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Abstract

High Performance Fortran (HPF') does not allow efficient expression of mixed task/data-
parallel computations or the coupling of separately compiled data-parallel modules. In
this paper, we show how a coordination library implementing the Message Passing In-
terface (MPI) can be used to represent these common parallel program structures. This
library allows data-parallel tasks to exchange distributed data structures using calls to
simple communication functions. We present microbenchmark results that characterize
the performance of this library and that quantify the impact of optimizations that allow
reuse of communication schedules in common situations. In addition, results from two-
dimensional FFT, convolution, and multiblock programs demonstrate that the HPF/MPI
library can provide performance superior to that of pure HPF. We conclude that this
synergistic combination of two parallel programming standards represents a useful ap-
proach to task parallelism in a data-parallel framework, increasing the range of problems
addressable in HPF without requiring complex compiler technology.



1 Introduction

High Performance Fortran (HPF) provides a portable, high-level notation for expressing data-
parallel algorithms [14]. An HPF computation has a single-threaded control structure, global
name space, and loosely synchronous parallel execution model. Many problems requiring high-
performance implementations can be expressed succinctly in HPF.

However, HPF does not adequately address task parallelism or heterogeneous computing.
Examples of applications that are not easily expressed using HPF alone [5, 11] include multidis-
ciplinary applications where different modules represent distinct scientific disciplines, programs
that interact with user interface devices, applications involving irregularly structured data such
as multiblock codes, and image-processing applications in which pipeline structures can be
used to increase performance. Such applications must exploit task parallelism for efficient exe-
cution on multicomputers or on heterogeneous collections of parallel machines. Yet they may
incorporate significant data-parallel substructures.

These observations have motivated proposals for the integration of task and data paral-
lelism. Two principal approaches have been investigated. Compiler-based approaches seek to
identify task-parallel structures automatically, within data-parallel specifications [8, 11, 16],
while language-based approaches provide new language constructs for specifying task paral-
lelism explicitly [3, 5, 15, 20]. Both approaches have shown promise in certain application
areas, but each also has disadvantages. Compiler-based approaches complicate compiler devel-
opment and performance tuning, while language-based approaches also introduce the need to
standardize new language features.

In this paper, we propose an alternative approach to task/data-parallel integration, based
on specialized coordination libraries designed to be called from data-parallel programs. These
libraries support an execution model in which disjoint process groups (corresponding to data-
parallel tasks) interact with each other by calling group-oriented communication functions. In
keeping with the sequential reading normally associated with data-parallel programs, each task
can be read as a sequential program that calls equivalent single-threaded coordination libraries.
The potentially complex communication and synchronization operations required to transfer
data among process groups are encapsulated within the coordination library implementations.

To illustrate and explore this approach, we have defined and implemented a library that
allows the use of a subset of the Message Passing Interface (MPI) [10] to coordinate HPF tasks.
MPI standardizes an interaction model that has been widely used and is well understood within
the high-performance computing community. It defines functions for both point-to-point and
collective communication among tasks executing in separate address spaces; its definition per-
mits efficient implementations on both shared and distributed-memory computers [9]. Our
HPF/MPI library allows these same functions to be used to communicate and synchronize
among HPF tasks. This integration of two parallel programming standards allows us to incor-
porate useful new functionality into HPF programming environments without requiring complex
new directives or compiler technology. We argue that the approach provides a conceptually eco-
nomical and hence easily understood model for parallel program development and performance
tuning.

In the rest of this paper, we describe the design and implementation of our HPF/MPI
library, provide an example of its use, and evaluate its performance. In the implementation
section, we focus on issues associated with point-to-point communication and describe tech-
niques for determining data distribution information and for communicating distributed data
structures efficiently from sender to receiver. We also show how specialized MPI communication



functions can be used to trigger optimizations that improve performance in typical communica-
tion structures. We use microbenchmark experiments to quantify the costs associated with our
techniques and the benefits of our optimizations. We also present results from multiblock and
two-dimensional fast Fourier transform (FFT) and convolution codes that demonstrate that
HPF/MPI can indeed offer performance advantages relative to pure HPF.

