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1 IntroductionHigh Performance Fortran (HPF) provides a portable, high-level notation for expressing data-parallel algorithms [14]. An HPF computation has a single-threaded control structure, globalname space, and loosely synchronous parallel execution model. Many problems requiring high-performance implementations can be expressed succinctly in HPF.However, HPF does not adequately address task parallelism or heterogeneous computing.Examples of applications that are not easily expressed using HPF alone [5, 11] include multidis-ciplinary applications where di�erent modules represent distinct scienti�c disciplines, programsthat interact with user interface devices, applications involving irregularly structured data suchas multiblock codes, and image-processing applications in which pipeline structures can beused to increase performance. Such applications must exploit task parallelism for e�cient exe-cution on multicomputers or on heterogeneous collections of parallel machines. Yet they mayincorporate signi�cant data-parallel substructures.These observations have motivated proposals for the integration of task and data paral-lelism. Two principal approaches have been investigated. Compiler-based approaches seek toidentify task-parallel structures automatically, within data-parallel speci�cations [8, 11, 16],while language-based approaches provide new language constructs for specifying task paral-lelism explicitly [3, 5, 15, 20]. Both approaches have shown promise in certain applicationareas, but each also has disadvantages. Compiler-based approaches complicate compiler devel-opment and performance tuning, while language-based approaches also introduce the need tostandardize new language features.In this paper, we propose an alternative approach to task/data-parallel integration, basedon specialized coordination libraries designed to be called from data-parallel programs. Theselibraries support an execution model in which disjoint process groups (corresponding to data-parallel tasks) interact with each other by calling group-oriented communication functions. Inkeeping with the sequential reading normally associated with data-parallel programs, each taskcan be read as a sequential program that calls equivalent single-threaded coordination libraries.The potentially complex communication and synchronization operations required to transferdata among process groups are encapsulated within the coordination library implementations.To illustrate and explore this approach, we have de�ned and implemented a library thatallows the use of a subset of the Message Passing Interface (MPI) [10] to coordinate HPF tasks.MPI standardizes an interaction model that has been widely used and is well understood withinthe high-performance computing community. It de�nes functions for both point-to-point andcollective communication among tasks executing in separate address spaces; its de�nition per-mits e�cient implementations on both shared and distributed-memory computers [9]. OurHPF/MPI library allows these same functions to be used to communicate and synchronizeamong HPF tasks. This integration of two parallel programming standards allows us to incor-porate useful new functionality into HPF programming environments without requiring complexnew directives or compiler technology. We argue that the approach provides a conceptually eco-nomical and hence easily understood model for parallel program development and performancetuning.In the rest of this paper, we describe the design and implementation of our HPF/MPIlibrary, provide an example of its use, and evaluate its performance. In the implementationsection, we focus on issues associated with point-to-point communication and describe tech-niques for determining data distribution information and for communicating distributed datastructures e�ciently from sender to receiver. We also show how specializedMPI communication2



