
Appeared in Proc. of the 6th Symposium on the Frontiers of Massively Parallel Computation,October 1996, pp. 180{187. Copyright 1996 IEEE.An Abstract-Device Interface for ImplementingPortable Parallel-I/O InterfacesRajeev Thakur William Gropp Ewing LuskMathematics and Computer Science DivisionArgonne National Laboratory9700 S. Cass AvenueArgonne, IL 60439, USAfthakur, gropp, luskg @mcs.anl.govAbstractIn this paper, we propose a strategy for implement-ing parallel-I/O interfaces portably and e�ciently. Wehave de�ned an abstract-device interface for parallelI/O, called ADIO. Any parallel-I/O API can be imple-mented on multiple �le systems by implementing theAPI portably on top of ADIO, and implementing onlyADIO on di�erent �le systems. This approach simpli-�es the task of implementing an API and yet exploitsthe speci�c high-performance features of individual �lesystems. We have used ADIO to implement the IntelPFS interface and subsets of MPI-IO and IBM PI-OFS interfaces on PFS, PIOFS, Unix, and NFS �lesystems. Our performance studies indicate that theoverhead of using ADIO as an implementation strat-egy is very low.1 IntroductionParallel computers are being used increasingly tosolve large, I/O-intensive applications in a number ofdi�erent disciplines. A limiting factor, however, is thelack of a standard, portable application-programminginterface (API) for parallel I/O. Instead of a singlestandard API, a number of di�erent APIs are sup-ported by di�erent vendors and research projects.Many commercial parallel �le systems (e.g., IBM PI-OFS [11] and Intel PFS [12]) and research parallel�le systems (e.g., PPFS [10], Galley [18], HFS [15],Scotch [4], and PIOUS [17]) provide their own APIs.In addition, a number of I/O libraries with spe-cial APIs have been developed (e.g., PASSION [25],Panda [21], Chameleon I/O [7], SOLAR [28], Jo-vian [1], and ChemIO [6]). Di�erent APIs are used bysystems that support persistent objects (e.g., Ptool [9],ELFS [13], and SHORE [2]).A group within the Scalable I/O Initiative [20] isdeveloping a standard low-level interface for parallelI/O [5]. This low-level interface, however, is not in-tended to be used directly by application program-mers, but instead at the operating-system level by de-velopers of libraries for compilers, run-time systems,and applications. The only real e�ort to standard-ize an interface for parallel I/O at the application-

programming level is the MPI-IO [27] proposal thatis based on MPI [16]. The MPI Forum has recentlystarted an e�ort to standardize an interface for parallelI/O as part of MPI-2. The Forum is using MPI-IO [27]as a starting point. The result of this e�ort may wellbecome the standard API in the future.In this paper, we propose a strategy for implement-ing parallel-I/O APIs portably and e�ciently. Forthis purpose, we have de�ned an abstract-device in-terface for parallel I/O, called ADIO. Any parallel-I/O API can be implemented e�ciently on multiple�le systems by implementing the API portably on topof ADIO and implementing only ADIO separately oneach di�erent �le system. We have used ADIO to im-plement the Intel PFS interface and subsets of MPI-IOand IBM PIOFS interfaces on PFS, PIOFS, Unix, andNFS �le systems. Therefore, we are able to run appli-cations (that use the above interfaces) portably on theIBM SP, Intel Paragon, and networks of workstations.Performance studies with two test programs and onereal production application indicate that the overheadof using ADIO as an implementation strategy is verylow.We stress that ADIO is not intended to be a newAPI itself, i.e., it is not intended to be used directlyby application programmers. Instead, it is a strategyfor implementing other APIs.The rest of the paper is organized as follows. In Sec-tion 2, we explain the ADIO concept in more detail.We describe the design of ADIO in Section 3 and dis-cuss its use in implementing APIs such as the MPI-IO,PFS, PIOFS, PASSION, and Panda interfaces in Sec-tion 4. We present performance results in Section 5.We draw overall conclusions and discuss our plans forfuture work in Section 6.2 The ADIO ConceptThe main goal of ADIO is to facilitate a high-performance implementation of any existing or newparallel-I/O API on any existing or new �le-system,as illustrated in Figure 1. ADIO consists of a smallset of basic functions for performing parallel I/O.Any parallel-I/O API (including a �le-system inter-