In brief, the contributions of this paper are as follows:

1. The definition of a novel parallel programming model in which group-oriented communi-
cation libraries are used to coordinate the execution of process groups corresponding to
data-parallel tasks.

2. The demonstration that an HPF binding for MPI allows the range of problems efficiently
expressible in HPF to be extended without excessive conceptual or implementation com-
plexity.

3. The illustration and evaluation using realistic applications of design techniques for achiev-
ing communication between data-parallel tasks, for integrating MPI library calls into HPF
programs, and for exploiting information provided by MPI communication calls to im-
prove communication performance.

2 Data and Task Parallelism

We motivate our approach to the integration of task and data parallelism by discussing data
parallelism and HPF and then reviewing approaches to the extension of the data-parallel model.

2.1 Data Parallelism and HPF

Data-parallel languages allow programmers to exploit the concurrency that derives from the
application of the same operation to all or most elements of large data structures [12]. Data-
parallel languages have significant advantages relative to the lower-level mechanisms that might
otherwise be used to develop parallel programs. Programs are deterministic and have a sequen-
tial reading. This simplifies development and allows reuse of existing program development
methodologies—and, with some modification, tools. In addition, programmers need not spec-
ify how data is moved between processors. On the other hand, the high level of specification
introduces significant challenges for compilers, which must be able to translate data-parallel
specifications into efficient programs [1, 13, 18, 22].

High Performance Fortran [14] is perhaps the best-known data-parallel language. HPF
exploits the data parallelism resulting from concurrent operations on arrays. These opera-
tions may be specified either explicitly by using parallel constructs (e.g., array expressions and
FORALL) or implicitly by using traditional DO loops.

HPF addresses the problem of efficient implementation by providing directives that program-
mers can use to guide the parallelization process. In particular, distribution directives specify
how data is to be mapped to processors. An HPF compiler normally generates a single-program,
multiple-data (SPMD) parallel program by applying the owner computes rule to partition the
operations performed by the program; the processor that “owns” a value is responsible for
updating its value [1, 18, 22]. The compiler also introduces communication operations when
local computation requires remote data. An attractive feature of this implementation strategy



I HPF$ processors pr(8)
compl ex A(8, 8)

| HPF$ distribute A(BLOCK, *) A
doi =1, 100
call read(A)
call rowmft(8, A

A = transpose(A)

call rowfft(8, A

call wite(A
end do

Figure 1: An HPF implementation of a 2-D FFT, in this case configured to use 8 processors and to
operate on an array of size 8x8. Shading indicates the elements of the array A that are mapped to
processor 0.

is that the mapping from user program to executable code is fairly straightforward. Hence,
programmers can understand how changes in program text affect performance.

We use a two-dimensional fast Fourier transform (2-D FFT) to illustrate the application
of HPF. The HPF implementation presented in Figure 1 calls the subroutine rowfft to apply
a one-dimensional (1-D) FFT to each row of the 2-D array A, and then transposes the array
and calls rowfft again to apply a 1-D FFT to each column. The 1-D FFTs performed within
rowfft are independent of each other and can proceed in parallel. The PROCESSORS directive
indicates that the program is to run on 8 virtual processors; the DISTRIBUTE directive indicates
that A is distributed by row. This distribution allows the rowfft routine to proceed without
communication. However, the transposition A=transpose(4) involves all-to-all communication.

2.2 Task Parallelism

Certain important program structures and application classes are not directly expressible in
HPF [5, 11]. For example, both real-time monitoring and computational steering require that
programmers connect a data-parallel simulation code to another sequential or parallel program
that handles I/O. The simulation task periodically sends arrays to the I/O task, which processes
them in some way (e.g., displays them) and perhaps also passes control information back to the
simulation. One example of an application domain in which such dynamic control is desirable
is automotive design. Figure 2 depicts static output from an HPF implementation of the
CHAD code, in which the air velocity tracers (arrows) were generated in a time-consuming
postprocessing phase. We plan to use our HPF/MPI library to introduce a computational
steering capability that allows scientists to place and visualize tracers dynamically, during
program execution.