functions can be used to trigger optimizations that improve performance in typical communica-tion structures. We use microbenchmark experiments to quantify the costs associated with ourtechniques and the bene�ts of our optimizations. We also present results from multiblock andtwo-dimensional fast Fourier transform (FFT) and convolution codes that demonstrate thatHPF/MPI can indeed o�er performance advantages relative to pure HPF.In brief, the contributions of this paper are as follows:1. The de�nition of a novel parallel programming model in which group-oriented communi-cation libraries are used to coordinate the execution of process groups corresponding todata-parallel tasks.2. The demonstration that an HPF binding for MPI allows the range of problems e�cientlyexpressible in HPF to be extended without excessive conceptual or implementation com-plexity.3. The illustration and evaluation using realistic applications of design techniques for achiev-ing communication between data-parallel tasks, for integrating MPI library calls into HPFprograms, and for exploiting information provided by MPI communication calls to im-prove communication performance.2 Data and Task ParallelismWe motivate our approach to the integration of task and data parallelism by discussing dataparallelism and HPF and then reviewing approaches to the extension of the data-parallel model.2.1 Data Parallelism and HPFData-parallel languages allow programmers to exploit the concurrency that derives from theapplication of the same operation to all or most elements of large data structures [12]. Data-parallel languages have signi�cant advantages relative to the lower-level mechanisms that mightotherwise be used to develop parallel programs. Programs are deterministic and have a sequen-tial reading. This simpli�es development and allows reuse of existing program developmentmethodologies|and, with some modi�cation, tools. In addition, programmers need not spec-ify how data is moved between processors. On the other hand, the high level of speci�cationintroduces signi�cant challenges for compilers, which must be able to translate data-parallelspeci�cations into e�cient programs [1, 13, 18, 22].High Performance Fortran [14] is perhaps the best-known data-parallel language. HPFexploits the data parallelism resulting from concurrent operations on arrays. These opera-tions may be speci�ed either explicitly by using parallel constructs (e.g., array expressions andFORALL) or implicitly by using traditional DO loops.HPF addresses the problem of e�cient implementation by providing directives that program-mers can use to guide the parallelization process. In particular, distribution directives specifyhow data is to be mapped to processors. An HPF compiler normally generates a single-program,multiple-data (SPMD) parallel program by applying the owner computes rule to partition theoperations performed by the program; the processor that \owns" a value is responsible forupdating its value [1, 18, 22]. The compiler also introduces communication operations whenlocal computation requires remote data. An attractive feature of this implementation strategy3



!HPF$ processors pr(8)
      complex A(8, 8)
!HPF$ distribute A(BLOCK,*)
      do i = 1, 100
          call read(A)
          call rowfft(8, A)
          A = transpose(A)
          call rowfft(8, A)
          call write(A)
      end do

A :

Figure 1: An HPF implementation of a 2-D FFT, in this case con�gured to use 8 processors and tooperate on an array of size 8�8. Shading indicates the elements of the array A that are mapped toprocessor 0.is that the mapping from user program to executable code is fairly straightforward. Hence,programmers can understand how changes in program text a�ect performance.We use a two-dimensional fast Fourier transform (2-D FFT) to illustrate the applicationof HPF. The HPF implementation presented in Figure 1 calls the subroutine rowfft to applya one-dimensional (1-D) FFT to each row of the 2-D array A, and then transposes the arrayand calls rowfft again to apply a 1-D FFT to each column. The 1-D FFTs performed withinrowfft are independent of each other and can proceed in parallel. The PROCESSORS directiveindicates that the program is to run on 8 virtual processors; the DISTRIBUTE directive indicatesthat A is distributed by row. This distribution allows the rowfft routine to proceed withoutcommunication. However, the transposition A=transpose(A) involves all-to-all communication.2.2 Task ParallelismCertain important program structures and application classes are not directly expressible inHPF [5, 11]. For example, both real-time monitoring and computational steering require thatprogrammers connect a data-parallel simulation code to another sequential or parallel programthat handles I/O. The simulation task periodically sends arrays to the I/O task, which processesthem in some way (e.g., displays them) and perhaps also passes control information back to thesimulation. One example of an application domain in which such dynamic control is desirableis automotive design. Figure 2 depicts static output from an HPF implementation of theCHAD code, in which the air velocity tracers (arrows) were generated in a time-consumingpostprocessing phase. We plan to use our HPF/MPI library to introduce a computationalsteering capability that allows scientists to place and visualize tracers dynamically, duringprogram execution.As a second example, we consider the 2-D FFT once again. Assume an array of size N�Nand P processors. Because the computation associated with the FFT scales as N2 logN whilethe communication due to the transpose scales only as max(N2; P 2), the data-parallel algorithmdescribed in Section 2.1 is e�cient when N is much larger than P. However, signal-processingsystems must often process quickly a stream of arrays of relatively small size. (The arraysize corresponds to the sensor resolution and might be 256�256 or less.) In these situations,4