Portable Implementations

File-System-Specific
Implementations

ADIO

SIO low-
level API

PPFSGalleyHPSS PFS PIOFSUnix

MPI-IO
PFS PIOFS RIO Other APIs

Figure 1: The ADIO conceptface) can be implemented in a portable fashion on topof ADIO. ADIO in turn must be implemented in anoptimized manner on each di�erent �le system sepa-rately. In other words, ADIO separates the machine-dependent and machine-independent aspects involvedin implementing an API. The machine-independentpart can be implemented portably on top of ADIO.The machine-dependent part is ADIO itself, whichmust be implemented separately on each di�erent sys-tem.ADIO enables users to experiment with new APIsand new low-level �le-system interfaces. Once a newAPI is implemented on top of ADIO, it becomes avail-able on all �le systems on which ADIO has been im-plemented. Similarly, once ADIO is implemented ona new �le-system, all APIs implemented on top ofADIO become available on the new �le system. Thisapproach thus enables users to run applications on awide range of platforms, regardless of the parallel-I/OAPI used in the applications.The ADIO approach was motivated by the lack ofconsensus, within both the parallel-I/O communityand the applications community, on any one stan-dard API. Therefore, instead of mandating a particu-lar API, we provide the framework for implementingany or all of them in a simple, e�cient, and portablemanner. When a standard API emerges, ADIO canbe used to implement that API as well.A similar abstract-device-interface approach forcommunication has been used very successfully in theMPICH implementation of MPI [8].3 ADIO DesignADIO is designed such that it can exploit the high-performance features of any �le system, and any APIcan be expressed in terms of ADIO. We designedADIO by �rst studying the interface and functionalityprovided by di�erent parallel �le systems and high-

level libraries and then deciding how the functionalitycould be supported at the ADIO level portably ande�ciently.For portability and high performance, ADIO usesMPI [16] wherever possible. Therefore, ADIO rou-tines have MPI datatypes and communicators as ar-guments. We describe the ADIO interface in the fol-lowing subsections.3.1 Open and CloseOpen:ADIO File ADIO Open(MPI Comm comm, char*filename, int file system, int access mode,ADIO Offset disp, MPI Datatype etype,MPI Datatype filetype, int iomode, ADIO Hints*hints, int perm, int *error code)All opens are considered to be collective opera-tions. The communicator comm speci�es the par-ticipating processes. A process can open a �le in-dependently by using MPI COMM SELF as the com-municator. The file system parameter indicatesthe type of �le system used. The access mode pa-rameter speci�es the �le access mode, which canbe either ADIO CREATE, ADIO RDONLY, ADIO WRONLY,ADIO RDWR, ADIO DELETE ON CLOSE, ADIO EXCLUSIVE,or ADIO ATOMIC. These modes may be combinedby using the bitwise exclusive-or operator. TheADIO EXCLUSIVE mode indicates that only the pro-cesses involved in this open call access the �le; theADIO implementation may use this information toperform client-side caching. The ADIO ATOMIC modeindicates that the �le system is required to guaranteeatomicity of read/write operations. If this mode is notused, the �le system need not provide atomicity and,therefore, may be able to improve performance.The disp, etype, and filetype parameters areprovided for supporting displacements, etypes, and�letypes as de�ned in MPI-IO [27]. The iomode pa-rameter is provided for supporting the I/O modes of

