
MPI on the I-WAY:A Wide-Area, Multimethod Implementationof the Message Passing InterfaceIan Foster, Jonathan Geisler, Steven TueckeArgonne National LaboratoryArgonne, IL 60439, U.S.A.ffoster,geisler,tueckeg@mcs.anl.govAbstractHigh-speed wide-area networks enable innovative ap-plications that integrate geographically distributed com-puting, database, graphics, and networking resources.The Message Passing Interface (MPI) can be used asa portable, high-performance programming model forsuch systems. However, the wide-area environment in-troduces challenging problems for the MPI implemen-tor, because of the heterogeneity of both the underlyingphysical infrastructure and the authentication and soft-ware environment at di�erent sites. In this article, wedescribe an MPI implementation that incorporates so-lutions to these problems. This implementation, whichwas developed for the I-WAY distributed-computing ex-periment, was constructed by layering MPICH on theNexus multithreaded runtime system. Nexus providesautomatic con�guration mechanisms that can be usedto select and con�gure authentication, process creation,and communication mechanisms in heterogeneous sys-tems.1. IntroductionThe I-WAY networking experiment [3] provided thelargest testbed developed to date for high-performancedistributed computing. Over sixty groups used thistestbed to develop applications that connected super-computers, advanced display devices, storage systems,and/or scienti�c instruments located across NorthAmerica. Many of these applications used an imple-mentation of the standard Message Passing Interface(MPI) for process creation, communication, and syn-chronization. In this article, we describe the techniquesused to develop this MPI implementation.Our goal in developing an MPI implementation for

the I-WAY was to shield programmers from such low-level details as the authentication mechanisms, processstartup mechanisms, network interfaces, and commu-nication protocols to be used at di�erent sites. That is,we wished to allow programmers to allocate a hetero-geneous collection of resources spanning multiple sitesand then start an MPI program on these resourcesby typing a single command. Achieving this degreeof transparency is challenging for two principal rea-sons. First, it requires a low-level infrastructure thatsupports and permits the coexistence of multiple im-plementations of low-level mechanisms for authentica-tion, process creation, communication, and so forth.Second, it requires access to correct, up-to-date infor-mation about the software and hardware environmentat di�erent sites.We addressed these two challenges by layering theArgonne/Mississippi State MPICH library [13] on topof a runtime library called Nexus [9]. MPICH pro-vides a portable, high-performance implementation ofMPI that incorporates some support for heterogeneousenvironments, but that in its current instantiation isdesigned primarily for homogeneous massively parallelprocessing (MPP) systems. Nexus is a portable, mul-tithreaded communication library that we have con-structed to support wide-area, heterogeneous compu-tations. Nexus is distinguished from MPI by its sup-port for dynamic resource management, a global ad-dress space via global pointers, and a single-sided com-munication mechanism called a remote service request.In addition, its implementation incorporates automaticcon�guration mechanisms that allow it to use infor-mation contained in resource databases to determinewhich startup mechanisms, network interfaces, andcommunication methods to use in di�erent situations.These mechanisms were not designed explicitly to sup-port the MPI communication model but, as we ex-

