
Generalized Communicatorsin the Message Passing InterfaceIan FosterMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439, U.S.A.foster@mcs.anl.gov Carl KesselmanBeckman InstituteCalifornia Institute of TechnologyPasadena, CA 91125, U.S.A.carl@compbio.caltech.eduMarc SnirT. J. Watson Research CenterIBMP.O. Box 218, Yorktown Heights, NY 10598, U.S.A.snir@watson.ibm.comAbstractWe propose extensions to the Message Passing In-terface (MPI) that generalize the MPI communicatorconcept to allow multiple communication endpoints perprocess, dynamic creation of endpoints, and the trans-fer of endpoints between processes. The generalizedcommunicator construct can be used to express a widerange of interesting communication structures, includ-ing collective communication operations involving mul-tiple threads per process, communications between dy-namically created threads, and object-oriented applica-tions in which communications are directed to speci�cobjects. Furthermore, this enriched functionality can beprovided in a manner that preserves backward compat-ibility with MPI. We describe the proposed extensions,illustrate their use with examples, and discuss imple-mentation issues.1. IntroductionOne of the most important features of the MessagePassing Interface (MPI) [4, 7] is the communicator,which allows the programmer to de�ne unique com-munication spaces within which a set of processes cancommunicate without fear of interference. Communi-cators are created by collective calls that create a lo-cal instance of a communicator object in each of a setof processes. We can think of the local communica-tor object in each process as a \communication port"

that the process can use to send messages to and re-ceive messages from other such \ports" connected bythe same communication space. In an intracommuni-cator, the ports are connected so that each can sendto and receive from any other; in an intercommunica-tor, the ports form two disjoint sets, with each memberof one set being able to send to and receive from anymember of the other set.The two related concepts of communication spaceand communication port are powerful and general.However, we believe that their utility is signi�cantlyreduced by the fact that an MPI communicator mustde�ne exactly one port per process in a process group,and by the fact that only fully connected and bipar-tite communication structures are supported. Suchcommunication structures are often su�cient for homo-geneous, single-threaded, SPMD computations. How-ever, task-parallel, multithreaded, and heterogeneouscomputations often can bene�t frommore 
exible com-munication structures. Consider the following situa-tions:� Amultithreaded computation in which a program-mer requires unidirectional communication chan-nels between two dynamically created threads ofcontrol located in di�erent processes.� A dynamic computation in which a master pro-cess \connects" two dynamically created child pro-cesses.� A task-parallel computation in which communi-



cation needs to be directed to a speci�c data-structure (or object) rather than to a process.In each of these examples, the collective, all-to-all na-ture of the MPI communicator is an impediment to adirect expression of the required communication struc-ture.In this article, we propose a generalized communica-tor mechanism that eliminates these limitations whilemaintaining backward compatibility with MPI. Thisgeneralized mechanism allows a process to create newcommunication ports and connect these ports in anarbitrary topology. Furthermore, the port becomes a�rst-class object and can be sent to other processes viaMPI messages.Other extensions to the MPI communicator havebeen proposed. For example, Skjellum et al. [6] pro-pose mechanisms that allow for a richer set of collectiveoperations over communicators, as well as extensionsthat support multithreaded execution. The extensionspresented here are orthogonal to these proposals.In the remainder of this article, we introduce ourgeneralized communicatormechanism, illustrate its usewith examples, and brie
y discuss implementation is-sues.2. Generalized CommunicatorsIn MPI, a communicator is �rst and foremost a globalstructure. An implementation of this structure typi-cally maintains a set of local data structures, which wemight call local communication objects (LCOs); how-ever, no mechanism is provided for manipulating theseLCOs directly. Our extensions generalize the MPI com-municator so that the LCO becomes an MPI data typein its own right. Thus the generalized LCO imple-ments the \communication port" abstraction referredto in the introduction. Each LCO contains explicitreferences to other LCOs and hence provides a purelylocal view of a communication topology.This new interpretation of the MPI communicatorseparates the two concepts of communication and pro-cess. An arbitrary number of LCOs can be createdwithin a process, and communications can be directedto di�erent LCOs within the same process. In addi-tion, the new interpretation makes it possible to createarbitrary communication topologies. These new capa-bilities enable the use of more general protocols forcommunication port creation and destruction. For ex-ample:� Amultithreaded computation can dynamically de-�ne a point-to-point communication namespace