Intel PFS [12]. The ADIO Hints structure may be usedto pass hints to the ADIO implementation for poten-tial performance improvement. Examples of hints in-clude �le-layout speci�cation, prefetching/caching in-formation, �le-access style, data-partitioning pattern,and information required for use on heterogeneous sys-tems. Hints are purely optional; the calling programneed not provide any hints, in which case ADIO usesdefault values. Similarly, the ADIO implementationis not obligated to use the speci�ed hints. The permparameter speci�es the access permissions for the �le.The success or failure of the open operation is returnedin error code. The ADIO Open routine returns a �ledescriptor that must be used to perform all subsequentoperations on the �le.Note that the displacement, etype, �letype, iomode,access mode, and hints associated with an open �le canbe changed by using the routine ADIO Fcntl.Close:void ADIO Close(ADIO File fd, int*error code)The close operation is also collective: All processesthat opened the �le must close it.3.2 Contiguous Reads and Writesvoid ADIO ReadContig(ADIO File fd, void *buf,int len, int file ptr type, ADIO Offsetoffset, ADIO Status *status, int *error code)Similarly ADIO WriteContig.ADIO provides separate routines for contigu-ous and noncontiguous accesses. The contiguousread/write routines are used when data to be reador written is contiguous in both memory and �le.ADIO ReadContig and ADIO WriteContig are inde-pendent and blocking versions of the contiguous readand write calls (independent means that a process maycall the routine independent of other processes; block-ing means that the resources speci�ed in the call, suchas bu�ers, may be reused after the routine returns).Nonblocking and collective versions of the contiguousread/write calls are described in Sections 3.4 and 3.5,respectively.In the case of ADIO ReadContig, buf is the addressof the bu�er in memory into which len contiguousbytes of data must be read from the �le. The lo-cation in the �le from which to read can be spec-i�ed either in terms of an explicit o�set from thestart of the �le or from the current location of the�le pointer. ADIO supports individual �le pointersfor each process; shared �le pointers are not directlysupported because of performance reasons. Shared�le pointers can be emulated on top of ADIO ifnecessary. The file ptr type parameter indicateswhether the routine should use explicit o�set or in-dividual �le pointer. If file ptr type speci�es theuse of explicit o�set, the o�set itself is provided inthe offset parameter. The offset parameter is ig-nored when file ptr type speci�es the use of indi-vidual �le pointer. The �le pointer can be moved byusing the ADIO SeekIndividual function, described

in Section 3.6. The status parameter returns infor-mation about the operation, such as the amount ofdata actually read or written.3.3 Noncontiguous Reads and Writesvoid ADIO ReadStrided(ADIO File fd, void*buf, int count, MPI Datatype datatype, intfile ptr type, ADIO Offset offset,ADIO Status *status, int *error code)Similarly ADIO WriteStrided.Parallel applications often need to read or writedata that is located in a noncontiguous fashion in�les and even in memory. ADIO provides routines forspecifying noncontiguous accesses with a single call.Noncontiguous access patterns can be represented inmany ways, e.g., [19]; we chose to use MPI deriveddatatypes because they are very general and havebeen standardized as part of MPI. ADIO ReadStridedand ADIO WriteStrided are independent and block-ing versions of the noncontiguous read and write calls;nonblocking and collective versions are described inSections 3.4 and 3.5, respectively. Note that these rou-tines support all types of noncontiguous accesses thatcan be expressed in terms of MPI derived datatypes,not just simple uniform strides.In the case of ADIO ReadStrided, buf is the ad-dress of the bu�er in memory into which count itemsof type datatype (an MPI derived datatype) must beread from the �le. The starting location in the �lemay be speci�ed by using explicit o�set or individ-ual �le pointer. The noncontiguous storage pattern inthe �le is indicated by the filetype (an MPI deriveddatatype) speci�ed in ADIO Open or ADIO Fcntl.Note that ADIO ReadContig andADIO WriteContig are special cases ofADIO ReadStrided and ADIO WriteStrided. How-ever, we consider contiguous accesses separately, be-cause they are directly supported by all �le systemsand, therefore, may be implemented e�ciently.3.4 Nonblocking Reads and Writesvoid ADIO IreadContig(ADIO File fd, void*buf, int len, int file ptr type, ADIO Offsetoffset, ADIO Request *request, int*error code)void ADIO IreadStrided(ADIO File fd, void*buf, int count, MPI Datatype datatype, intfile ptr type, ADIO Offset offset,ADIO Request *request, int *error code)Similarly ADIO IwriteContig, ADIO IwriteStrided.ADIO provides nonblocking versions of all read andwrite calls. A nonblocking routine may return beforethe read/write operation completes. Therefore, the re-sources speci�ed in the call, such as bu�ers, may notbe reused before testing for completion of the opera-tion. Nonblocking routines return a request objectthat must be used to test for completion of the opera-tion. The ADIO routines for testing the completion ofa nonblocking operation are described in Section 3.7.