plain in this paper, can be used to construct a high-performance, multithreaded MPI implementation.In this article, we �rst provide an overview of the I-WAY experiment and the software environment, I-Soft,that was developed to support application developmenton the I-WAY. Then, we introduce Nexus and the tech-niques that it uses to support multimethod communi-cation. Subsequent sections describe the Nexus imple-mentation of MPI and the techniques used to supportautomatic con�guration of MPI computations on theI-WAY.2. The I-WAY ExperimentThe I-WAY, or InformationWide Area Year [3], wasa wide-area computing experiment conducted through-out 1995 with the goal of providing a large-scale testbedin which innovative high-performance and geographi-cally distributed applications could be deployed. TheI-WAY linked eleven existing national testbeds basedon ATM (asynchronous transfer mode) technology tointerconnect supercomputer centers, virtual reality re-search locations, and applications development sitesacross North America. When demonstrated at theSupercomputing conference in San Diego in Decem-ber 1995, the I-WAY network connected multiple high-end display devices (including immersive CAVETM andImmersaDeskTM virtual reality devices [2]); mass stor-age systems; specialized instruments (such as micro-scopes and satellite downlinks); and supercomputers ofdi�erent architectures, including distributed-memorymulticomputers (IBM SP, Intel Paragon, Cray T3D,etc.), shared-memory multiprocessors (SGI Challenge,Convex Exemplar), and vector multiprocessors (CrayC90, Y-MP). These devices were located at seventeendi�erent sites across North America.The I-WAY distributed supercomputing environ-ment was used by over sixty application groups for ex-periments in high-performance computing (e.g., [17]),collaborative design, and the coupling of remote su-percomputers and databases into local environments(e.g., [16]). A primary thrust was applications thatuse multiple supercomputers and virtual reality devicesto explore collaborative technologies in which sharedvirtual spaces are used to perform computational sci-ence. For simplicity, the I-WAY standardized on theuse of TCP/IP running over ATM Adaptation Layer5 (AAL5) for application networking; in future exper-iments, alternative protocols will undoubtedly be ex-plored. The need to con�gure both IP routing tablesand ATM virtual circuits in this highly heterogeneousenvironment was a signi�cant source of implementationcomplexity.

An innovative aspect of the I-WAY project was thedevelopment of a system management and applica-tion programming environment called I-Soft [7] thatprovided uniform authentication, resource reservation,process creation, and communication functions acrossI-WAY resources. A novel aspect of this approach wasthe deployment of a dedicated I-WAY Point of Pres-ence, or I-POP, machine at each participating site.These machines provided a uniform environment fordeployment of management software and also simpli-�ed validation of system management and security so-lutions by serving as a \neutral" zone under the jointcontrol of I-WAY developers and local authorities.3. NexusWe next give a brief introduction to the Nexus com-munication library used to construct the I-WAY im-plementation of MPI. Nexus provides a low-level in-terface to multithreading and communication mecha-nisms in homogeneous and heterogeneous systems. Itis designed for use by library writers and compiler writ-ers; in addition to MPI, systems that use Nexus facil-ities include parallel object-oriented languages (for ex-ample, CC++ [1] and Fortran M [5]), parallel script-ing languages (nPerl [10]), and communication libraries(CAVEcomm [4] and a Java library).3.1. Nexus overviewNexus is structured in terms of �ve basic abstrac-tions: nodes, contexts, threads, global pointers, andremote service requests. A computation executes ona set of nodes and consists of a set of threads, eachexecuting in an address space called|confusingly forMPI users|a context. (For the purposes of this arti-cle, it su�ces to assume that a context is equivalentto a process.) An individual thread executes a sequen-tial program, which may read and write data sharedwith other threads executing in the same context. Theglobal pointer (GP) provides a global name space forobjects, while the remote service request (RSR) is usedto initiate communication and invoke remote compu-tation. A GP represents a communication endpoint:that is, it speci�es a destination to which a commu-nication operation can be directed by an RSR. GPscan be created dynamically; once created, a GP canbe communicated between nodes by including it in anRSR. A GP can be thought of as a capability grantingrights to operate on the associated endpoint. The re-mote service request mechanism allows point-to-pointcommunication, remote memory access, and streamingprotocols to be supported within a single framework.2

SDCC

Lo
ch

ee
d

M
is

si
le

s

&
Sp

ac
e

U
IC

-E
VL

ARPA HPC Enterprise

U. of Maryland

M
innesota Super-

Com
puter Center

U. of M
innesota

A
rgonne

N
ational Laboratory

Ames

Laboratory

W
aterways Experiment

Station Information

Technology Lab

Naval Research

Lab

Oak Ridge

National Lab

Lo
s

Ala
m

os

Nat
io

na
l L

ab
.

NA
SA

 G
od

da
rd

Na
va

l R
es

ea
rc

h
La

b

Lawrence Livermore
National Lab. (NERSC)

Lawrence Berkeley Lab.