between two or more threads of control, whetherthese threads are located in the same or di�erentprocesses.� We can pass references to communication ports(\port capabilities") between processes, thus al-lowing, for example, a thread to delegate responsi-bility for performing a particular communication.� We can de�ne communicator-like structures con-taining more communication ports than processes.This feature makes it possible to perform collectiveoperations involving multiple threads [5], wherethe number of threads may be greater than thenumber of processes, a situation that can ariseon shared-memory multiprocessors or in programsthat create one thread per application \task."Figure 1 illustrates some of the communicationstructures that can be speci�ed using the port con-struct. We emphasize that the extended interpreta-tion of the local communicator object does not a�ectMPI's intracommunicator and intercommunicator con-cepts. For example, an intracommunicator connectingN processes is just a collection of N LCOs, each refer-encing the N other LCOs.3. Send and Receive SlotsWe now consider the structure of an LCO in some de-tail. Associated with an LCO is an ordered set of sendslots and an ordered set of receive slots. A receive slotis a communication endpoint , a location to which com-munication can be directed. A send slot is a referenceto a receive slot in an LCO; this reference comprisesthe LCO's name, which is a new MPI datatype, andthe index of the receive slot in the named LCO's re-ceive set. LCOs can be connected to form arbitrarygraphs. The only consistency requirement on an LCOis that, for each send slot, there exists an LCO with amatching receive slot.By interpreting the rank in MPI communication op-erations as a slot index, rather than the rank of thesource or destination process in the process group, wecan apply operations such as send and receive to a portwithout modi�cation. In a send call, the rank speci�esthe send slot referencing the LCO into which data is tobe deposited. In a receive call, the rank speci�es theindex of the receive slot in which to look for incomingdata. If the LCOs are connected in an all-to-all con�g-uration, the behavior is exactly that of a conventionalMPI intracommunicator.A local communicator object can be used anywherethat an MPI communicator is used. Hence:2



(a) (b)

(d)(c) (e)

Figure 1. Above, the two types of communication structure that can be specified in MPI: (a) the fully
connected communicator, and (b) the intercommunicator’s bipartite graph. Below, three different
structures that can be specified by using MPI extended to support ports: (c) a fully connected
communicator with more than one LCO per process; (d) a regular communicator coexisting with a
dynamically created communicator connecting two LCOs; and (e) a communication structure that
allows two senders to communicate with a single receiver� All MPI point-to-point communication functionscan be applied to LCOs.� All MPI collective communication functions canbe applied collectively to a set of LCOs de�ningan intracommunicator.� MPI intercommunicator functions can be appliedcollectively to a set of LCOs de�ning an intercom-municator.� MPI functions involving process groups and com-municators can be applied to LCOs; this issue isdiscussed below.In each of these situations, multiple threads may berequired to avoid deadlock if two or more of the LCOsinvolved in a communication are located in the sameprocess.The semantics of communication on generalizedLCOs are identical to those for MPI communicators.In particular, messages sent on a communication edgelinking two LCOs are received in order, and commu-nication failure results in an exception at the sendingor receiving LCO. In a multithreaded system, if twoor more threads perform receive operations that wouldmatch an incomingmessage, all block until the message