3.5 Collective Reads and Writesvoid ADIO ReadContigColl(ADIO File fd, void*buf, int len, int file ptr type, ADIO Offsetoffset, ADIO Status *status, int *error code)void ADIO ReadStridedColl(ADIO File fd, void*buf, int count, MPI Datatype datatype, intfile ptr type, ADIO Offset offset,ADIO Status *status, int *error code)void ADIO IreadContigColl(ADIO File fd, void*buf, int len, int file ptr type, ADIO Offsetoffset, ADIO Request *request, int*error code)void ADIO IreadStridedColl(ADIO File fd, void*buf, int count, MPI Datatype datatype, intfile ptr type, ADIO Offset offset,ADIO Request *request, int *error code)Similarly ADIO WriteContigColl,ADIO WriteStridedColl, ADIO IwriteStridedColl.Several researchers have demonstrated that, formany common access patterns, collective I/O cangreatly improve performance [3, 24, 14, 21]. To en-able the use of collective I/O, ADIO provides collectiveversions of all read/write routines. A collective rou-tine must be called by all processes in the group thatopened the �le. However, a collective routine does notnecessarily imply a barrier synchronization.3.6 SeekADIO Offset ADIO SeekIndividual(ADIO File fd,ADIO Offset offset, int whence, int*error code)This function can be used to change the position ofthe individual �le pointer. The �le pointer is set ac-cording to the value supplied for whence, which couldbe ADIO SEEK SET, ADIO SEEK CUR, or ADIO SEEK END.If whence is ADIO SEEK SET, the �le pointer is set tooffset bytes from the start of the �le. If whence isADIO SEEK CUR, the �le pointer is set to offset bytesafter its current location. If whence is ADIO SEEK END,the �le pointer is set to offset bytes after the end ofthe �le.3.7 Test and WaitIt is necessary to test the completion of nonblock-ing operations before any of the resources speci�edin the nonblocking routine can be reused. ADIOprovides three kinds of routines for this purpose:a quick test for completion that requires no fur-ther action (ADIO xxxxDone), a test-and-complete(ADIO xxxxIcomplete), and a wait-for-completion(ADIO xxxxComplete). Separate routines exist forread and write operations.int ADIO ReadDone(ADIO Request *request)Similarly ADIO WriteDone.These routines check the request handle to deter-mine whether the operation is complete and requiresno further action. They return true if complete, andfalse otherwise.

int ADIO ReadIcomplete(ADIO Request *request,ADIO Status *status, int *error code)Similarly ADIO WriteIcomplete.If an operation is not complete, the above routinescan be used. Note that these routines do not blockwaiting for the operation to complete. Instead, theyperform some additional processing necessary to com-plete the operation. If the operation is completed,they return true and set the status variable; other-wise, they return false. If an error is detected, theyreturn true and set the error code appropriately.void ADIO ReadComplete(ADIO Request *request,ADIO Status *status, int *error code).Similarly ADIO WriteComplete.These routines block until the speci�ed operation iscompleted and set the status variable. If an error isdetected, they set the error code appropriately andreturn.3.8 File Controlvoid ADIO Fcntl(ADIO File fd, int flag,ADIO Fcntl t *fcntl, int *error code)This routine can be used to set or get informationabout an open �le, such as displacement, etype, �le-type, iomode, access mode, and hints.3.9 MiscellaneousADIO also provides routines for purposes such asdeleting �les, resizing �les, ushing cached data todisks, and initializing and terminating ADIO.void ADIO Delete(char *filename, int*error code)void ADIO Resize(ADIO File fd, ADIO Offsetsize, int *error code)void ADIO Flush(ADIO File fd, int*error code)void ADIO Init(int *argc, char ***argv, int*error code)void ADIO End(int *error code)4 ImplementationTwo aspects are involved in implementing ADIO:implementing an API on top of ADIO and implement-ing ADIO on a �le system. The implementation maybe done by using macros to eliminate the overhead offunction calls (if it is not essential to check the cor-rectness of function arguments).4.1 Implementing an API on Top ofADIOHere we explain how some of the di�erent parallel-I/O APIs can be implemented by using ADIO rou-tines. In particular, we explain how the main featuresof the API map to some feature of ADIO.

