Users’ Experience with ADIFOR 2.0*

Argonne Preprint ANL/MCS-P589-0496
CRPC Technical Report CRPC-TR96642

(. Bischoff and A. Carlet

Abstract
In July 1995, the ADIFOR, 2.0 system for automatic differentiation of Fortran was
made available to the academic and commercial communities via the World Wide
Web. By January 1996, we had received and processed over one hundred requests
for ADIFOR, 2.0. In this paper, we describe some of the experiences of users of the
system that should be interesting to developers of automatic differentiation tools.

1 Introduction

ADIFOR 1.0 was completed in June 1993 and initially made available to the public through
accounts at Argonne and Rice or direct collaborations with the developers of the system.
Even with such alimited distribution, it was successfully employed in many different areas of
science and engineering, including aeronautical multidisciplinary design optimization [2, 31],
aeronautical computational fluid dynamics [6, 7, 15, 19, 25, 26], weather modeling [12, 14,
28, 29], groundwater contaminant transport [11, 32], aquifer modeling [17, 21], structural
engineering [16], statistics [13], mechanical system design [20], power networks [23], reaction
modeling [27], and large-scale numerical optimization [1, 8, 30].

In July 1995, the ADIFOR 2.0 system, a substantial reimplementation and extension
of ADIFOR 1.0, was made available for distribution via the World Wide Web. To
retrieve the software, requestors filled out and submitted an electronic request form,
downloaded and signed a license permitting academic use and commercial evaluation
of the system, and either faxed or mailed the signed license back to us. We then
gave the requestors access to password-protected Web pages with links to Unix tar
files containing all of the components of the ADIFOR 2.0 system. Requests could
be processed at either Argonne or Rice, and files could be downloaded from either
site. By January 1996, we had received and processed over one hundred requests
for ADIFOR from users in a wide range of areas including the following: bifurcation
analysis in dynamical systems, maximum likelihood fitting of stochastic models, solution
of differential algebraic equations, solution of ordinary differential equations, solution of
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partial differential equations, real-time control and optimization, parameter estimation
for groundwater flow and transport, nonlinear structural analysis and optimization,
multidisciplinary design optimization, inverse modeling in hydrodynamics, radioactive
waste site characterization, cyclotron modeling, low-energy nuclear physics reaction theory,
numerical weather prediction, reactive flow modeling, earthquake ground motion modeling,
atmospheric pollution modeling, chemical reactor modeling, transistor models in circuit
simulation, and aquifer parameter estimation.

2 An Overview of ADIFOR 2.0

The ADIFOR 2.0 system provides automatic differentiation (AD) of Fortran 77 programs
for first-order derivatives [4]. It implements AD by using a source code transformation
approach; that is, given a Fortran subroutine (or collection of subroutines) for a function
[, ADIFOR produces Fortran 77 subroutines for the computation of the derivatives of this
function. Derivatives are computed by using a “statement-level hybrid mode” in which
the forward mode is used to propagate derivatives globally through the program, and the
reverse mode is used to propagate derivatives within each assignment statement. This
statement-level hybrid mode tends to be more efficient than the normal forward mode or
a finite-difference approximation when derivatives are computed for multiple independent
variables. In addition, this mode has the predictable storage and runtime requirements
expected from the forward mode.

The ADIFOR 2.0 system offers the following features:

Full Fortran 77 Support. The ADIFOR 2.0 preprocessor supports all of
Fortran 77 plus common extensions such as DOUBLE COMPLEX, INCLUDE
statements, IMPLICIT NONE, and NAMELIST. In addition, codes that mix
single-precision and double-precision real-valued or complex-valued data
are now fully supported.

Flexible Intrinsic Handler. The ADIntrinsics 1.0 system provides for vari-
ous reporting levels in response to exceptions such as the differentiation of
sqrt(x) when x is zero, and can easily be customized through the use of
template files. Exception-reporting levels range from “performance mode,”
which never reports exceptions, to “verbose mode,” which reports every
exception that occurs. Intermediate levels of exception reporting each gen-
erate more concise summaries of exceptions that have occurred.

Transparent Sparsity Support. Code generated with ADIFOR 2.0 can per-
form derivative computations by using the SparsLinC (Sparse Linear Com-
bination) library. This sparse flavor of ADIFOR 2.0 allows transparent
exploitation of sparsity arising in large sparse Jacobian computations or
gradients of functions that have a sparse Hessian [3, 10].