As a second example, we consider the 2-D FFT once again. Assume an array of size Nx N
and P processors. Because the computation associated with the FFT scales as N?log N while
the communication due to the transpose scales only as max(N?, P?), the data-parallel algorithm
described in Section 2.1 is efficient when N is much larger than P. However, signal-processing
systems must often process quickly a stream of arrays of relatively small size. (The array
size corresponds to the sensor resolution and might be 256256 or less.) In these situations,



Figure 2: Air velocities in a passenger vehicle duct, as computed by the CHAD fluid dynamics

program (image courtesy of T. Canfield)



an alternative pipelined algorithm is often more efficient [4, 11]. The alternative algorithm
partitions the FFT computation among the processors such that P/2 processors perform the
read and the first set of 1-D FFTs, while the other P/2 perform the second set of 1-D FFTs and
the write. At each step, intermediate results are communicated from the first to the second set
of processors. These intermediate results must be transposed on the way; since each processor
set has size P/2, P?/4 messages are required. In contrast, the data-parallel algorithm’s all-to-
all communication involves P(P-1) messages, communicated by P processors: roughly twice as
many per processor.

These two examples show how both modularity and performance concerns can motivate us
to structure programs as collections of data-parallel tasks. How are such task/data-parallel
computations to be represented in a data-parallel language such as HPF? Two principal ap-
proaches have been proposed: implicit approaches based on compiler technology and explicit
approaches based on language extensions or programming environments for task coordination.

Compiler-based approaches. Advocates of implicit, compiler-based approaches seek to
develop more sophisticated compilers capable of extracting task-parallel algorithms from data-
parallel specifications. Frequently, they will use new directives to trigger the application of
specific transformations. This general approach has been used to exploit pipeline [11] and
functional parallelism [16], for example.

Implicit, compiler-based approaches maintain a deterministic, sequential reading for pro-
grams. However, these approaches also tend to increase the complexity of the mapping from
user program to executable code. This increased complexity can be a disadvantage for both
programmers and compiler writers. For programmers, it becomes more difficult to understand
how changes in program source affect achieved performance, and hence more difficult to write
efficient programs. For compiler writers, it becomes more difficult to build compilers that gen-
erate efficient code, particularly because optimization techniques for different constructs and
situations tend to interact in complex ways.

Language-based approaches. Advocates of explicit, language-based approaches propose
new language constructs that allow programmers to specify the creation and coordination of
tasks explicitly. The basic concept is that of a coordination language [2, 6], except that because
the tasks are themselves data-parallel programs, we obtain a hierarchical execution model in
which task-parallel computation structures orchestrate the execution of multiple data-parallel
tasks.

Language-based approaches have been proposed that use a graphical notation [3], chan-
nels [5], remote procedure calls [15], and a simple pipeline notation [20] to connect data-parallel
computations. Promising results have been obtained. Nevertheless, there is as yet no consensus
on which language constructs are best. Since successful adoption depends on consensus and
then standardization, language-based approaches clearly are not a near-term solution.

3 An HPF Binding for MPI

Explicit task-parallel coordination libraries represent an alternative approach to the integration
of task and data parallelism that avoids the difficulties associated with compiler-based and
language-based techniques. We use the example of an HPF binding for MPI to illustrate the
approach and to explore practical issues associated with its implementation.



I HPF$ processors pr(4) A -
conpl ex A(8, 8)
I HPF$ di stribute A(BLOCK, *)
doi =1, 100
call read(A)
call rowfft(8, A
call MPI _Send(A, 8*8, MPI _COWPLEX, 1, 99
MPI _COMM WORLD, i err

end do

I HPF$ processors pr(4)
conpl ex B(8, 8)
I HPF$ distribute B(*, BLOCK)
doi =1, 100
call MPI _Recv(B, 88, MPl _COVPLEX, 0, 99,
I COMM WORLD, st atus,ierr)
call colfft(8, B)
call wite(B)
end do

Figure 3: HPF/MPI implementation of a task/data-parallel pipelined 2-D FFT configured as two
tasks, each on four processors and operating on arrays of size 8 X8. Shading indicates array elements
mapped to processor 0 in task 0 and in task 1. Note that the arrays A and B are mapped to disjoint
sets of processors.

