor the TDGL equations. Liang and Tang [10] and Tang and Wang [11], who studiedthe dynamics of the TDGL equations, both chose the London gauge, but neither addressedthe large-time asymptotic behavior. Consequently, there is no indication how solutions ofthe TDGL equations relate to solutions of the time-independent GL equations. In fact, wedoubt that this problem can be studied in the London gauge. As Tak�a�c [12] �rst showed,a gauge like the \� = �r�A" gauge is more appropriate for the study of the dynamics andthe large-time asymptotics of the TDGL equations.In [13], we introduced the \� = �!(r �A)" gauge, which is de�ned by the solution� � �!(x; t) of the boundary-value problem(@t � !�)� = �+ !(r �A) in 
� (0;1); (2:11)!(n � r�) = �!(n �A) on @
� (0;1): (2:12)Here, ! is a real nonnegative parameter. This gauge generalizes the \� = �r�A" gauge andreduces to the zero-electric potential gauge in the limit ! = 0. It results in the constraints� = �!(r �A) in 
� (0;1); !(n �A) = 0 on @
� (0;1): (2:13)The zero-electric potential gauge presents a somewhat exceptional case. In this gauge, oneobtains the TDGL equations from the time-independent GL equations by simply adding4



the time derivatives of the order parameter and vector potential to the respective dif-ferential equations. In this sense, the TDGL equations represent a trivial lifting of thetime-independent GL equations into the time-dependent domain. However, the analysis ofthe TDGL equations in the zero-electric potential gauge is complicated by the fact thatthe expression �r �r� does not de�ne a uniformly elliptic operator. Consequently, thesolution lacks regularity, and the standard techniques to prove existence and uniqueness donot apply. For these reasons we exclude this case from further consideration and consideronly the case ! > 0.The TDGL equations in the \� = �!(r �A)" gauge de�ne a dynamical process in thegeneral case where the applied magnetic �eld H varies with time; ifH is time independent,the dynamical process becomes a dynamical system. In the following analysis, we restrictourselves to the latter case, so the TDGL equations de�ne a dynamical system and everysolution is attracted to a set of stationary solutions, which are divergence free [14].3 Functional FormulationIn this section, we establish a functional framework for the time-independent and time-dependent Ginzburg-Landau equations.We briey explain our notation. All Banach spaces are taken to be real. Complex-valued functions are interpreted as vector-valued functions with two real components. TheBanach spaces in this investigation are the standard ones (Lebesgue, Sobolev, etc.); de�ni-tions are given in [14]. Functions of space and time are considered as mappings from thetime domain [0;1) into a Banach space of functions on the spatial domain 
.The framework for the time-independent GL equations is a function space X of orderedpairs ( ;A), where the �rst element is a complex-valued (that is, a two-dimensional realvector-valued) function and the second an n-dimensional real vector-valued function (withn = 2 or n = 3), both de�ned on 
. The regularity requirements for  and A are the same,so X is of the form X = X2 � Xn, where X is a space of real scalar-valued functions. Asuitable framework for the functional analysis of the time-independent GL equations isW1+�;2 � [W 1+�;2(
)]2� [W 1+�;2(
)]n;with 12 < � < 1. This space is continuously imbedded in W1;2\L1. A weak solution of thetime-independent GL equations is a function ( ;A) 2 W1+�;2 that satis�es Eqs. (2.2){(2.4)in the sense of distributions.The TDGL equations give rise to an abstract initial-value problem for the function( ;A; �) : [0;1)!W1;2 � L25