Figure 2: Air velocities in a passenger vehicle duct, as computed by the CHAD 
uid dynamicsprogram (image courtesy of T. Can�eld)
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an alternative pipelined algorithm is often more e�cient [4, 11]. The alternative algorithmpartitions the FFT computation among the processors such that P/2 processors perform theread and the �rst set of 1-D FFTs, while the other P/2 perform the second set of 1-D FFTs andthe write. At each step, intermediate results are communicated from the �rst to the second setof processors. These intermediate results must be transposed on the way; since each processorset has size P/2, P 2=4 messages are required. In contrast, the data-parallel algorithm's all-to-all communication involves P(P-1) messages, communicated by P processors: roughly twice asmany per processor.These two examples show how both modularity and performance concerns can motivate usto structure programs as collections of data-parallel tasks. How are such task/data-parallelcomputations to be represented in a data-parallel language such as HPF? Two principal ap-proaches have been proposed: implicit approaches based on compiler technology and explicitapproaches based on language extensions or programming environments for task coordination.Compiler-based approaches. Advocates of implicit, compiler-based approaches seek todevelop more sophisticated compilers capable of extracting task-parallel algorithms from data-parallel speci�cations. Frequently, they will use new directives to trigger the application ofspeci�c transformations. This general approach has been used to exploit pipeline [11] andfunctional parallelism [16], for example.Implicit, compiler-based approaches maintain a deterministic, sequential reading for pro-grams. However, these approaches also tend to increase the complexity of the mapping fromuser program to executable code. This increased complexity can be a disadvantage for bothprogrammers and compiler writers. For programmers, it becomes more di�cult to understandhow changes in program source a�ect achieved performance, and hence more di�cult to writee�cient programs. For compiler writers, it becomes more di�cult to build compilers that gen-erate e�cient code, particularly because optimization techniques for di�erent constructs andsituations tend to interact in complex ways.Language-based approaches. Advocates of explicit, language-based approaches proposenew language constructs that allow programmers to specify the creation and coordination oftasks explicitly. The basic concept is that of a coordination language [2, 6], except that becausethe tasks are themselves data-parallel programs, we obtain a hierarchical execution model inwhich task-parallel computation structures orchestrate the execution of multiple data-paralleltasks.Language-based approaches have been proposed that use a graphical notation [3], chan-nels [5], remote procedure calls [15], and a simple pipeline notation [20] to connect data-parallelcomputations. Promising results have been obtained. Nevertheless, there is as yet no consensuson which language constructs are best. Since successful adoption depends on consensus andthen standardization, language-based approaches clearly are not a near-term solution.3 An HPF Binding for MPIExplicit task-parallel coordination libraries represent an alternative approach to the integrationof task and data parallelism that avoids the di�culties associated with compiler-based andlanguage-based techniques. We use the example of an HPF binding for MPI to illustrate theapproach and to explore practical issues associated with its implementation.6



!HPF$ processors pr(4)
      complex A(8,8)
!HPF$ distribute A(BLOCK,*)
      do i = 1, 100
         call read(A)
         call rowfft(8, A)
         call MPI_Send(A,8*8,MPI_COMPLEX,1,99
                       MPI_COMM_WORLD,ierr)
     end do

!HPF$ processors pr(4)
      complex B(8,8)
!HPF$ distribute B(*,BLOCK)
      do i = 1, 100
         call MPI_Recv(B,8*8,MPI_COMPLEX,0,99,
                   MPI_COMM_WORLD,status,ierr)
         call colfft(8, B)
         call write(B)
      end do

A :

B :