MPI provides a set of functions, datatypes, and protocols for exchanging data among and
otherwise coordinating the execution of multiple tasks; a “binding” defines the syntax used for
MPI functions and datatypes in a particular language. Previous MPI implementations have
supported bindings only for the sequential languages C and Fortran 77 [9]. However, there is
no reason why MPI functions may not also be used for communication among data-parallel
tasks. Our HPF binding for MPI makes this possible. It is intended to be used as follows:

e A programmer initiating a computation requests (using some implementation-dependent
mechanism) that a certain number of tasks be created; each task executes a specified
HPF program on a specified number of processors.

o Tasks can call MPI functions to exchange data with other tasks, using either point-
to-point or collective communication operations. In point-to-point communications, a
sender and a receiver cooperate to transfer data from sender to receiver; in collective
communications, multiple tasks cooperate—for example, to perform a reduction.

When reading HPF/MPI programs, HPF directives can be ignored, and code understood as if
it implements a set of sequential tasks that communicate using MPI functions.

Figure 3 uses HPF/MPI to implement the pipelined 2-D FFT algorithm described in Sec-
tion 2.2. Task 0 calls rowfft to apply a 1-D FFT to each row of the array A (8x8 complex
numbers, distributed by row) and then calls the MPI function MPI_Send to send the contents
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Figure 4: The steps executed during an HPF/MPI communication function. The rounded boxes
distinguish the steps involving communication. The sending and receiving sides differ only in the last
two steps.

of A to task 1. Task 1 implements the transpose by using MPI Recv to receive this data from
task 0 into an array B, distributed by column, and then calls a subroutine colfft to apply a
1-D FFT to each column. The value 99 is a message tag.

A comparison with Figure 1 shows that the HPF/MPI version is not significantly more
complex. In essence, we have replaced the transpose in the HPF program with two subroutine
calls. Notice that these calls specify only the logical transfer of data from one data-parallel task
to another: the potentially complex communication operations required to achieve this transfer
are encapsulated within the HPF/MPI library. This example illustrates how a coordination
library can gain leverage from a data parallel language’s high-level support for the management
of distributed data structures, while providing an explicit, easily-understood notation for spec-
ifying task-parallel computations. In more complex situations—such as multiblock codes— an
HPF/MPI formulation can actually be more succinct than a pure HPF version.

4 Implementation

An HPF/MPI implementation must address a variety of HPF- and MPI-specific issues, particu-
larly at the interface between HPF and MPI, as well as general issues relating to the transfer of
distributed data structures among process groups. We briefly describe the techniques that we
have developed to address these issues. We focus on point-to-point communication and consider
just one of several possible implementation approaches, namely that illustrated in Figure 4. In
the following, we describe each of the six steps involved in this figure, looking at the actions
performed during a send operation.



1. Dustribution inquiry. Standard HPF inquiry intrinsics are called to determine the distri-
bution of the array that is to be communicated.

2. HPF extrinsic call. The communication operation is invoked as an HPF extrinsic call to
a procedure in the HPF/MPI library. The procedure is invoked in “local” mode, meaning
that a separate thread of control executes on each processor on which the invoking task
is running [14].

3. Descriptor exchange. Sending processors exchange distribution information with receiving
processors. In general, each sending processor need communicate only with a subset of
the receiving processors.

4. Communications schedule. Sending processors use the distribution information obtained
in Step 3 to determine which subsections of the input array should be sent to each receiving
processor.

5. Buffer pack. The schedule information computed in Step 4 is used to pack the array
elements required by a particular receiving processor into a buffer. (Steps 5 and 6 are
repeated once for each processor to which data must be sent.)

6. Data send. The contents of the buffer packed in Step 5 are sent to the appropriate
receiving processor.

We have implemented a prototype HPF/MPI library using these techniques. This library
supports a subset of MPI’s point-to-point communication functions and operates with pghpf
(version 2.0), a commercial HPF compiler developed by the Portland Group, Inc. Our library
requires minor modifications to the pghpf runtime system to create the initial set of tasks when
a computation is started and to provide information about which tasks execute on which pro-
cessors. The communication schedules required in Step 4 are computed with algorithms based
on the FALLS (FAmiLy of Line Segments) representation of Ramaswamy and Banerjee [17].
These algorithms incorporate efficient and general techniques for computing the minimal se-
quence of communication operations required to perform a redistribution. Note that while the
implementation strategy of Figure 4 is efficient for typical multicomputers, other strategies are
possible and may perform better in some situations. For example, in a low-latency network
it may be useful to pipeline communications, while in a low-connectivity network it may be
worthwhile to gather all data to one node, perform the transfer by using a single message, and
then scatter from one receiving node.