inW1;2�L2. A weak solution of the TDGL equations on the interval (0; T ), for some T > 0,is a function ( ;A; �) 2 C(0; T ;W1+�;2�L2), with values ( ;A; �)(t) � ( (t);A(t); �(t)) 2W1+�;2�L2, which satis�es Eqs. (2.7){(2.9) in the sense of distributions for each t 2 (0; T ).The functional analog of the gauge transformation (2.6) is a continuous a�ne trans-formation G� of W1;2 into itself, which is de�ned in terms of a gauge � 2 W 2;2(
),(G�( ;A)) (x) = � (x)ei��(x);A(x) +r�(x)� ; x 2 
; ( ;A) 2 W1;2: (3:1)It has the property G�G�� = G��G� = I , where I is the identity mapping in W1;2. Twostates ( ;A) 2 W1;2 and ( 0;A0) 2 W1;2 are gauge equivalent (and physically indistin-guishable) if there exists a gauge � such that ( 0;A0) = G�( ;A) in W1;2.The generalization to a time-dependent gauge is obtained by considering � as a mappingfrom the time domain into an appropriate space of functions on 
. Speci�cally, we take� 2 L2loc([0;1);W 2;2(
)) \ W 1;2loc ([0;1);L2(
)). Thus, the gauge transformation (2.10)becomes a mapping G� from [0;1) into the space of continuous a�ne mappings ofW1;2�L2into itself, (G�( ;A; �)) (t) � G�(t)( ;A; �)(t); t � 0; ( ;A; �) 2 W1;2 � L2; (3:2)where �(t) � �(� ; t) and�G�(t)( ;A; �)(t)� (x) = � (x; t)ei��(x;t);A(x; t) +r�(x; t); �(x; t)� @t�(x; t)� ; x 2 
:Obviously, G�(t)G��(t) = G��(t)G�(t) = I , for each t. Note that gauge equivalence is aproperty shared by two states at a �xed instance. If the gauge equivalence holds at alltimes t � 0 (with respect to the same gauge �), we may write ( 0;A0; �0) = G�( ;A; �).Unless indicated otherwise, we assume that the data satisfy the following conditions:
 � Rn (n = 2 or n = 3) is bounded, with @
 of class C1;1 (that is, @
 is a compact (n�1)-manifold described by Lipschitz-continuously di�erentiable charts);  : @
! R is Lipschitzcontinuous, with (x) � 0 for all x 2 @
; ! is a constant, ! > 0; and H 2 [L2(
)]n.4 Equivalence RelationTo motivate the discussion, assume that ( 0;A0) 2 W1;2 is a weak solution of the time-independent GL equations (2.2){(2.4). We extend ( 0;A0) trivially to ( 0;A0; 0) 2 W1;2�L2 and de�ne the function ( ;A; �) : [0;1)!W1;2 � L2 by the expression( ;A; �)(t) = G�(t)( 0;A0; 0) � � 0ei��(t);A0 +r�(t);�@t�(t)� ; t � 0: (4:1)Here, � 2 L2loc([0;1);W 2;2(
)) \W 1;2loc ([0;1);L2(
)) is any time-dependent gauge. Thenit is trivial to verify that ( ;A; �) is a weak solution of the TDGL equations (2.7){(2.9).6



This solution is gauge equivalent with and therefore physically indistinguishable from thestationary solution ( 0;A0; 0) 2 W1;2 � L2.The following theorem shows that we are, in fact, dealing with an \if and only if"situation.Theorem 1 A stationary state ( 0;A0; �0) 2 W1;2 � L2 with  0 6� 0 is a weak solutionof the TDGL equations (2.7){(2.9) if and only if �0 = 0 a.e. in 
 and ( 0;A0) is a weaksolution of the time-independent GL equations (2.2){(2.4).Proof. It su�ces to prove the \only if" part. The fact that ( 0;A0; �0) is a solution of theTDGL equations implies that the functions  0, A0, and �0 must be such that the equationsi���0 0 = �� i�r+A0�2  0 + �1� j 0j2� 0 in 
; (4:2)r�0 = �r�r�A0 + Js;0 +r�H in 
; (4:3)n � � i�r+A0� 0 + i� 0 = 0 and n � (r�A0 �H) = 0 on @
; (4:4)are satis�ed. Here, J s;0 is a nonlinear function of  0 and A0,Js;0 � Js;0( 0;A0) = 12i� ( �0r 0 �  0r �0)� j 0j2A0 = �Re � �0 � i�r+A0� 0� ;(4:5)cf. Eq. (2.5). From these equations we obtain a di�erential equation for �0 in the followingway. First we take the divergence of Eq. (4.3) and obtain the equation ��0 = r � J s;0 in
. An expression for r � J s;0 follows readily from Eq. (4.5),r � J s;0 = �� Im " �0 � i�r+A0�2  0# : (4:6)We use Eq. (4.2) to evaluate this expression and �nd r � J s;0 = ��2j 0j2�0. Thus,��0 = ��2j 0j2�0 in 
: (4:7)We obtain a boundary condition for �0 at any point x 2 @
, where the local unit normalvector is n(x), by considering the component of Eq. (4.3) in the direction of n(x) at aninterior point y 2 
 and letting y approach x. Because @
 is locally the level surface (orcurve) of a C1;1-function � : Rn ! R, the unit normal vector is n = jr�j�1r�, where r�is nonvanishing and Lipschitz continuous near every point of @
. Hence, n � (r � n) = 0on @
. But r �A0 �H and n are colinear on @
, by the second boundary condition inEq. (4.4), so it must be the case that n �r� (r�A0�H) = 0 on @
. Also, n �J s;0 = 0 on7