Figure 3: HPF/MPI implementation of a task/data-parallel pipelined 2-D FFT con�gured as twotasks, each on four processors and operating on arrays of size 8�8. Shading indicates array elementsmapped to processor 0 in task 0 and in task 1. Note that the arrays A and B are mapped to disjointsets of processors.MPI provides a set of functions, datatypes, and protocols for exchanging data among andotherwise coordinating the execution of multiple tasks; a \binding" de�nes the syntax used forMPI functions and datatypes in a particular language. Previous MPI implementations havesupported bindings only for the sequential languages C and Fortran 77 [9]. However, there isno reason why MPI functions may not also be used for communication among data-paralleltasks. Our HPF binding for MPI makes this possible. It is intended to be used as follows:� A programmer initiating a computation requests (using some implementation-dependentmechanism) that a certain number of tasks be created; each task executes a speci�edHPF program on a speci�ed number of processors.� Tasks can call MPI functions to exchange data with other tasks, using either point-to-point or collective communication operations. In point-to-point communications, asender and a receiver cooperate to transfer data from sender to receiver; in collectivecommunications, multiple tasks cooperate|for example, to perform a reduction.When reading HPF/MPI programs, HPF directives can be ignored, and code understood as ifit implements a set of sequential tasks that communicate using MPI functions.Figure 3 uses HPF/MPI to implement the pipelined 2-D FFT algorithm described in Sec-tion 2.2. Task 0 calls rowfft to apply a 1-D FFT to each row of the array A (8�8 complexnumbers, distributed by row) and then calls the MPI function MPI Send to send the contents7
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Figure 4: The steps executed during an HPF/MPI communication function. The rounded boxesdistinguish the steps involving communication. The sending and receiving sides di�er only in the lasttwo steps.of A to task 1. Task 1 implements the transpose by using MPI Recv to receive this data fromtask 0 into an array B, distributed by column, and then calls a subroutine colfft to apply a1-D FFT to each column. The value 99 is a message tag.A comparison with Figure 1 shows that the HPF/MPI version is not signi�cantly morecomplex. In essence, we have replaced the transpose in the HPF program with two subroutinecalls. Notice that these calls specify only the logical transfer of data from one data-parallel taskto another: the potentially complex communication operations required to achieve this transferare encapsulated within the HPF/MPI library. This example illustrates how a coordinationlibrary can gain leverage from a data parallel language's high-level support for the managementof distributed data structures, while providing an explicit, easily-understood notation for spec-ifying task-parallel computations. In more complex situations|such as multiblock codes| anHPF/MPI formulation can actually be more succinct than a pure HPF version.4 ImplementationAn HPF/MPI implementation must address a variety of HPF- and MPI-speci�c issues, particu-larly at the interface between HPF and MPI, as well as general issues relating to the transfer ofdistributed data structures among process groups. We brie
y describe the techniques that wehave developed to address these issues. We focus on point-to-point communication and considerjust one of several possible implementation approaches, namely that illustrated in Figure 4. Inthe following, we describe each of the six steps involved in this �gure, looking at the actionsperformed during a send operation. 8



1. Distribution inquiry. Standard HPF inquiry intrinsics are called to determine the distri-bution of the array that is to be communicated.2. HPF extrinsic call. The communication operation is invoked as an HPF extrinsic call toa procedure in the HPF/MPI library. The procedure is invoked in \local" mode, meaningthat a separate thread of control executes on each processor on which the invoking taskis running [14].3. Descriptor exchange. Sending processors exchange distribution information with receivingprocessors. In general, each sending processor need communicate only with a subset ofthe receiving processors.4. Communications schedule. Sending processors use the distribution information obtainedin Step 3 to determine which subsections of the input array should be sent to each receivingprocessor.5. Bu�er pack. The schedule information computed in Step 4 is used to pack the arrayelements required by a particular receiving processor into a bu�er. (Steps 5 and 6 arerepeated once for each processor to which data must be sent.)6. Data send. The contents of the bu�er packed in Step 5 are sent to the appropriatereceiving processor.We have implemented a prototype HPF/MPI library using these techniques. This librarysupports a subset of MPI's point-to-point communication functions and operates with pghpf(version 2.0), a commercial HPF compiler developed by the Portland Group, Inc. Our libraryrequires minor modi�cations to the pghpf runtime system to create the initial set of tasks whena computation is started and to provide information about which tasks execute on which pro-cessors. The communication schedules required in Step 4 are computed with algorithms basedon the FALLS (FAmiLy of Line Segments) representation of Ramaswamy and Banerjee [17].These algorithms incorporate e�cient and general techniques for computing the minimal se-quence of communication operations required to perform a redistribution. Note that while theimplementation strategy of Figure 4 is e�cient for typical multicomputers, other strategies arepossible and may perform better in some situations. For example, in a low-latency networkit may be useful to pipeline communications, while in a low-connectivity network it may beworthwhile to gather all data to one node, perform the transfer by using a single message, andthen scatter from one receiving node.The techniques just described can be re�ned and optimized in various ways to improveperformance in speci�c situations. For example, MPI provides functions MPI Send init andMPI Recv init to de�ne what are called persistent requests; once de�ned, these requests canbe executed repeatedly using a third function, MPI Start. As illustrated in Figure 5, MPIprogrammers can use these functions to indicate that the same data transfer will be performedmany times. An HPF/MPI implementation of these calls can compute communication scheduleinformation once (within the Init functions) and subsequently reuse this information (withinMPI Start) so that costs associated with Steps 1, 3, and 4 are amortized over many communi-cations. 9