The techniques just described can be refined and optimized in various ways to improve
performance in specific situations. For example, MPI provides functions MPI_Send_init and
MPI Recv_init to define what are called persistent requests; once defined, these requests can
be executed repeatedly using a third function, MPI_Start. As illustrated in Figure 5, MPI
programmers can use these functions to indicate that the same data transter will be performed
many times. An HPF/MPI implementation of these calls can compute communication schedule
information once (within the Init functions) and subsequently reuse this information (within
MPI_Start) so that costs associated with Steps 1, 3, and 4 are amortized over many communi-
cations.



I HPF$ processors pr(4)
conpl ex A(8, 8)
i nt eger request
I HPF$ di stribute A(BLOCK, *)
call MPI _Send_init (A 88, MPl _COWLEX, 1, 99,
MPI _COVM WORLD, r equest ,ierr)
doi =1, 100
call read(A)
call rowfft(8, A
call MPI_Start(request,ierr)
end do

Figure 5: An alternative HPF/MPI formulation of the sending side of the pipelined 2-D FFT, in which
MPI Send_init is used to define a persistent request that is then executed repeatedly by MPI_Start.

5 Performance Studies

We use a simple microbenchmark to quantify the costs associated with the implementation
scheme just described. This “ping-pong” program, presented in Figure 6, exchanges repeatedly
a 2-D array of fixed size between two tasks, where in each communication the array is distributed
(BLOCK, *) in the sender and (*,BLOCK) in the receiver. We run this program for arrays of
varying size and for varying numbers of processors within each task, allowing us to measure the
total time per one-way communication in different situations. We also measure the time spent
in the six steps illustrated in Figure 4. All experiments are performed on the Argonne IBM
SP2. which contains 128 Power 1 processors connected by an SP2 multistage crossbhar switch.
We record the maximum execution time across all processors.

Figure 7 shows our results. In studying these results, we first note that for small problem
size (N), cost increases with number of processors (P), while for large N, costs decreases with P.
These results are to be expected: for small NV, the dominant contributor to total communication
cost is the message startup time, or latency, which increases with P; for large N, the dominant
contributor is the message transfer time, which is proportional to message length and therefore
decreases with P.

It is useful to relate achieved performance to the sources of the various cost components.
Steps 1, 3, and 4 are associated with determining how to perform a communication and can be
avoided if persistent communications are used. These three components are shown uppermost in
each bar, which in most cases allows us to distinguish the costs for nonpersistent and persistent
communication. We note, however, that the time for Step 3 (descriptor exchange) includes
synchronization delays resulting from extra processing performed at receiving processors in
other steps, such as communication and buffer unpacking at the end of the receive. Hence the
high Step 3 times for large N and small P are an artifact of the experimental protocol, not a
sign of inefficiency in the implementation of descriptor exchange.

Step 2 (HPF extrinsic call) represents the costs associated with the extrinsic interface.
This component represents a fixed cost for multiple subroutine calls, plus a per-word overhead
incurred by the use of the HPF extrinsic subroutine interface. Because the pghpf compiler
uses a specialized internal representation for arrays, it typically must copy a distributed array
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I HPF$ processors pr(P)
real From(N,N), To(N N
I'HPF$ distribute From(BLOCK, *), To(*, BLOCK)
call MPI Init(ierr)
cal |l MPI _Conm Rank(MPI _COVM WORLD, nyi d,ierr)
if (nyid .eq. 0) then
doi =1, 100
call MPI _Send(From N*N, VPl _REAL, 1, 99
MPI _COVM WORLD, i err)
call MPI _Recv(To, NN, MPI _REAL, 1, 99,
MPI _COVM WORLD, status,ierr)
end do
el se
doi =1, 100
call MPI _Recv(To, NN, MPI _REAL, 0, 99,
MPI _COVM WORLD, status,ierr)
call MPI _Send( From N*N, MPl _REAL, 0, 99
MPI _COVM WORLD, i err)
end do
endi f
call MPI _Finalize(ierr)
end