SDCC

UIU
C-N

CSA

Sy
ra

cu
se

Cor

ne
llPi
tts

bu
rg

h
Su

pe
r-

Com
pu

te
r C

en
te

r

SDCC

San Diego Super-

Computer Center

U. o
f C

alg
ar

y

IB
M

 P
ou

gh
ke

ep
si

e

IB
M

 N
YC

SDCC

Figure 1. The I-WAY network. Figure produced by Linda Winkler and Richard Foster.3.2. Multimethod communicationFrom the point of view of the I-WAY, the Nexus fea-tures that are most interesting are those that supportmultimethod communication [6]. These mechanismsare based around the global pointer construct, whichis used to maintain information about the methods thatcan be used to perform communications directed to aparticular remote location. Simple protocols allow thisinformation to be propagated from one node to anotherand provide a framework that supports both automaticand manual selection from among available communi-cation methods.Nexus incorporates automatic con�guration mech-anisms that allow it to use information contained inresource databases to determine which startup mecha-nisms, network interfaces, and communicationmethodsto use in di�erent situations. These mechanisms allowNexus programs to execute unchanged in di�erent en-vironments, with communication methods selected ac-cording to default rules, depending on the source anddestination of the message being sent. For example, au-tomatic selection in Nexus RSRs being performed withIBM's Message Passing Library (MPL) within an IBMSP2 and with TCP/IP between computers. Manual se-lection is also supported, for example allowing selectionof specialized ATM protocols when appropriate.Automatic con�guration makes sense only if re-source databases contain up-to-date information. We

discuss below the techniques used to create and main-tain resource databases in the I-WAY.4. The I-WAY Implementation of MPIWe now address the question of how Nexus mecha-nisms were used to construct an MPI implementation.In this section, we explain how MPICH was layered ontop of Nexus; in the next section, we discuss I-WAY{speci�c issues.4.1. MPI and MPICHWe �rst review important features of MPI and of theMPICH implementation on which this work is based.The Message Passing Interface de�nes a standard setof functions for interprocess communication [14]. It de-�nes functions for sending messages from one processto another (point-to-point communication), for com-munication operations that involve groups of processes(collective communication, such as reduction), and forobtaining information about the environment in whicha program executes (enquiry functions). The commu-nicator construct combines a group of processes and aunique tag space and can be used to ensure that com-munications associated with di�erent parts of a pro-gram are not confused.MPICH [13] is a portable, high-performance im-plementation of MPI. It is structured in terms of an3

M P I C H

Channel Device

A D I

p4
other
devices N e x u s

multiple communication methods

Figure 2. The Nexus implementation of MPI is
constructed by defining a Nexus instantiation
of the MPICH channel device, a specialization
of the abstract device interface.abstract device interface (ADI) that de�nes low-levelcommunication-related functions that can be imple-mented in di�erent ways on di�erent machines [11, 12].The Nexus implementation of MPI is constructed byproviding a Nexus implementation of this device. Theuse of the ADI simpli�es implementation but has someperformance implications, which we discuss below.4.2. The Abstract Device InterfaceFigure 2 illustrates the structure of the MPICH im-plementation of MPI. Higher-level functions such asthose relating to communicators and collective opera-tions are implemented by a device-independent library,de�ned in terms of point-to-point communication func-tions provided by the ADI. To achieve high perfor-mance, the ADI provides a rich set of communicationfunctions supporting di�erent communication modes.A typical implementation of the ADI will map somefunctions directly to low-level mechanisms and imple-ment others via library calls. The mapping of MPICHfunctions to ADI mechanisms is achieved via macrosand preprocessors, not function calls. Hence, the over-head associated with this organization is often small ornonexistent [13].The ADI provides a fairly high-level abstraction ofa communication device: for example, it assumes thatthe device handles the bu�ering and queuing of mes-sages. The lower-level channel interface de�nes simplerfunctions for moving data from one processor to an-other. For example, it de�nes MPID SendControl andMPID SendChannel functions that can be used to im-