!HPF$ processors pr(4)
      complex A(8,8)
      integer request
!HPF$ distribute A(BLOCK,*)
      call MPI_Send_init(A,8*8,MPI_COMPLEX,1,99,
                         MPI_COMM_WORLD,request,ierr)
      do i = 1, 100
         call read(A)
         call rowfft(8, A)
         call MPI_Start(request,ierr)
      end doFigure 5: An alternative HPF/MPI formulation of the sending side of the pipelined 2-D FFT, in whichMPI Send init is used to de�ne a persistent request that is then executed repeatedly by MPI Start.5 Performance StudiesWe use a simple microbenchmark to quantify the costs associated with the implementationscheme just described. This \ping-pong" program, presented in Figure 6, exchanges repeatedlya 2-D array of �xed size between two tasks, where in each communication the array is distributed(BLOCK,*) in the sender and (*,BLOCK) in the receiver. We run this program for arrays ofvarying size and for varying numbers of processors within each task, allowing us to measure thetotal time per one-way communication in di�erent situations. We also measure the time spentin the six steps illustrated in Figure 4. All experiments are performed on the Argonne IBMSP2, which contains 128 Power 1 processors connected by an SP2 multistage crossbar switch.We record the maximum execution time across all processors.Figure 7 shows our results. In studying these results, we �rst note that for small problemsize (N), cost increases with number of processors (P), while for large N, costs decreases with P.These results are to be expected: for small N, the dominant contributor to total communicationcost is the message startup time, or latency, which increases with P; for large N, the dominantcontributor is the message transfer time, which is proportional to message length and thereforedecreases with P.It is useful to relate achieved performance to the sources of the various cost components.Steps 1, 3, and 4 are associated with determining how to perform a communication and can beavoided if persistent communications are used. These three components are shown uppermost ineach bar, which in most cases allows us to distinguish the costs for nonpersistent and persistentcommunication. We note, however, that the time for Step 3 (descriptor exchange) includessynchronization delays resulting from extra processing performed at receiving processors inother steps, such as communication and bu�er unpacking at the end of the receive. Hence thehigh Step 3 times for large N and small P are an artifact of the experimental protocol, not asign of ine�ciency in the implementation of descriptor exchange.Step 2 (HPF extrinsic call) represents the costs associated with the extrinsic interface.This component represents a �xed cost for multiple subroutine calls, plus a per-word overheadincurred by the use of the HPF extrinsic subroutine interface. Because the pghpf compileruses a specialized internal representation for arrays, it typically must copy a distributed array10