arrives. The �rst thread to have performed a match-ing receive operation then succeeds and receives themessage; the others stay blocked.For notational purposes, we can think of an LCO asa pair with the following form:port = fset-of-send-slots, set-of-recv-slotsgwhere a set is denoted by a comma-separated list, en-closed in angle brackets, and a send slot has the formsend-slot = lco-name[recv-slot-number ]A receive slot is denoted simply by a \+". We use thisnotation to preesnt some examples.Example: Channel. A unidirectional channel is de�nedby a pair of LCOs connected so that one can be usedto send to the other. For example, the two LCOsP0 = {<P1[0]>, <>} P1 = {<>, <+>}de�ne a channel from LCO P0 to LCO P1. P1 hasa single receive slot; P0 has a single send slot, whichcontains a reference to P1's receive slot. Hence, thecallsMPI_Send(in, 1, type, 0, tag, P0)MPI_Recv(out, 1, type, 0, tag, P1, status)3



will transfer data from in to out. That is, a send onP0's 0th send slot is matched by a receive from P1's0th receive slot.Example: Intracommunicator. An MPI intracommuni-cator is de�ned by a set of LCOs con�gured as a fully-connected network. For example, the LCOsP0 = {<P0[0],P1[0],P2[0]>, <+,+,+>}P1 = {<P0[1],P1[1],P2[1]>, <+,+,+>}P2 = {<P0[2],P1[2],P2[2]>, <+,+,+>}de�ne a fully connected network, that is, an MPI in-tracommunicator. The callsMPI_Send(in, 1, type, 2, tag, P0)MPI_Recv(out, 1, type, 0, tag, P2, status)will transfer data from in to out. That is, a send toP0's 2nd send slot is matched by a receive on P2's 0threceive slot.Example: Intercommunicator. An MPI intercommuni-cator is de�ned by two sets of LCOs con�gured so thateach LCO in the �rst set can send to and receive fromeach LCO in the second set. For example, the LCOsP0 = {<P2[0],P3[1]>, <+,+>}P1 = {<P2[0],P3[1]>, <+,+>}P2 = {<P0[0],P1[1]>, <+,+>}P3 = {<P0[0],P1[1]>, <+,+>}de�ne a structure equivalent to an MPI intercommuni-cator. In this case, LCOs P0 and P1 are connected toLCOs P2 and P3, so that, for example, the callsMPI_Send(in, 1, type, 1, tag, P0)MPI_Recv(out, 1, type, 0, tag, P3, status)will transfer data from in to out. That is, a send toP0's 1st send slot is matched by a receive on P3's 0threceive slot.4. Manipulating Local CommunicatorsWe now consider how the MPI interface can be ex-tended to support LCOs. We de�ne six new functionsthat are used to create a local communicator, to ob-tain an LCO name that can be communicated betweenprocesses, to add slots to LCOs, and to determine thenumber of slots associated with an LCO. Other func-tions can be de�ned to delete slots, obtain informationabout slots, etc., but for brevity we do not considerthese here.An LCO is represented by the opaque datatypeMPI Comm. We will often need to be able to create

an \LCO name" that can be communicated betweenprocessors, so we de�ne the related opaque datatypeMPI Comm name, and the new communication datatypeMPI CNAME.MPI COMM CREATE LOCAL(lcomm)OUT lcomm New local communicator (handle)Create a new local communicator object, lcomm. Ini-tially, no send or receive slots are associated with thenew LCO; these must be added explicitly.MPI COMM NAME(lcomm, name)IN lcomm Local communicator object (handle)OUT name Communicator name (handle)Create and return a name that can be used to refer-ence the lcomm. This name is used in the next function.MPI ADD SEND SLOTS(lcomm, count, lcos, slots)INOUT lcomm Local communicator object (handle)IN count Number of slots to add (integer � 0)IN lcos LCOs to be sent to (array ofcommunicator names)IN slots Slots to be sent to (array of integers)This function and the next are used to cre-ate new connections between LCOs. This functionadds count send slots to lcomm, and de�nes eachnew slot i to be the reference to the receive slotlcos(i)[slots(i)]. (Note that the receive slots refer-enced by the newly created send slots must be createdusing MPI ADD RECEIVE SLOTS and may not yet ex-ist when MPI ADD SEND SLOTS is called.)MPI ADD RECEIVE SLOTS(lcomm, count)INOUT lcomm Local communicator object (handle)IN count Number of receive slots (integer � 0)This function adds count slots to the receive set oflcomm.MPI NUM SEND SLOTS(lcomm, count)IN lcomm Local communicator object (handle)OUT count Number of send slots (integer � 0)Return the number of send slots in the LCO lcomm.Notice that if this LCO is part of a communicator struc-ture, this function is equivalent to MPI COMM SIZE.MPI NUM RECEIVE SLOTS(lcomm, count)IN lcomm Local communicator object (handle)OUT count Number of receive slots (integer � 0)Return the number of receive slots in the LCOlcomm. Again, if this LCO is part of a com-municator structure, this function is equivalent toMPI COMM SIZE.4