4.1.1 MPI-IOMPI-IO [27] maps quite naturally to ADIO, becauseboth MPI-IO and ADIO use MPI to a large extent. Inaddition, we included a number of features in ADIOspeci�cally for being able to implement MPI-IO: dis-placement, etype, �letype, the ability to use explicito�sets as well as �le pointers, and �le delete-on-close.4.1.2 Intel PFSPFS [12] is the parallel �le system on the IntelParagon. In addition to a Unix-like read/write inter-face, PFS also supports several �le-pointer modes thatspecify the semantics of concurrent �le access. TheUnix-like interface and the M UNIX and M ASYNCmodesare straightforward to implement on top of ADIO.M LOG mode can be implemented by emulating shared�le pointers on top of ADIO. M SYNC, M RECORD, andM GLOBAL modes can be implemented by using collec-tive operations.4.1.3 IBM PIOFSPIOFS [11] is the parallel �le system on the IBM SP-2.In addition to a Unix-like read/write interface, PIOFSalso supports logical partitioning of �les. A processorcan independently specify a logical view of the data ina �le, called a sub�le, and then read/write that sub�lewith a single call. It is straightforward to implementthe Unix-like interface of PIOFS on top of ADIO. Thelogical �le views of PIOFS can be mapped to appro-priate MPI derived datatypes and accessed by usingthe noncontiguous read/write calls of ADIO.4.1.4 PASSION and PandaPASSION [25] and Panda [21] are libraries that sup-port input/output of distributed multidimensional ar-rays. I/O of this type involves collective access to (po-tentially) noncontiguous data. ADIO supports bothcollective I/O and noncontiguous accesses; therefore,PASSION and Panda can be implemented by usingappropriate ADIO routines.4.2 Implementing ADIO on a File SystemHere we explain how ADIO can be implemented onPFS, PIOFS, Unix, and NFS �le systems.4.2.1 ADIO on PFSSome ADIO functions, such as blocking and nonblock-ing versions of contiguous reads and writes, can beimplemented by directly using their PFS counterparts.However, for functions not directly supported by PFS,the ADIO implementation must perform the task ofexpressing the ADIO functions in terms of availablePFS calls. For example, noncontiguous requests caneither be translated into several contiguous requestsseparated by seeks or can be implemented by usingoptimizations such as data sieving [23]. Collective op-erations can be implemented by using optimizationssuch as two-phase I/O [3, 24].

4.2.2 ADIO on PIOFSAs in the case of PFS, blocking and nonblocking ver-sions of contiguous reads and writes can be imple-mented by directly using their PIOFS counterparts.Noncontiguous accesses can be implemented, in somecases, by using the logical views supported by PIOFS.In other cases, it may be necessary to implement non-contiguous accesses either in terms of several contigu-ous accesses or by using data sieving. Since PIOFSdoes not directly support collective I/O, the ADIOimplementation can use two-phase I/O for improvingperformance.4.2.3 ADIO on Unix and NFSADIO can be easily implemented on a Unix �le systemthat supports all Unix semantics, such as atomicityand concurrent accesses from multiple processes to a�le. However, the Network File System (NFS), whichis widely used in a workstation environment, does notalways guarantee consistency when multiple processeswrite to a �le concurrently (even to distinct locationsin the �le), because it performs client-side caching [22].To overcome this problem, we implemented ADIO onNFS by using �le locking with the fcntl system call,which disables client-side caching. As a result, all re-quests from clients always go to the server, and con-sistency is maintained. Disabling client-side cachingdecreases the overall performance of NFS, but, nev-ertheless, it is necessary to ensure correctness of theresult in the case of concurrent writes.4.3 Current Status of ImplementationAt present, we have implemented the PFS inter-face and subsets of MPI-IO and PIOFS interfaces ontop of ADIO, and we have implemented ADIO on topof PFS, PIOFS, Unix, and NFS �le systems, as illus-trated in Figure 2. Therefore, we are able to run ap-plications (that use these interfaces) portably on theSP, Paragon, and networks of workstations. We areactively working on implementing the entire MPI-IOinterface on top of ADIO and implementing ADIO onadditional �le systems.5 PerformanceWe studied the performance overhead of ADIO onPIOFS and PFS by using two test programs andone real production parallel application. Performancestudies of ADIO on Unix and NFS are currently inprogress.We used the IBM SP at Argonne and the IntelParagon at Caltech. The parallel I/O systems on thesetwo machines were con�gured as follows during ourexperiments. On the SP, there were eight I/O servernodes for PIOFS, each with 3Gbytes of local SCSIdisks, and the operating system was AIX 3.2.5. Onthe Paragon, there were 16 I/O nodes for PFS, eachconnected to a 4.8-Gbyte RAID-3 disk array, and theoperating system was Paragon/OSF R1.3.3. On bothmachines, users were not allowed to run compute jobson the I/O nodes.The performance results presented below are froman implementation of ADIO using functions, not