!HPF$ processors pr(P)
      real From(N,N), To(N,N)
!HPF$ distribute From(BLOCK,*), To(*,BLOCK)
      call MPI_Init(ierr)
      call MPI_Comm_Rank(MPI_COMM_WORLD,myid,ierr)
      if (myid .eq. 0) then
         do i = 1, 100
            call MPI_Send(From,N*N,MPI_REAL,1,99,
                          MPI_COMM_WORLD,ierr)
            call MPI_Recv(To,N*N,MPI_REAL,1,99,
                          MPI_COMM_WORLD,status,ierr)
         end do
      else
         do i = 1, 100
            call MPI_Recv(To,N*N,MPI_REAL,0,99,
                          MPI_COMM_WORLD,status,ierr)
            call MPI_Send(From,N*N,MPI_REAL,0,99,
                          MPI_COMM_WORLD,ierr)
         end do
      endif
      call MPI_Finalize(ierr)
      endFigure 6: The microbenchmark used to quantify HPF/MPI communication costs. This program isintended to execute as two tasks. MPI Init and MPI Finalize set up and shut down the MPI library,respectively, while MPI Comm rank returns the rank of the calling task (0 or 1 in this case).
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Figure 7: Time required for a one-way HPF/MPI point-to-point communication on an IBMSP2, for various array sizes and numbers of processors in the sending and receiving tasks.
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passed as an extrinsic procedure's input argument into one contiguous region, to preservethe property of array element sequence association assumed within Fortran 77; return arrayarguments are similarly copied upon extrinsic subroutine return. Both the subroutine callsand the copying represent overhead that could, in principle, be avoided by a tighter couplingof HPF and the MPI library. (For example, bu�er packing and unpacking operations couldbe performed directly on the pghpf internal array representation.) When P=1 and N=16(1 KB data), Step 2 costs 200 microseconds; when P=1 and N=1024 (4 MB data), the cost is33 milliseconds. These data suggest a �xed cost of roughly 200 microseconds and an incrementalcost of 0.008 microseconds/byte (106 MB/sec bandwidth).Step 5 (Bu�er pack/unpack) corresponds to the costs incurred when transferring data be-tween potentially noncontiguous locations in an array and a communication bu�er. Our im-plementation performs these transfers explicitly in all cases; optimized implementations mightbe able to avoid this extra copying for some distributions on some platforms. As the amountof copying performed in Step 5 appears to be equivalent to that performed in the extrinsicinterface, we might expect Steps 2 and 5 to have similar costs. In practice, we �nd that forlarge messages Step 2 runs at about 106 MB/sec while Step 5 achieves only 58 MB/sec. We arecurrently investigating the reason for this di�erence, which we suspect is due to more highlyoptimized copying routines in pghpf.The �nal component is the actual communication. Since we always use a direct commu-nication structure, we expect cost to be roughly Pts + (N2=P )tw, where P is the number ofprocessors per task, ts is the per-message startup cost, and tw is the per-word data transfertime. The experimental data �t this model reasonably well.Overall, we see that the persistent communication optimization can make a large di�erencefor small N (up to 40{60 percent, depending on P) but has progressively less impact as Nincreases, always accounting for less than 25 percent for N�256. Extrinsic call and bu�erpack/unpack overheads vary signi�cantly with N and P, peaking at around 50 percent of thetime remaining once the persistent communication optimization has been applied. For N=1024and P=1, we achieve a transfer rate of 12.8 MB/sec without the persistent communicationoptimization; the low-level MPICH library on which our HPF/MPI library is based achieves30 MB/sec in this situation.In summary, the microbenchmark results show that the persistent communication optimiza-tion provides signi�cant bene�ts, particularly for small arrays; that our HPF/MPI implemen-tation achieves reasonable performance for small arrays when the persistent communicationoptimization is applied, and for large arrays in all cases; and that there is considerable bene�tto be gained from a tighter coupling of HPF and MPI implementations.6 Larger ProgramsWe also studied the performance of HPF/MPI implementations of 2-D FFT, 2-D convolution,and multiblock codes, comparing each with an equivalent pure HPF program. In each case,we employ the persistent communication optimization when transferring data between tasks.Our results demonstrate that in most instances the HPF/MPI library achieves performancesuperior to that of pure HPF.2-D FFT. For our experiments, we replace the read call in the 2-D FFT with a statementthat initializes array A, and eliminate the write call entirely. The HPF/MPI code is executed13
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Figure 8: Execution time per input array for HPF and HPF/MPI implementations of the 2-D FFTapplication, as a function of the number of processors. Results are given for di�erent problem sizes.as a pipeline of two tasks, with an equal number of processors assigned to each task. Figure 8presents our results, which are performed for a number of images large enough to render pipelinestartup and shutdown costs insigni�cant. As expected, the HPF/MPI program is faster thanthe HPF code for larger numbers of processors and smaller problems.Convolution. Convolution is a standard technique used to extract feature information fromimages [4, 19]. It involves two 2-D FFTs, an elementwise multiplication, and an inverse 2-DFFT (Figure 9) and is applied to two streams of input images to generate a single outputstream. A data-parallel convolution algorithm performs the steps illustrated in Figure 9 insequence for each image, while a pipelined algorithm can execute each block in Figure 9 as a
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Figure 10: Execution time per input array for HPF and HPF/MPI implementations of convolution,as a function of the number of processors. Results are given for di�erent problem sizes.separate task. As in the 2-D FFT, this pipeline structure can improve performance by reducingthe number of messages. (It is also possible to exploit pipelining within each FFT, to increaseparallelism further. We do not consider this option here.) Figure 10 shows our results. Onceagain, we see that the HPF/MPI version is often signi�cantly faster than the pure HPF version.Multiblock. Multiblock codes decompose a complex geometry into multiple simpler blocks [21].A solver is run within each block, and boundary data is exchanged between blocks periodically.For our experiments, we use a program that applies a simple Poisson solver within each blockand that supports only simple geometries [7]. Figure 11 shows the three-block geometry used inour experiments, and an intermediate solution computed on this geometry. We compare the per-formance of an HPF program that computes each of the three blocks in turn and an HPF/MPIprogram in which three tasks compute the three blocks concurrently. (In the HPF/MPI version,processors are allocated to blocks in proportion to their size.) Figure 12 shows our results. TheHPF/MPI program is always faster than the pure HPF program.7 ConclusionsAn HPF binding for MPI can be used to construct task-parallel HPF applications and to cou-ple separately compiled data-parallel programs, without a need for new compiler technology orlanguage extensions. Our implementation of this binding executes e�ciently on multicomput-ers, allowing us to write task/data-parallel 2-D FFT, convolution, and multiblock codes thatexecute faster than equivalent codes developed in HPF alone. On the basis of these results, weargue that the combination of the HPF and MPI standards provides a useful and economical15