plement the MPI function MPI Send. On the destina-tion side, the test MPID ControlMsgAvail and functionMPID RecvAnyControl are provided and can be usedto implement MPI Recv. Di�erent protocols can be se-lected; the best in many circumstances sends both themessage envelope (tag, communicator, etc.) and datain a single message, up to a certain data size, and thenswitches to a two-message protocol so as to avoid copy-ing data.The Nexus implementation of the channel device es-tablishes a fully connected set of global pointers linkingthe processes involved in the MPI computation. Then,it implements channel device send functions as RSRs to\enqueue message" handlers; these handlers place datain appropriate queues or copy it directly to a receivebu�er if a receive has already been posted. As this briefdescription shows, the mapping from ADI to Nexus isquite direct; the tricky issues relate mainly to avoid-ing extra copy operations. The principal overheadsrelative to MPICH comprise an additional 32 bytesof Nexus header information, which must be format-ted and communicated; the decoding and dispatch ofthe Nexus handler on the receiving node; and a smallnumber of additional function calls. We quantify thesecosts below. Most are artifacts of version 1 of theMPICH channel device; we are currently working withthe MPICH developers to investigate a tighter integra-tion of MPICH and Nexus, which we expect to elimi-nate most remaining overheads.Finally, we observe that the Nexus implementationof MPI is structured so that Nexus thread manage-ment functions and MPI communication functions canboth be used in the same program. This coexistenceis simpli�ed by the fact that the MPI speci�cation isthread safe. That is, there is no implicit internal statethat prevents the execution of MPI functions from be-ing interleaved. The Nexus library addresses otherthread safety issues, ensuring that only one thread at atime accesses nonthread-safe system components suchas communication devices and I/O libraries on manysystems.4.3. Performance experimentsWe have conducted a variety of performance exper-iments to evaluate the performance of both our multi-method communicationmechanisms and the Nexus im-plementation of MPI. All experiments were conductedon the Argonne IBM SP2, which is con�gured withPower 1 rather than the more common Power 2 pro-cessors. These processors are connected via a high-speed multistage crossbar switch and are organizedby software into disjoint partitions. Processors in the4

same partition can communicate by using either TCPor IBM's proprietary Message Passing Library (MPL),while processors in di�erent partitions can communi-cate via TCP only. Both MPL and TCP operate overthe high-speed switch and can achieve maximumband-widths of about 36 and 8 MB/sec, respectively. TCPcommunications incur the high latencies typically ob-served in other environments, and so multiple SP par-titions can be used to provide a controlled testbed forexperimentation with multimethod communication innetworked systems.Nexus performance experiments, reported else-where [9], reveal that on the Argonne SP2, a \ping-pong" benchmark that performs RSRs back and forthbetween two processors obtains a one-way cost of82.8 �sec for a zero-length message; in contrast,the SP2's low-level MPL communication library takes61.4 �sec. The principal sources of the 21.4 �sec dif-ference between NexusLite and MPL are the setupand communication of the 32-byte header containedin a Nexus message (about 8 �sec) and the lookupand dispatch of the handler on the receive side (about7 �sec) [9].We evaluated the performance of the Nexus imple-mentation of MPI by using the ping-pong benchmarkprovided by the MPI mpptest program [13]. We ex-ecuted this program using both \native" MPICH andthe Nexus implementation of MPI, in the later casecomparing performance both with MPL support onlyand with MPL and TCP support. Figure 3 shows ourresults.The graph on the left shows that MPICH takes83.8 �sec for a zero-length message. This is compa-rable with the 82.8 �sec achieved by Nexus alone, sug-gesting that MPICH and Nexus are implemented at asimilar level of optimization. The Nexus implementa-tion of MPI incurs an overhead of around 60 �sec for azero-length message; the graph on the right shows thatfor larger messages, the overhead becomes insigni�cant.We have outlined the sources of these overheads in Sec-tion 4.2; as we note there, we believe that most can beeliminated by improving the MPICH ADI. The jumpin the MPICH numbers at 200 bytes is an artifact ofthe protocols used in the low-level MPL implementa-tion. Notice the corresponding jump in the Nexus plotsat around 170 bytes; the o�set is due to the additionalheader information associated with a Nexus RSR.The MPL+TCP results illustrate some performanceissues that can arise when multiple communicationmethods must be supported. The Nexus implemen-tation used in these experiments detects incomingcommunications by using a simple integrated pollingscheme. This scheme invokes a method-speci�c poll