Interprocedural Activity Analysis. ADIFOR 2.0 performs an analysis of
the entire program that the user wants to differentiate to determine which
real-valued and complex-valued variables depend on the user’s specified
independent variables and which are used to compute the user’s specified
dependent variables. The analysis traces the use of floating-point data
throughout the program being differentiated. The goal of this analysis is
to reduce the cost of computing derivatives by identifying variables whose
values are irrelevant to the computation of the requested derivatives.
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To support interprocedural activity analysis, ADIFOR 2.0 insists that the user provide
the Fortran 77 source code for a complete and consistent program. To be complete, a
program must have no missing entry points; that is, the program must link without
undefined external references. To be consistent, the number of arguments and the types
of those arguments must agree between a call site and the called procedure. In our
experience, the interprocedural analysis phase of ADIFOR 2.0 processing is the most
memory-consuming and time-consuming part of the process.

The derivative code generated by ADIFOR, 2.0 provides, as expected from the forward
mode of AD [9], the ability to compute directional derivatives. Instead of simply producing
code to compute the Jacobian J, ADIFOR 2.0 produces code to compute J * 5, where the
“seed matrix” 5 is initialized by the user. Thus, if .5'is the identity, ADIFOR 2.0 computes
the full Jacobian, whereas if 5 is just a vector, ADIFOR 2.0 computes the product of the
Jacobian by a vector.

The seed matrix mechanism allows for flexible use of the code generated by AD-
IFORTWO. For example, it can be employed to compute compressed versions of large
sparse Jacobians [1], to chain derivatives generated by programs running on different plat-
forms [6, 15], or to decrease turnaround time for derivative computations through a parallel
stripmining approach [7].

The benefit from proper initialization of the seed matrix is substantial, since the cost
of derivative computation is more or less proportional to the number p of directional
derivatives (equal to the number of columns of §) that are computed in one run. Hence,
computing a Jacobian-vector product is much less expensive than computing the Jacobian
itself. Typically, but not always, the code generated by ADIFOR 2.0 runs two to four
times faster than one-sided divided difference approximations when one computes more
than 5-10 derivatives at one time. This advantage comes from coupling the hybrid mode
with interprocedural activity analysis.

3 Users’ Experiences

As software developers providing software for academic use and commercial evaluation, we
have been curious about users’ experiences with our software. In early January 1996, we
sent out an informal questionnaire to all of the people who had requested ADIFOR 2.0.
Here we summarize the responses we received.

Question: Was it sufficient to provide ADIFOR 2.0 executables for only Sun Sparc, IBM
RS/6000, and SGI Iris workstations?

Answer: Apparently not. Five people requested the software and then determined that
ADIFOR 2.0 was unavailable for the platforms that they had available to them—a 386-class
PC or an HP workstation or DEC Alpha Vax workstation. In response, we are developing
ports to Windows 95 and Windows NT for the PC and HPUX for HP workstations.

Question: Have people been able to download the software using their Web browser?

Answer: One person acknowledged being unable to download the software over the Web
due to limited available memory on the machine on which the Web browser was being run.
In several other cases, European requestors were unable to download files from one of the
download sites, but were able to retrieve them from the other.
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Question: Did people have problems with the terms of the license that we required that
they have signed?

Answer: The vast majority of requestors said that getting the license signed and submitted
was not a problem. Some said that it did take some time to get someone to sign the
license on behalf of their company or university. Unfortunately, we have no way of knowing
whether our insistence on receiving a signed license has scared away potential users of the
software from even requesting it.

Question: Did people read the manual [5]7 Did they try the examples provided in the
manual? Was it helpful?

Answer: The majority of the users claimed to have looked primarily at the examples in the
manual. Several commented that the examples were very useful, and several commented
that they needed more examples. At least one person commented (negatively) that the
manual looked like it had been written by a mathematician or a computer scientist.

Question: Is ADIFOR 2.0 performing robustly?

Answer: Yes. Prior to the survey we had received only two reports of errors in the system.
In their response to the survey, three users noted had encountered errors in ADIFOR 2.0
that they had been able to work around. No users claimed to have encountered problems
that kept them from using ADIFOR 2.0.

Question: Do people understand the concept of the seed matrix?

Answer: Yes, for simple examples having a single array of independent variables and a
single array of dependent variables. For more complex examples, users seemed to struggle
to determine the appropriate dimensions and initial values for the seed matrix.

Question: Has the availability of ADIFOR, 2.0 changed the way that people are doing their
work?

Answer: Without doubt! See the following sections.