Figure 11: The three-block geometry used to evaluate the performance of the multiblock code.The three blocks shown in this �gure have size 192 � 192, 96 � 96, and 192 � 192.
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Figure 12: Execution time for HPF and HPF/MPI implementations of the multiblock code, as afunction of the number of processors. 16



approach to the implementation of task/data-parallel computations.Microbenchmark results reveal various overheads associated with the HPF/MPI library.The MPI persistent request facility can be used to trigger optimizations that avoid overheadsassociated with exchange of distribution information and the computation of communicationschedules. Overheads associated with the HPF extrinsic interface remain. The extent to whichthese overheads can be avoided by a tighter coupling between HPF/MPI and pghpf, by re�n-ing the HPF extrinsic interface or by using compiler-derived information to select specializedcommunication functions, are topics for future research.The ideas developed in this paper can be extended in a number of ways. It appears likelythat similar techniques can be used to support other task interaction mechanisms. MPI andHPF extensions also suggest directions for further work. For example, MPI extensions proposedby the MPI Forum support client-server structures, dynamic task management, and single-sidedoperations. These constructs could be incorporated into an HPF/MPI system to support, forexample, attachment to I/O servers and asynchronous coupling. Similarly, proposed supportfor mapping constructs within HPF (task regions) would allow the creation of task-parallelstructures within a single program, by using HPF/MPI calls to communicate between taskregions.AcknowledgmentsWe are grateful to the Portland Group, Inc., for making their HPF compiler and runtimesystem available to us for this research, and to Shankar Ramaswamy and Prith Banerjee forallowing us to use their implementation of the FALLS algorithm. The multiblock Poisson solveris based on a code supplied by Scott Baden and Stephen Fink. We have enjoyed stimulatingdiscussions on these topics with Chuck Koelbel and Rob Schreiber. This work was supported bythe National Science Foundation's Center for Research in Parallel Computation under ContractCCR-8809615.References[1] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors. TheJournal of Supercomputing, 2:151{169, October 1988.[2] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444{458,April 1989.[3] G. Cheng, G. Fox, and K. Mills. Integrating multiple programming paradigms on ConnectionMachine CM5 in a data
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