operation for each communication method supportedwithin a process. This approach can perform badlywhen the polling operation for one method is muchslower than the others. For example, on many MPPs,the probe operation used to detect communicationfrom another processor is cheap, while a TCP selectis expensive. On the SP2, the mpc status call used todetect an incoming MPL operation costs 15 microsec-onds, while a select costs around 100 microseconds.This sort of cost di�erential allows an infrequentlyused, expensive method to impose signi�cant overheadon a frequently used, inexpensive method. These over-heads can be reduced by using optimizations that, forexample, perform TCP polls less frequently [6].The results presented in this section are for a non-threaded implementation of Nexus. The results for thethreaded version of Nexus are similar, except that wesee an additional 29.6 �sec overhead on a zero-lengthmessage due to locking needed for thread safety andthe use of a probe rather than a blocking receive todetect incoming messages.4.4. DiscussionThe Nexus implementation of MPI provides threebene�ts over and above those provided by MPICH:multimethod communication, interoperability withother Nexus applications, and multithreading.The automatic selection of communication methodsis supported directly in the Nexus implementation ofMPI. An interesting question is how to support man-ual control of method selection in an MPI framework.We propose that this be achieved via MPI's cachingmechanism, which allows the programmer to attachto communicators and subsequently modify and re-trieve arbitrary key/value pairs called attributes. AnMPI implementation can be extended to recognize cer-tain attribute keys as denoting communicationmethodchoices and parameter values. For example, a keyTCP BUFFER SIZE might be used to specify the bu�ersize to be used on a particular communicator.A second bene�t that accrues from the Nexus imple-mentation of MPI is interoperability with other Nexus-based tools. For example, on the I-WAY, numerous ap-plications used the CAVEcomm [4] client-server pack-age to transfer data among one or more virtual real-ity systems and a scienti�c simulation running on asupercomputer. When the simulation itself was devel-oped with MPI, the need arose to integrate the pollingrequired to detect communication from either source.This integration is supported within Nexus.The third bene�t that accrues from the use of Nexusis access to multithreading. The concurrent execution5

0

100

200

300

400

500

600

0 200 400 600 800 1000

T
im

e
(u

se
c)

Size (bytes)

MPI/Nexus MPL+TCP
MPI/Nexus MPL
MPICH--ch_eui

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200000 400000 600000 800000 1e+06

T
im

e
(u

se
c)

Size (bytes)

MPI/Nexus MPL+TCP
MPI/Nexus MPL
MPICH--ch_eui

Figure 3. One-way message latency as a function of message size, for various implementations of
MPI described in the text. The two graphs show results for small and large messages, respectively.of multiple lightweight threads within a single pro-cess is a useful technique for masking variable laten-cies, exploiting multiprocessors, and providing concur-rent access to shared resources. Various approachesto the integration of multithreading into a message-passing framework have been proposed (see [9] for adiscussion). The Nexus implementation of MPI sup-ports a particularly simple and elegant model thatdoes not require that explicit thread identi�ers be ex-ported from MPI processes. Instead, threads are cre-ated and manipulated with Nexus functions, and in-terthread communication is performed by using stan-dard MPI functions, with tags and/or communicatorsbeing used to distinguish messages intended for di�er-ent threads. The MPI/Nexus combination can be usedto implement a variety of interesting communicationstructures. For example, we can create two communi-cators and communicate independently on each fromseparate threads, using either point-to-point or collec-tive operations. Or, several threads can receive on thesame communicator and tag value. In a multiproces-sor, the latter technique allows us to implement paral-lel servers that process requests from multiple clientsconcurrently.The multithreaded MPI also has its limitations. Inparticular, it is not possible to de�ne a collective op-eration that involves more than one thread per pro-cess. This functionality requires extensions to the MPImodel [8, 15, 18].Finally, we note that Nexus support for dynamic re-source management and multithreading also provides a