PIOFSPFS MPI-IO

PIOFSNFSUnixPFS

ADIOFigure 2: Current status of implementationmacros; the results may be slightly better if we usemacros.5.1 Test ProgramsIn the �rst program, called Program I, each processaccesses its own independent �le. Each process writes1Mbyte of data to its local �le and reads it back, andthis writing and reading procedure is performed tentimes. We wrote three di�erent versions of this pro-gram: for PFS, PIOFS, and MPI-IO.The second program, called Program II, is similarto Program I except that all processes access a com-mon �le. The data from di�erent processes is stored inthe �le in order of process rank. Each process writes1Mbyte of data to a common �le and reads it back,and this writing and reading procedure is performedten times. We also wrote three di�erent versions ofthis program: for PFS, PIOFS, and MPI-IO.To determine the overhead due to ADIO, we ranthree cases of each program on the SP and Paragon.The three cases run on the SP were as follows:1. The PIOFS version run directly on PIOFS.2. The PIOFS version run through ADIO on PIOFS(PIOFS {> ADIO {> PIOFS). This case showsthe overhead due to ADIO.3. The MPI-IO version run through ADIO on PI-OFS (MPI-IO {> ADIO {> PIOFS). This caseshows the overhead of using the MPI-IO interfacealong with ADIO.Table 1 shows the I/O time for all three cases of thetwo test programs, run on 16 processors on the SP.Clearly, the overhead of using ADIO was negligible.The three cases run on the Paragon were as follows:1. The PFS version run directly on PFS.2. The PFS version run through ADIO on PFS (PFS{> ADIO {> PFS).3. The MPI-IO version run through ADIO on PFS(MPI-IO {> ADIO {> PFS).

Table 1: I/O time for the test programs on 16 pro-cessors on the SP. The three cases are: PIOFS ver-sion run directly, PIOFS version run through ADIOon PIOFS, and MPI-IO version run through ADIO onPIOFS. Time in seconds.Pro- PIOFS PIOFS{ADIO MPI-IO{ADIOgram time time ovhd. time ovhd.I 7.42 7.44 0.27% 7.44 0.27%II 8.44 8.69 2.96% 8.67 2.72%Table 2: I/O time for the test programs on 16 proces-sors on the Paragon. The three cases are: PFS versionrun directly, PFS version run through ADIO on PFS,and MPI-IO version run through ADIO on PFS. Timein seconds.Pro- PFS PFS{ADIO MPI-IO{ADIOgram time time ovhd. time ovhd.I 14.03 14.43 2.85% 14.41 2.78%II 12.19 12.38 1.56% 12.31 0.98%Table 2 shows the I/O time for all three cases ofthe two test programs, run on 16 processors on theParagon. The overhead of using ADIO was negligibleon the Paragon as well. For both test programs, theoverhead of using MPI-IO through ADIO was slightlylower than that of PFS through ADIO, possibly be-cause the MPI-IO versions had fewer I/O functioncalls than the PFS versions. The MPI-IO versionsdid not use any explicit seek functions. Instead, theyused MPIO Read and MPIO Write functions that use ano�set to indicate the location in the �le for reading orwriting. The PFS versions, however, used seek callsin addition to the read and write calls.5.2 Production ApplicationThe application we used is a parallel productioncode developed at the University of Chicago to tostudy the gravitational collapse of self-gravitatinggaseous clouds. Details about the application and itsI/O characteristics can be found in [26].The application uses several three-dimensional ar-rays that are distributed in a (block,block,block) fash-ion. The algorithm is iterative and, every few itera-tions, several arrays are written to �les for three pur-poses: data analysis, checkpointing, and visualization.The storage order of data in �les is required to be thesame as it would be if the program were run on a sin-gle processor. The application uses two-phase I/O forreading and writing distributed arrays, with I/O rou-tines optimized separately for PFS and PIOFS [26].I/O is performed by all processors in parallel.We ran three cases of the application on the SP andParagon. The three cases on the SP were as follows:1. The PIOFS version run directly.