3.1 Engineering Codes at NASA Langley

Katherine Young and Joanne Walsh of NASA Langley Research Center have been
applying ADIFOR 2.0 to typical engineering analysis codes and then evaluating the
resulting sensitivity analysis codes for use in design and optimization. They have applied
ADIFOR 2.0 to CAMRAD/JA [24] (a comprehensive rotorcraft analysis code), HOVT (a
hover analysis code), and WOPWOP (a rotor acoustics code). CAMRAD/JA is the largest
code ever processed by ADIFOR (250,000 lines after processing) and includes complex
arithmetic, complicated trim logic, and huge amounts of input and output data. Derivatives
of horsepower, hub shear, drag, vibratory frequency, thickness, and loading noise were
computed with respect to rotor blade planform design variables such as blade twist, taper
ratio, and root chord length. The derivatives produced by the preprocessed versions of
these codes are consistent with finite difference derivatives.
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Larry Green and Perry Newman of NASA Langley and Art Taylor of Old Dominion
University also are using ADIFOR 2.0 to compute derivatives of CFD codes [15].

3.2 Neural Networks at DuPont

Aaron Owens, in the Engineering Research Laboratory of DuPont, is using ADIFOR 2.0
in several research projects to demonstrate the feasibility of using stiff ordinary differential
equation solvers and gradient descent to solve difficult multivariate real function optimiza-
tion problems: specifically, given a real function F'(P) with parameters P, minimize F w.r.t
P by solving the ODE’s dP/dt = —dF/dP, where P is a long vector, with hundreds or
thousands of elements.

The first successful application of ADIFOR 2.0 was with a neural network having a
combination of several kinds of squashing functions (not just sigmoidal). It was tedious to
compute the gradient analytically to do neural net learning; hence, numerical differentiation
had been used. With ADIFOR 2.0, however, researchers were able to accurately compute
the required gradient an order of magnitude faster than by using numerical derivatives.

3.3 Maximum Likelihood Optimization at the Harvard School of Public
Health

Mario Casella and Donna Spiegelman, in the Departments of Epidemiology and Biostatistics
at the Harvard School of Public Health, are using ADIFOR 2.0 to perform maximum
likelihood optimization on problems in nutritional epidemiology [22]. Two likelihood
functions were considered, one with 17 parameters, the other with 33 parameters. For
the 17-parameter case, analytic derivatives had been constructed by hand over a period
of two years. Initial results using the derivative code generated by ADIFOR 2.0 exhibited
roughly a linear increase in computational complexity for gradients and quadratic increase
for Hessians (by applying ADIFOR 2.0 twice), as expected. Gradients and Hessians for
the 17-parameter problem were computed in the time required to compute 17.07 and
515.17 original function evaluations, respectively. In comparison, the hand-coded analytic
derivatives computed gradients and Hessians for the 17-parameter case in the time required
to compute 3.35 and 16.98 original function evaluations.

Disappointed with the time required for ADIFOR 2.0 to compute the derivatives,
additional effort was expended to see whether “interface contraction” could be used to
reduce the cost of the derivative computations. Interface contraction can be applied
whenever the number of variables that are passed as inputs to some subroutine is small
compared with the number of independent variables. Computing derivatives of the
subroutine with respect to the small number of inputs and then applying the chain rule
at the subroutine level should be significantly cheaper than computing derivatives with
respect to the larger number of independent variables. For the 17-parameter case, interface
contraction was applied to one procedure invocation that took only two inputs. The
resulting derivative code computed gradients and Hessians in the time required to compute
4.97 and 55.66 original function evaluations, a significant speedup requiring only a small
number of actual source code modifications.

The derivatives computed by the original and modified derivative code agreed with
those computed by both finite differences and hand-coded derivatives. Except for rare
cases, full double precision was achieved.

Casella states that the ability to construct efficient derivative codes has added great
flexibility to his research, since he can easily implement different models to analyze data
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SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY )

DO 60, J =1, N
IF( X( JX ).NE.ZERO )THEN
TEMP = ALPHA*X( JX )
DO 50, I =1, M
YCI)=Y(I)+ TEMP*AC I, J)

50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
END

Fia. 1. Branch-problem arising in DGEMYV BLAS routine

and then rely on ADIFOR 2.0 for the needed derivatives. He estimates that he “crunches
derivatives” almost weekly.

3.4 Chemical Process Simulation at the University of Texas

Kenneth Teague, Jr., in the Department of Chemical Engineering at the University of
Texas at Austin, is using ADIFOR 2.0 to develop a computer simulation of the pressure
swing adsorption air separation process. A subproblem is to simulate adsorption of oxygen
and nitrogen by a zeolite-packed column. For example, when the column is saturated
with oxygen feed and the feed is switched to pure nitrogen, he needs to know the effluent
composition as a function of time.