framework for implementing new features proposed forMPI-2, such as dynamic process management, single-sided communication, and multicast.5. Nexus, MPI, and the I-WAYThe I-WAY implementation of MPI was constructedby extending the MPICH/Nexus system described inthe preceding section to support startup mechanismsprovided by the I-WAY software environment. The I-WAY scheduler was con�gured so that, when schedul-ing resources to users, it would also generate databaseentries describing the resources and the network con�g-uration [7]. Nexus (and hence MPI) could then use thisinformation when creating a user computation. Thissupport made it possible for a user to allocate a hetero-geneous collection of I-WAY resources and then starta program simply by typing \impirun."The Nexus implementation of MPI was used ex-tensively for I-WAY application development. Expe-riences emphasized the advantages of the Nexus au-tomatic con�guration mechanisms. In many cases,user were able to develop applications in MPI (or inother high-level Nexus-based tools such as CC++ orCAVEcomm) without any knowledge of low-level de-tails relating to the compute and network resourcesincluded in a computation. These applications wouldthen execute in heterogeneous environments. For ex-ample, in a virtual machine connecting IBM SP andSGI Challenge computers with both ATM and Internetnetworks, Nexus uses three di�erent protocols (IBM6

proprietary MPL on the SP, shared-memory on theChallenge, and TCP/IP or AAL5 between comput-ers) and selects either ATM or Internet network in-terfaces, depending on network status. Other systemsused Nexus mechanisms in the same manner, notablythe parallel language CC++ [1] and the parallel script-ing language nPerl [10], used to write the I-WAY sched-uler.A signi�cant di�culty revealed by the I-WAY exper-iment related to the mechanisms used to generate andmaintain the con�guration information used by Nexus.While resource database entries were generated auto-matically by the scheduler, the information containedin these entries (such as network interfaces) had to beprovided manually. The discovery, entry, and mainte-nance of this information proved to be time consuming,in particular because I-WAY network status proved tobe highly changeable. Clearly, this information shouldbe discovered automatically whenever possible. Auto-matic discovery would make it possible, for example,for a parallel tool to use dedicated ATM links if thesewere available, but to fall back automatically to sharedInternet if the ATM link was discovered to be unavail-able. The development of such automatic discoverytechniques remains a challenging research problem.The Nexus communication library provides mecha-nisms for querying the resource database, which userscould have used to discover some properties of the ma-chines and networks on which they were executing. Inpractice, few I-WAY applications were con�gured touse this information; however, we believe that this sit-uation simply reects the immature state of practicein this area and that users will soon learn to writeprograms that exploit properties of network topology,etc. Just what information users will �nd useful re-mains to be seen, but presumably enquiry functionsthat reveal the number of machines involved in a com-putation and the number of processors in each machinewill be required. Our MPI implementation could useinformation about network topology to optimize col-lective operations, which are currently performed byusing algorithms designed for multicomputer environ-ments; presumably, communication costs can often bereduced by using communication structures that min-imize intermachine communication.6. SummaryWe have describe an implementation of the MessagePassing Interface designed to execute in wide area, het-erogeneous environments. This implementation wasused by numerous groups to develop applications forthe I-WAY networking experiment. We developed this