Table 3: I/O time for the production application on 16processors on the SP. The three cases are: PIOFS ver-sion run directly, PIOFS version run through ADIO onPIOFS, and the Intel PFS version run through ADIOon PIOFS. Time in seconds.PIOFS PIOFS{ADIO PFS{ADIOtime time ovhd. time ovhd.11.22 11.47 2.23% 11.68 4.10%Table 4: I/O time for the production application on 16processors on the Paragon. The three cases are: PFSversion run directly, PFS version run through ADIOon PFS, and the IBM PIOFS version run throughADIO on PFS. Time in seconds.PFS PFS{ADIO PIOFS{ADIOtime time ovhd. time ovhd.22.28 22.78 2.24% 22.92 2.87%2. The PIOFS version run through ADIO on PIOFS(PIOFS {> ADIO {> PIOFS).3. The Intel PFS version run through ADIO on PI-OFS (PFS {> ADIO {> PIOFS).The three cases on the Paragon were as follows:1. The PFS version run directly.2. The PFS version run through ADIO on PFS (PFS{> ADIO {> PFS).3. The IBM PIOFS version run through ADIO onPFS (PIOFS {> ADIO {> PFS).We could not run an MPI-IO version, because the ap-plication has not yet been ported to MPI-IO.On both machines, we ran the application on 16processors using a mesh of size 128 � 128 � 128 gridpoints. The application started by reading a restart�le and ran for ten iterations, dumping arrays ev-ery �ve iterations. A total of 50Mbytes of data wasread at the start, and around 100Mbytes of data waswritten every �ve iterations. The sizes of individ-ual read/write operations were as follows: there wasone small read of 24bytes and several large reads of512Kbytes; there were a few small writes of 24bytesand several large writes of 128Kbytes and 512Kbytes.Tables 3 and 4 show the I/O time taken by the ap-plication on the SP and Paragon, respectively. Theoverhead due to ADIO was very small on both sys-tems. In addition, ADIO allowed us to run the SPversion of the application on the Paragon and theParagon version on the SP, both with very low over-head.

6 Conclusions and Future WorkWe have described a strategy for implementingportable parallel-I/O APIs by using an abstract-deviceinterface for parallel I/O, called ADIO. We have ex-plained the design of ADIO and its use in implement-ing several APIs. Our performance studies indicatethat the ADIO approach enables portable implemen-tations with very low overhead.We believe that ADIO has tremendous potentialin solving many of the problems faced by applicationprogrammers regarding lack of portable standard APIfor parallel I/O. Therefore, we view the work describedin this paper as only the beginning of a large project.We intend to develop a complete implementation ofMPI-IO and track the interface de�nition as it evolvesthrough the MPI Forum. We also intend to implementADIO on other �le systems for greater portability. Weintend to distribute our code freely together with theMPICH implementation of MPI [8].We note that the ADIO interface de�ned in thispaper may change as our implementations and stud-ies reveal the need for providing additional/di�erentfunctionality at the ADIO level. The latest de�ni-tion of the interface can always be obtained fromhttp://www.mcs.anl.gov/home/thakur/adio.AcknowledgmentsThis work was supported by the Mathematical, In-formation, and Computational Sciences Division sub-program of the O�ce of Computational and Tech-nology Research, U.S. Department of Energy, underContract W-31-109-Eng-38; and by the Scalable I/OInitiative, a multiagency project funded by the Ad-vanced Research Projects Agency (contract numberDABT63-94-C-0049), the Department of Energy, theNational Aeronautics and Space Administration, andthe National Science Foundation.References[1] R. Bennett, K. Bryant, A. Sussman, R. Das, andJ. Saltz. Jovian: A Framework for OptimizingParallel I/O. In Proceedings of the Scalable Par-allel Libraries Conference, pages 10{20, October1994.[2] M. Carey, D. DeWitt, M. Franklin,N. Hall, M. McAuli�e, J. Naughton, D. Schuh,M. Solomon, C. Tan, O. Tsatalos, S. White, andM. Zwilling. Shoring Up Persistent Applications.In Proceedings of the ACM SIGMOD Interna-tional Conference on Management of Data, pages383{394, 1994.[3] J. del Rosario, R. Bordawekar, and A. Choud-hary. Improved Parallel I/O via a Two-PhaseRuntime Access Strategy. In Proceedings of theWorkshop on I/O in Parallel Computer Systemsat IPPS '93, pages 56{70, April 1993.[4] G. Gibson et al. The Scotch Parallel Storage Sys-tems. In Proceedings of 40th IEEE Computer So-ciety International Conference (COMPCON 95),pages 403{410, Spring 1995.