Example: Creating a Channel. Figure 2 creates a uni-directional channel: a pair of LCOs connected so thatone can be used to send to the other. The connectionis established by using an existing communicator tosend a reference to one LCO (the \receive end") to theprocess containing the second LCO (the \send end").A number of messages are then communicated on thechannel. Notice how at the send end, messages aresent on the single send slot, while at the receive end,messages are received on the single receive slot.Example: MPI COMM DUP. Just as MPI's point-to-point communication functions can be used to imple-ment MPI's various global operations, so the LCO op-erations can be used to implement MPI's communi-cator functions. For example, Figure 3 implementsMPI COMM DUP. This function is applied collectivelyto a set of LCOs assumed to de�ne an intracommuni-cator; comm is one such LCO. It constructs a new setof LCOs de�ning an intracommunicator with the sametopology.4.1. An alternative interface designThe LCO construct de�ned above serves as a capabil-ity for a port, providing the ability to send or receiveto or from another LCO. Once the name has been dis-tributed, the holder of that capability is responsible forsynthesizing a slot name from the port name. In situa-tions where security or safety are issues, the ability tocreate a slot reference unilaterally can be problematic.An alternative interface would associate names withspeci�c receive slots rather than LCOs. The \add re-ceive slots" operation then returns a slot name, a capa-bility that allows another LCO to send to that receiveslot. This reference can be added to another LCO witha variant of the \add send slot" call with the formMPI ADD SEND SLOT(lcomm, slot-reference)This scheme has the advantage that we can de-�ne a capability for a single receive slot, rather thanfor the entire LCO as in the scheme described previ-ously. A disadvantage is that in applications that re-quire many connections, a large number of these slottokens must be communicated. For example, in theMPI COMM DUP example considered above, O(N2)slot tokens must be created and communicated, whereN is the number of LCOs; in contrast, the scheme de-scribed in the preceding sections requires that only Ncommunicator names be communicated.

receiver_side(MPI_Comm comm, int nbr){ MPI_Comm receiver;MPI_Comm_name rname;int msg;/* Create an LCO */MPI_Comm_create_local(receiver);MPI_Add_receive_slots(receiver, 1);/* Send LCO name to other process */MPI_Comm_name(receiver, &rname);MPI_Send(rname, 1, MPI_CNAME, nbr,99, comm);/* Receive messages from other processon channel. A distinguished valuemight be used to detect termination */while(!done)MPI_Recv(msg, 1, MPI_INT, 0, 99,receiver, status);MPI_Comm_free(receiver);}sender_side(MPI_Comm comm, int nbr){ MPI_Comm sender;MPI_Comm_name rnames[1];int msg, rslots[1];/* Create a new communicator object */MPI_Comm_create_local(sender);/* Receive LCO name from other process,add to send list */MPI_Recv(rnames, 1, MPI_CNAME, nbr, 99,comm, status);rslots[0] = 0;MPI_Add_send_slots(sender, 1, rnames,rslots);/* Send messages to other process,on newly created channel */for(msg=0; msg<10; msg++)MPI_Send(msg, 1, MPI_INT, 0,99, sender);MPI_Comm_free(sender);}
Figure 2. Implementation of a unidirectional
channel using the generalized communicator
constructs5