Figure 6: The microbenchmark used to quantify HPF/MPI communication costs. This program is
intended to execute as two tasks. MPI_Init and MPI _Finalize set up and shut down the MPI library,
respectively, while MPI_Comm_rank returns the rank of the calling task (0 or 1 in this case).
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Figure 7: Time required for a one-way HPF/MPI point-to-point communication on an IBM
SP2, for various array sizes and numbers of processors in the sending and receiving tasks.
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passed as an extrinsic procedure’s input argument into one contiguous region, to preserve
the property of array element sequence association assumed within Fortran 77; return array
arguments are similarly copied upon extrinsic subroutine return. Both the subroutine calls
and the copying represent overhead that could, in principle, be avoided by a tighter coupling
of HPF and the MPI library. (For example, buffer packing and unpacking operations could
be performed directly on the pghpf internal array representation.) When P=/ and N=16
(1 KB data), Step 2 costs 200 microseconds; when P=1 and N=1024 (4 MB data), the cost is
33 milliseconds. These data suggest a fixed cost of roughly 200 microseconds and an incremental
cost of 0.008 microseconds/byte (106 MB/sec bandwidth).

Step 5 (Buffer pack/unpack) corresponds to the costs incurred when transferring data be-
tween potentially noncontiguous locations in an array and a communication buffer. Our im-
plementation performs these transfers explicitly in all cases; optimized implementations might
be able to avoid this extra copying for some distributions on some platforms. As the amount
of copying performed in Step 5 appears to be equivalent to that performed in the extrinsic
interface, we might expect Steps 2 and 5 to have similar costs. In practice, we find that for
large messages Step 2 runs at about 106 MB/sec while Step 5 achieves only 58 MB/sec. We are
currently investigating the reason for this difference, which we suspect is due to more highly
optimized copying routines in pghpft.

The final component is the actual communication. Since we always use a direct commu-
nication structure, we expect cost to be roughly Pt; + (N?/P)t,, where P is the number of
processors per task, t; is the per-message startup cost, and ¢,, is the per-word data transfer
time. The experimental data fit this model reasonably well.

Overall, we see that the persistent communication optimization can make a large difference
for small N (up to 40-60 percent, depending on P) but has progressively less impact as N
increases, always accounting for less than 25 percent for N>256. FExtrinsic call and buffer
pack /unpack overheads vary significantly with N and P, peaking at around 50 percent of the
time remaining once the persistent communication optimization has been applied. For N=1024
and P=1, we achieve a transfer rate of 12.8 MB/sec without the persistent communication
optimization; the low-level MPICH library on which our HPF/MPI library is based achieves
30 MB/sec in this situation.

In summary, the microbenchmark results show that the persistent communication optimiza-
tion provides significant benefits, particularly for small arrays; that our HPF/MPI implemen-
tation achieves reasonable performance for small arrays when the persistent communication
optimization is applied, and for large arrays in all cases; and that there is considerable benefit
to be gained from a tighter coupling of HPF and MPI implementations.

6 Larger Programs

We also studied the performance of HPF/MPI implementations of 2-D FEFT, 2-D convolution,
and multiblock codes, comparing each with an equivalent pure HPF program. In each case,
we employ the persistent communication optimization when transferring data between tasks.
Our results demonstrate that in most instances the HPF/MPI library achieves performance
superior to that of pure HPF.