implementation by layering MPICH on the Nexus com-munication library and by integrating Nexus into theI-WAY software environment. This produced a sys-tem that can deal with heterogeneous authentication,process creation, and communication mechanisms. Inparticular, support for multimethod communication al-lowed an MPI application to use di�erent communica-tion mechanisms depending on where it was communi-cating. In future work, we expect to extend our MPIsystem so that programmers can use existing and fu-ture Nexus mechanisms to vary method selection ac-cording to what is being communicated or when com-munication is performed.Microbenchmark studies provide insights into thecosts associated with the Nexus implementation ofMPI. The results presented here are promising in thatthey show that overheads associated with multimethodcommunication are small and manageable. However,we know that these overheads can be reduced further.The only unavoidable overheads associated with theNexus implementation of MPI seem to be the few mi-croseconds associated with handler lookup and the useof probe rather than blocking receive.AcknowledgmentsOur work on multimethod communication is a jointe�ort with Carl Kesselman and has also bene�tedgreatly from discussions with Steve Schwab. Our MPIimplementation was made possible by the outstand-ing MPICH implementation constructed by Bill Gropp,Ewing Lusk, Nathan Doss, and Tony Skjellum; we aregrateful for their considerable help with this project.This work was supported by the National Science Foun-dation's Center for Research in Parallel Computation,under Contract CCR-8809615, and by the Mathemati-cal, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Tech-nology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.References[1] K. M. Chandy and C. Kesselman. CC++: A declara-tive concurrent object oriented programming notation.In Research Directions in Object Oriented Program-ming. The MIT Press, 1993.[2] C. Cruz-Neira, D. Sandin, T. DeFanti, R. Kenyon, andJ. Hart. The CAVE: Audio visual experience auto-matic virtual environment. Communications of theACM, 35(6):65{72, 1992.[3] T. DeFanti, I. Foster, M. Papka, R. Stevens, andT. Kuhfuss. Overview of the I-WAY: Wide area visual7

supercomputing. International Journal of Supercom-puter Applications, 1996. in press.[4] T. L. Disz, M. E. Papka, M. Pellegrino, andR. Stevens. Sharing visualization experiences amongremote virtual environments. In International Work-shop on High Performance Computing for ComputerGraphics and Visualization, pages 217{237. Springer-Verlag, 1995.[5] I. Foster and K. M. Chandy. Fortran M: A languagefor modular parallel programming. Journal of Paralleland Distributed Computing, 25(1), 1994.[6] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke.Multimethod communication for high-performancemetacomputing applications. Preprint, Mathemat-ics and Computer Science Division, Argonne NationalLaboratory, Argonne, Ill., 1996.[7] I. Foster, J. Geisler, W. Nickless, W. Smith, andS. Tuecke. Software infrastructure for the I-WAYhigh-performance distributed computing experiment.In Proc. 5th IEEE Symp. on High Performance Dis-tributed Computing. IEEE, 1996.[8] I. Foster, C. Kesselman, and M. Snir. Generalizedcommunicators in the Message Passing Interface. InProceedings of the 1996 MPI Developers Conference.IEEE Computer Society Press, 1996.[9] I. Foster, C. Kesselman, and S. Tuecke. The Nexusapproach to integrating multithreading and communi-cation. Journal of Parallel and Distributed Computing,1996. To appear.[10] I. Foster and R. Olson. A guide to paral-lel and distributed programming in nPerl. Tech-nical report, Argonne National Laboratory, 1995.http://www.mcs.anl.gov/nexus/nperl/.[11] W. Gropp and E. Lusk. An abstract device de�nitionto support the implementation of a high-level point-to-point message-passing interface. Preprint MCS-P342-1193, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, Ill., 1994.[12] W. Gropp and E. Lusk. MPICH working note: Cre-ating a new MPICH device using the channel inter-face. Technical Report ANL/MCS-TM-213, Mathe-matics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Ill., 1995.[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPImessage passing interface standard. Technical Re-port ANL/MCS-TM-213, Mathematics and ComputerScience Division, Argonne National Laboratory, Ar-gonne, Ill., 1996.[14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:Portable Parallel Programming with the Message Pass-ing Interface. MIT Press, 1995.[15] M. Haines, P. Mehrotra, and D. Cronk. Ropes:Support for collective operations among distributedthreads. Technical Report 95-36, Institute for Com-puter Application in Science and Engineering, 1995.[16] C. Lee, C. Kesselman, and S. Schwab. Near-real-timesatellite image processing: Metacomputing in CC++.Computer Graphics and Applications, 1996. to appear.

[17] M. Norman et al. Galaxies collide on the I-WAY:An example of heterogeneous wide-area collaborativesupercomputing. International Journal of Supercom-puter Applications, 1996. in press.[18] A. Skjellum, N. Doss, K. Viswanathan, A. Chow-dappa, and P. Bangalore. Extending the message pass-ing interface. In Proc. 1994 Scalable Parallel LibrariesConf. IEEE Computer Society Press, 1994.

8