The effluent composition vs. time can be determined by solving the system of nonlinear,
coupled partial differential equations that describe conservation of oxygen and nitrogen
in the gas and solid phases. Teague discretized the axial dimension of the column in
these equations, using the Galerkin finite element technique to obtain a large system of
ordinary differential equations, which he then solved using the differential algebraic system
solver DASSL. The ODE system was presented to DASSL as f(y,y’,t) = 0 by computing
for DASSL 6 = f(y,y',t), after giving it initial y, 3, and ¢. To integrate this system,
DASSL needs df(y,y',t)/dy + a xdf(y,y’,t)/dy" at each time step. Although DASSL can
do this computation by using finite differences, it is preferable to use the sparse flavor of
ADIFOR 2.0 and then provide the result to DASSL. The derivatives are computed not
only more efficiently, but more accurately, making DASSI’s solution more stable. This
combined effect has reduced the solution time by orders of magnitude.

Teague encountered an instance of the “branch-problem of AD” [18] in applying
ADIFOR 2.0 to compute the derivatives needed by DASSIL. The Jacobian of y = A *z, for
any z, should be A. If one uses the BLAS routine DGEMYV to evaluate the term A x z for
x = 0, the derivative code generated by ADIFOR, 2.0 yields a zero derivative. This situation
happens, as shown in Figure 1, because DGEMYV avoids computation of zero entries in y
by the corresponding column vector in A and instead immediately returns a zero vector.
The problem was solved by replacing the call to DGEMYV with explicit unoptimized DO
loops in the code that is processed by ADIFOR 2.0, while retaining the call to DGEMYV in
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the function evaluation code itself to get the maximum efficiency when derivatives are not
being computed.

3.5 Real-time Optimization at Dynamic Matrix Control Corporation

Dynamic Matrix Control Corporation (DMCC), located in Houston, Texas, licenses a
commercial real-time optimization system for refineries and chemical plants called [DMO],
Dynamic Matrix Optimization. The [DMO] system uses a sparse-matrix SQP algorithm
and fundamental chemical engineering models of the process to optimize the plant in real
time. Typical model sizes are on the order of 150,000 to 250,000 equations with 1.5 to 3.0
million derivatives. The SQP algorithm requires first derivatives from the models, which
are computed either by finite differences or analytically using ADIFOR 2.0.

Steve Hendon at DMCC is using ADIFOR 2.0 to generate derivative code using the
“compressed” Jacobian computing scheme to capitalize on known sparsity information.
SparsLinC has not yet been tried on this problem. Performance-mode exception handling
is used exclusively in the code; however, the exception template for ABS was modified to
return a derivative of 1.0 when the argument was equal to zero.

On average, a 50% improvement in differentiation time has been observed. The
derivatives have been verified by comparison with numerical approximations with typical
differences in the sixth or seventh decimal place.

The only significant difficulty encountered in processing code for [DMO] is ADI-
FOR 2.0’s insistence on having access to all of the source code for all routines invoked
by the routines for which derivatives are needed. More than 800 subroutines make up the
optimization program, with only 143 subroutines actually required in the derivative compu-
tations. Many of these routines do not actively participate in floating-point computations;
they perform input/output and define which equations and formulations are to be used.
ADIFOR 2.0 currently takes over an hour to process the 143 subroutines and generate the
differentiated code on an RS/6000. In doing so, ADIFOR 2.0 must process approximately
30,000 lines of Fortran 77 code.

In using ADIFOR 2.0, DMCC has encountered only three bugs: two were ADIFOR 2.0
problems, and one was a problem with the provided function code.

Hendon claims that the key advantage to using tools like ADIFOR 2.0 in software
development efforts is the reduction in cost and effort required to generate and maintain
analytical derivative code. Generating the derivatives from the original source during a
pre-compilation step frees developers to concentrate on model development, rather than
derivative code development.

4 Lessons Learned
Here are some of the lessons we learned from our survey:

o Users of ADIFOR 2.0 are not computer scientists (or mathematicians) and do not
wish to be.

o Few users of the system have had any experience with AD prior to using ADIFOR 2.0.

o Users look at examples, and ignore most of the rest of the manual until absolutely
stuck.

e Our users seem hesitant to form a users community. They also seem hesitant to report
bugs. (Do people just expect bugs in free software?)
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o Most users of ADIFOR 2.0 have taken the time to verify the answers computed by
the generated derivative code.
¢ A good number of people who requested the ADIFOR 2.0 software found out about
it by “Web surfing.”
o Users of AD technology are working on a fairly large variety of hardware platforms.
e The larger the code to be processed, the more likely it is that the person applying
ADIFOR 2.0 to the code was not the author of the code.
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