comm_dup(MPI_Comm comm, MPI_Comm *newcomm){ int numslots, *rslots, i;MPI_Comm_name *pnames, pid;MPI_Num_send_slots(comm, &numslots);pnames = (MPI_Comm_name *)malloc(numslots*sizeof(MPI_Comm_name));rslots = (int *)malloc(numslots);/* Create our new LCO */MPI_Comm_create_local(newcomm);MPI_Comm_name(*newcomm, &pid);MPI_Add_receive_slots(*newcomm, size);/* Gather operation collects pointersto all new LCOs */MPI_Allgather(pid, 1, MPI_CNAME, pnames,1, MPI_CNAME, comm);/* Associate these pointers with our LCO */for(i=0; i<numslots; i++)rslots[i] = i;MPI_Add_send_slots(*newcomm, numslots,pnames, rslots);/* Ensure all complete before usingnew communicator */MPI_Barrier(comm);}
Figure 3. Implementation of MPI Comm dup us-
ing the generalized communicator constructs

4.2. Interaction with process groupsAs noted above, MPI functions that expect a commu-nicator as an argument behave as expected when ap-plied to a set of LCOs that are structured so as to im-plement an MPI communicator. What happens whenthese functions are applied to LCOs that do not im-plement a communicator, either because they form lessthan fully connected structures, or because they con-nect more than one communicator object per process?We propose to address these situations by (a) general-izing the de�nition of existing MPI functions so thatthey work when applied to any LCO, and (b) introduc-ing a small number of new functions. In this article, wedo not provide a detailed speci�cation for these exten-sions, but instead just discuss some of the issues thatarise.One issue that must be addressed relates to the factthat many MPI functions that expect a communica-tor as an argument are de�ned in terms of the processgroup associated with that communicator. For exam-ple, MPI COMM SIZE is de�ned to refer to the \num-ber of processes in the group of comm," rather than the\number of local communicator objects." In standardMPI, these two de�nitions are equivalent; however, inMPI with our extensions, they are not, and in fact wemay be interested in either one or the other de�nitionin di�erent situations.We address this problem by retaining the existinginterpretation of any MPI function that refers explic-itly to processes and by introducing new functions thatoperate explicitly on LCOs. To retain the existing in-terpretation of MPI functions that refer to processes,we provide the following de�nition:The process group associated with a localcommunicator object is the list of processesreferenced by its send slots, with duplicatesremoved.An advantage of this interpretation is that functionssuch as MPI COMM SIZE and MPI COMM RANK canbe applied unchanged to an LCO that forms part of acommunicator structure. These functions can also beapplied to other LCOs, although the results may notalways be useful.Some programs will require information about LCOsrather than processes. For example, a program thatcreates a communicator-like structure with more LCOsthan processes may want to send a message to eachLCO. In this case, MPI COMM SIZE cannot be usedto determine the number of LCOs. However, the func-tion MPI NUM SEND SLOTS provides the required in-formation.6



5. Implementation IssuesThe modi�cations to an MPI implementation re-quired to support our proposed MPI extensions areinevitably focused within the MPI communicator con-struct. Hence, we introduce this discussion of imple-mentation issues by describing how communicators arerepresented within one widely used MPI implementa-tion, MPICH [3].The two principal components of an MPI commu-nicator as represented in MPICH are a process groupand a context. The process group is represented as anordered set of process identi�ers, stored as an integerarray. A process's rank in a group refers to its index inthis array. The array contains for each index an addressin a format that the underlying device can use and un-derstand: for example, the rank in MPI COMM WORLD.The context associated with a communicator is repre-sented by an integer. Note that the communicator datastructure maintained in each process has the same pro-cess group and context values; these were determinedby the collective operation that created the communi-cator. When a message is sent, the rank provided inthe send call is used to extract a process identi�er fromthe process group array associated with the communi-cator on which the send is performed. The message isthen sent to that process, together with a message en-velope containing the rank of the sending process, thetag, and the integer context identi�er associated withthe communicator.An LCO has a somewhat di�erent structure. Cor-responding to the MPICH integer representation of acontext is an integer LCO identi�er, assigned when theLCO is created. This identi�er is guaranteed to beunique only within the creating process. Correspond-ing to the MPICH process group is an array of sendslots. Each entry in an LCO's send slot array containsa process identi�er, an LCO identi�er, and a receiveslot index. Receive operations proceed in a manneridentical to an MPI receive; a send operation di�ersfrom an MPI send only in that when constructing themessage envelope, it uses the receive slot index for therank and the LCO identi�er as the context. We notethat one signi�cant advantage of this approach relativeto the MPICH communicator structure is that identi-�ers can be allocated in a purely local fashion. Hence,collective operations are not required for communica-tor creation and the identi�er name space can be moredensely populated.The principal overhead associated with this imple-mentation scheme is the additional space required tomaintain an LCO identi�er and receive slot identi�erin each send slot. However, one can imagine optimiza-