@
, as follows immediately from the de�nition (4.5) of J s;0 and the �rst of the boundaryconditions (4.4). Thus, n � r�0 = 0 on @
: (4:8)Obviously, the Neumann problem (4.7){(4.8) forces the energy equationZ
 jr�0j2 dx + Z
 ��2j 0j2�20 dx = 0; (4:9)so r�0 = 0 and  0�0 = 0 a.e. in 
. Thus, Eqs. (4.2){(4.4) reduce to the time-independentGL equations (2.2){(2.4). Furthermore, because the state ( 0;A0; �0) is nontrivial, it mustbe the case that �0 = 0 a.e. in 
.The theorem gives a complete characterization of those stationary states in W1;2�L2that are gauge equivalent with a solution ( ;A; �) of the TDGL equations. They must beof the form ( 0;A0; 0), where ( 0;A0) is a solution of the time-independent GL equations.The gauge equivalence is expressed by Eq. (4.1).5 Large-Time AsymptoticsWe now re�ne the result of the preceding section by imposing an additional constraint,namely that the TDGL equations be considered in the \� = �!(r �A)" gauge. We recallthe characteristic constraints of this gauge, Eq. (2.13); if ! > 0, they simplify to� = �!(r �A) in 
� (0;1); n �A = 0 on @
� (0;1): (5:1)Theorem 2 Let ( ;A; �) : (0;1) ! W1;2 � L2 be a weak solution of the TDGL equa-tions (2.7){(2.9) in the \� = �!(r�A)" gauge. If ( ;A; �) is gauge equivalent with a non-trivial stationary state ( 0;A0; �0) 2 W1;2�L2, then �0 = 0 a.e. in 
, limt!1 ( ;A; �) (t)exists in W1;2 � L2, andlimt!1 ( ;A; �) (t) = ( 1;A1; 0) in W1;2 � L2: (5:2)There exists a time-independent gauge �0 2 W 1;2(
), such that( 1;A1) = G�0( 0;A0) � � 0ei��0 ;A0 +r�0� : (5:3)Furthermore, r �A1 = 0 in 
; n �A1 = 0 on @
: (5:4)8



Proof. It follows from Theorem 1 that �0 = 0 a.e. in 
. Furthermore, there exists a gauge� 2 L2loc([0;1);W 2;2(
))\W 1;2loc ([0;1);L2(
)) such that( ;A; �)(t) = G�(t)( 0;A0; 0) � � 0ei��(t);A0 +r�(t);�@t�(t)� ; t > 0: (5:5)The fact that ( ;A; �) satis�es the characteristic constraints (5.1) of the \� = �!(r �A)"gauge implies that the gauge � in Eq. (5.5) satis�es the boundary-value problem@t� � !�� = !(r �A0) in 
� (0;1); (5:6)n � r� = �n �A0 on @
� (0;1): (5:7)We look for a solution of the form�(x; t) = �0(x) + z(x; t); (5:8)where �0 2 W 1;2(
) satis�es the equations���0 = r �A0 in 
; n � r�0 = �n �A0 on @
: (5:9)We render �0 unique by imposing the normalization conditionZ
 �0(x) dx = Z
 �(x; 0) dx: (5:10)The function �0 thus de�ned satis�es the regularity condition �0 2 W 2;2(
).With these de�nitions, z must satisfy the homogeneous boundary-value problem@tz � !�z = 0 in 
� (0;1); (5:11)n � rz = 0 on @
� (0;1); (5:12)with initial data z(x; 0) = �(x; 0)� �0(x) for x 2 
.The boundary-value problem (5.11){(5.12), with the initial data z(� ; 0) = �(� ; 0)� �0,gives rise to an abstract initial-value problem in L2(
). If �N denotes the self-adjointNeumann Laplacian in L2(
), thenz(t) = e!�N t(�(0)� �0); t � 0: (5:13)From the spectral decomposition of �N and the Kre��n-Rutman theorem we infer that0 2 C is the principal eigenvalue of �N , which is isolated and simple with the constant1 eigenfunction. Then it follows from the spectral mapping theorem for the exponentialfunction and the normalization condition (5.10) that kz(t)kL2(
) ! 0 as t ! 1; hence,kz(t)kW 2;2(
) ! 0 as t!1, by regularity, and thereforelimt!1 kz(t)kL2(
) = 0; limt!1 k(rz)(t)kW 1;2(
) = 0; limt!1 k(@tz)(t)kL2(
) = 0: (5:14)9



It follows that limt!1 ( ;A; �) (t) = � 0ei��0 ;A0 +r�0; 0� in W1;2 � L2: (5:15)The identities (5.4) are an immediate consequence of Eqs. (5.9).Theorem 2 shows that the large-time asymptotic limit ( 1;A1; �1) of ( ;A; �)(t) inW1;2�L2 satis�es the zero-electric potential gauge (�1 = 0 in 
) for all values of ! (! > 0).Moreover, the element ( 1;A1) 2 W1;2 is a weak solution of the time-independent GLequations in the London gauge (r �A1 = 0 in 
, n �A1 = 0 on @
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