[5] P. Corbett et al. Proposal for a Com-mon Parallel File System Programming Inter-face, Version 0.60. On the World-Wide Webat http://www.cs.princeton.edu/sio, June1996.[6] I. Foster and J. Nieplocha. ChemIO: High-Performance I/O for Computational Chem-istry Applications. World-Wide Web pageat http://www.mcs.anl.gov/chemio, February1996.[7] N. Galbreath, W. Gropp, and D. Levine.Applications-Driven Parallel I/O. In Proceedingsof Supercomputing '93, pages 462{471, November1993.[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.A High-Performance, Portable Implementationof the MPI Message-Passing Interface Standard.Technical Report MCS{P567{0296, Mathemat-ics and Computer Science Division, Argonne Na-tional Laboratory, February 1996.[9] R. Grossman and X. Qin. Ptool: A Scalable Per-sistent Object Manager. In Proceedings of ACMSIGMOD 94, 1994.[10] J. Huber, C. Elford, D. Reed, A. Chien, andD. Blumenthal. PPFS: A High PerformancePortable Parallel File System. In Proceedings ofthe 9th ACM International Conference on Super-computing, pages 385{394, July 1995.[11] IBM Corp. IBM AIX Parallel I/O File System:Installation, Administration, and Use. DocumentNumber SH34-6065-01, August 1995.[12] Intel Scalable Systems Division. Paragon SystemUser's Guide. Order Number 312489-004, May1995.[13] J. Karpovich, A. Grimshaw, and J. French. Ex-tensible File Systems ELFS: An Object-OrientedApproach to High Performance File I/O. InProceedings of the Ninth Annual Conferenceon Object-Oriented Programming Systems, Lan-guages, and Applications, pages 191{204, Octo-ber 1994.[14] D. Kotz. Disk-directed I/O for MIMD Multipro-cessors. In Proceedings of the 1994 Symposium onOperating Systems Design and Implementation,pages 61{74, November 1994. Updated as Tech-nical Report PCS{TR94{226, Dept. of ComputerScience, Dartmouth College.[15] O. Krieger and M. Stumm. HFS: A Performance-Oriented Flexible File System Based on Building-Block Compositions. In Proceedings of FourthWorkshop on Input/Output in Parallel and Dis-tributed Systems, pages 95{108, May 1996.[16] Message Passing Interface Forum. MPI: AMessage-Passing Interface Standard. Version 1.1,June 1995.

[17] S. Moyer and V. Sunderam. PIOUS: A Scal-able Parallel I/O System for Distributed Comput-ing Environments. In Proceedings of the ScalableHigh-Performance Computing Conference, pages71{78, 1994.[18] N. Nieuwejaar and D. Kotz. The Galley ParallelFile System. In Proceedings of the 10th ACM In-ternational Conference on Supercomputing, May1996.[19] N. Nieuwejaar and D. Kotz. Low-level Interfacesfor High-level Parallel I/O. In Proceedings of theThird Annual Workshop on I/O in Parallel andDistributed Systems, pages 47{62, April 1995.[20] J. Pool. Scalable I/O Initiative. World-WideWebpage at http://www.cacr.caltech.edu/SIO,September 1995.[21] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, andM. Winslett. Server-Directed Collective I/O inPanda. In Proceedings of Supercomputing '95, De-cember 1995.[22] H. Stern. Managing NFS and NIS. O'Reilly &Associates, Inc., 1991.[23] R. Thakur, R. Bordawekar, A. Choudhary,R. Ponnusamy, and T. Singh. PASSION Run-time Library for Parallel I/O. In Proceedings ofthe Scalable Parallel Libraries Conference, pages119{128, October 1994.[24] R. Thakur and A. Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-Core Arrays. Technical Report CACR{103, Scal-able I/O Initiative, Center for Advanced Com-puting Research, Caltech, Revised May 1996. (Toappear in Scienti�c Programming).[25] R. Thakur, A. Choudhary, R. Bordawekar,S. More, and S. Kuditipudi. Passion: OptimizedI/O for Parallel Applications. IEEE Computer,29(6):70{78, June 1996.[26] R. Thakur, W. Gropp, and E. Lusk. An Experi-mental Evaluation of the Parallel I/O Systems ofthe IBM SP and Intel Paragon Using a Produc-tion Application. In Proceedings of the 3rd Inter-national Conference of the Austrian Center forParallel Computation (ACPC) with special em-phasis on Parallel Databases and Parallel I/O,September 1996.[27] The MPI-IO Committee. MPI-IO: A Parallel FileI/O Interface for MPI, Version 0.5. World-WideWeb http://lovelace.nas.nasa.gov/MPI-IO,April 1996.[28] S. Toledo and F. Gustavson. The Design and Im-plementation of SOLAR, a Portable Library forScalable Out-of-Core Linear Algebra Computa-tions. In Proceedings of Fourth Workshop on In-put/Output in Parallel and Distributed Systems,pages 28{40, May 1996.