tions that recognize sets of LCOs representing MPIcommunicator or intercommunicator structures, andrevert to the more compact representation in this case.An alternative implementation approach would usea communication library such as Nexus [2] that pro-vides global pointer and single-sided communicationoperations. In this environment, a send slot can berepresented as a global pointer to a remote queue cor-responding to a receive slot, and a send operation canbe implemented as a remote enqueue operation. Thistechnique has been used to construct an implementa-tion of ordinary MPI [1].6. ConclusionsWe have presented extensions to the MPI communica-tor that permit the representation of more general and
exible communication structures. These extensionsare backwards compatible with MPI, meaning that anyexisting MPI program will execute correctly in a sys-tem that supports the new constructs. We believe thatthe new constructs can be incorporated into existingMPI implementations without di�culty and withoutsigni�cant performance degradation.A disadvantage of the extensions as presented here isthat because LCOs (and slots within LCOs) are createdand destroyed independently, we lose MPI's messagesafety property. That is, a message may arrive for anonexistent receive slot. This problem can be avoided,at the expense of added complexity, by using one ofthe various mechanisms that have been developed formanaging distributed objects, such as reference count-ing.The generalized LCO proposed in this article alsoappears to have other uses. For example, LCOs can beused to manage \one-sided" communications, in whichthe arrival of a message triggers the execution of a han-dler function. By requiring these communications tooccur over an LCO, we provide an endpoint on thereceiver side with which control information can beassociated. LCOs can also be used to de�ne gener-alized collective communication operations, in whichuser-de�ned transformations are applied to data sup-plied by an arbitrary number of senders, and the resultsof these transformations are delivered to an arbitrarynumber of receivers.AcknowledgmentsThis work was supported by the National Science Foun-dation's Center for Research in Parallel Computation,7



under Contract CCR-8809615, and by the Mathemati-cal, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Tech-nology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.References[1] I. Foster, J. Geisler, and S. Tuecke. MPI on the I-WAY: A wide-area, multimethod implementation of theMessage Passing Interface. In Proceedings of the 1996MPI Developers Conference. IEEE Computer SocietyPress, 1996.[2] I. Foster, C. Kesselman, and S. Tuecke. The Nexusapproach to integrating multithreading and communi-cation. Journal of Parallel and Distributed Computing,1996. To appear.[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. Ahigh-performance, portable implementation of the MPImessage passing interface standard. Technical ReportANL/MCS-TM-213, Mathematics and Computer Sci-ence Division, Argonne National Laboratory, Argonne,Ill., 1996.[4] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:Portable Parallel Programming with the Message Pass-ing Interface. MIT Press, 1995.[5] M. Haines, P. Mehrotra, and D. Cronk. Ropes: Supportfor collective operations among distributed threads.Technical Report 95-36, Institute for Computer Appli-cation in Science and Engineering, 1995.[6] A. Skjellum, N. Doss, K. Viswanathan, A. Chowdappa,and P. Bangalore. Extending the message passing in-terface. In Proc. 1994 Scalable Parallel Libraries Conf.IEEE Computer Society Press, 1994.[7] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker,and J. Dongarra. MPI: The Complete Reference. TheMIT Press, Cambridge, Mass., 1996.
8