2-D FFT. For our experiments, we replace the read call in the 2-D FFT with a statement
that initializes array A, and eliminate the write call entirely. The HPF/MPI code is executed

13



32 by 32 REAL

64 by 64 REAL

5.0 T 5" 20.0 ‘ ‘ ‘
q :

40 I7q ) 15.0 |9 -
\ O ',\

3.0 - a‘ - \ O---eoe o HPF

N o 10.0 - | -
2.0 - - 0\_ o———o HPF/MPI
\g rrrrrrrrrrrr o
10 L | 50 - —
0.0 I L 1 1 1 0.0 1 1 1

128 by 128 REAL

0 10 20 30

40

100.0 — 500.0 —
. L
S ] _ o _
g 800 400.0
B2 a ‘
= 600 @ - 3000 | .
£ 400 % 42000 4 :
= 200 b . 100.0 - ‘b .
L R i o] L RN
—0 O e a
0.0 L 1 L 1 1 0.0 1 L 1 |

256 by 256 REAL

Number of Processors

Figure 8: Execution time per input array for HPF and HPF/MPI implementations of the 2-D FFT
application, as a function of the number of processors. Results are given for different problem sizes.

as a pipeline of two tasks, with an equal number of processors assigned to each task. Figure 8
presents our results, which are performed for a number of images large enough to render pipeline
startup and shutdown costs insignificant. As expected, the HPF/MPI program is faster than
the HPF code for larger numbers of processors and smaller problems.

Convolution. Convolution is a standard technique used to extract feature information from
images [4, 19]. It involves two 2-D FFTs, an elementwise multiplication, and an inverse 2-D
FFT (Figure 9) and is applied to two streams of input images to generate a single output
stream. A data-parallel convolution algorithm performs the steps illustrated in Figure 9 in
sequence for each image, while a pipelined algorithm can execute each block in Figure 9 as a

FFT

Convolution
of dataand
operator

FFT?

\/

FFT

Figure 9: Convolution algorithm structure. Two image streams are passed through forward FFTs
and then to a pointwise matrix multiplication (MM) and inverse FFT.
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Figure 10: Execution time per input array for HPF and HPF/MPI implementations of convolution,
as a function of the number of processors. Results are given for different problem sizes.

separate task. Asin the 2-D FFT, this pipeline structure can improve performance by reducing
the number of messages. (It is also possible to exploit pipelining within each FFT, to increase
parallelism further. We do not consider this option here.) Figure 10 shows our results. Once
again, we see that the HPF/MPI version is often significantly faster than the pure HPF version.

Multiblock. Multiblock codes decompose a complex geometry into multiple simpler blocks [21].
A solver is run within each block, and boundary data is exchanged between blocks periodically.
For our experiments, we use a program that applies a simple Poisson solver within each block
and that supports only simple geometries [7]. Figure 11 shows the three-block geometry used in
our experiments, and an intermediate solution computed on this geometry. We compare the per-
formance of an HPF program that computes each of the three blocks in turn and an HPF/MPI
program in which three tasks compute the three blocks concurrently. (In the HPF/MPI version,
processors are allocated to blocks in proportion to their size.) Figure 12 shows our results. The
HPF/MPI program is always faster than the pure HPF program.

7 Conclusions

An HPF binding for MPI can be used to construct task-parallel HPF applications and to cou-
ple separately compiled data-parallel programs, without a need for new compiler technology or
language extensions. Our implementation of this binding executes efficiently on multicomput-
ers, allowing us to write task/data-parallel 2-D FFT, convolution, and multiblock codes that
execute faster than equivalent codes developed in HPF alone. On the basis of these results, we
argue that the combination of the HPF and MPI standards provides a useful and economical
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approach to the implementation of task/data-parallel computations.

Microbenchmark results reveal various overheads associated with the HPF/MPI library.
The MPI persistent request facility can be used to trigger optimizations that avoid overheads
associated with exchange of distribution information and the computation of communication
schedules. Overheads associated with the HPF extrinsic interface remain. The extent to which
these overheads can be avoided by a tighter coupling between HPF/MPI and pghpf, by refin-
ing the HPF extrinsic interface or by using compiler-derived information to select specialized
communication functions, are topics for future research.

The ideas developed in this paper can be extended in a number of ways. It appears likely
that similar techniques can be used to support other task interaction mechanisms. MPI and
HPF extensions also suggest directions for further work. For example, MPI extensions proposed
by the MPI Forum support client-server structures, dynamic task management, and single-sided
operations. These constructs could be incorporated into an HPF/MPI system to support, for
example, attachment to 1/O servers and asynchronous coupling. Similarly, proposed support
for mapping constructs within HPF (task regions) would allow the creation of task-parallel
structures within a single program, by using HPF/MPI calls to communicate between task
regions.
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