
MPI as a Coordination Layer for Communicating HPF TasksIan T. Foster�David R. Kohr, Jr.Mathematics and Computer Science Div.Argonne National LaboratoryArgonne, IL 60439ffoster,kohrg@mcs.anl.gov Rakesh KrishnaiyerDept. of Computer and Information ScienceAlok ChoudharyDept. of Electrical and Computer EngineeringSyracuse UniversitySyracuse, NY 13244frakesh,choudharg@cat.syr.eduAbstractData-parallel languages such as High PerformanceFortran (HPF) present a simple execution model inwhich a single thread of control performs high-level op-erations on distributed arrays. These languages cangreatly ease the development of parallel programs. Yetthere are large classes of applications for which a mix-ture of task and data parallelism is most appropriate.Such applications can be structured as collections ofdata-parallel tasks that communicate by using explicitmessage passing. Because the Message Passing Inter-face (MPI) de�nes standardized, familiar mechanismsfor this communication model, we propose that HPFtasks communicate by making calls to a coordinationlibrary that provides an HPF binding for MPI. Thesemantics of a communication interface for sequen-tial languages can be ambiguous when the interface isinvoked from a parallel language; we show how theseambiguities can be resolved by describing one possibleHPF binding for MPI. We then present the design ofa library that implements this binding, discuss issuesthat inuenced our design decisions, and evaluate theperformance of a prototype HPF/MPI library using acommunications microbenchmark and application ker-nel. Finally, we discuss how MPI features might beincorporated into our design framework.1. IntroductionMessage-passing libraries such as the Message Pass-ing Interface (MPI) provide programmers with a highdegree of control over the mapping of a parallel pro-gram's tasks to processors, and over inter-processor�To whom correspondence should be addressed.

communications [5]. However, this control comes ata high price: programmers must explicitly manage alldetails relating to parallelism, such as synchronizationand data transfer. In contrast, data-parallel languagessuch as High Performance Fortran (HPF) provide asimple programming model in which all processors ex-ecute a single, logical thread of control that performshigh-level operations on distributed arrays; many te-dious details are managed automatically by the com-piler [7].1.1. Limitations of data parallelismWhile data-parallel languages such as HPF cangreatly ease development of concise solutions to manyparallel programming problems, the rate of improve-ment of speedup of many data-parallel programs dimin-ishes sharply as more processors are used to execute aprogram. This is typically due to increased communi-cation overhead. Alternatively, one may say that par-allel e�ciency , or the ratio of speedup to processors,decreases as the number of processors increases. Fig-ure 1 depicts an abstract example of this phenomenon.Classes of applications that exhibit this e�ect mostmarkedly include those that perform a number of het-erogeneous processing steps (such as pipeline codesand multidisciplinary simulations) and those that oper-ate on irregularly-structured data (such as multiblockcodes).Fortunately, many such programs can be decom-posed into independent data-parallel tasks that can ex-ecute in parallel on a subset of the available processorsat higher parallel e�ciency than the original programrunning on all processors [2, 6]. For example, supposethe program of Figure 1 can be reformulated as a pair ofcommunicating data-parallel tasks that each run on P2processors with a parallel e�ciency of 90% (as did the
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Figure 1. A plot of speedup versus number
of processors for an application that exhibits
diminishing parallel efficiency.original program). When this mixed task/data-parallelversion executes on all P processors, it can maintain aparallel e�ciency of 90%, a signi�cant improvementover the 60% of the purely data-parallel version.Though this simple analysis neglects the additionalinter-task communication incurred by the task-parallelversion, in practice this overhead often is dominatedby the improvement in each task's parallel e�ciency.Moreover, in many pipeline applications it is desirableto optimize not the time to process a single dataset (thepipeline latency), but rather the number of datasetsprocessed per unit time (the throughput). Through-put is bounded not by the time to complete all stages,but rather by the processing rate of the slowest stage.Therefore, even if communication overhead causes thelatency of a pipelined version to rise above that of apurely data-parallel version, so that the speedup of thepipeline at processing one dataset is actually lower, thepipeline may still be preferable because its throughputis higher [1].1.2. MPI in an HPF contextBecause HPF is a powerful, high-level notation forexpressing data-parallel computations, while MPI fa-cilitates precise control over task mapping and inter-task communication, we propose the use of an HPFbinding for MPI as a coordination layer for cou-pling together data-parallel tasks to construct mixedtask/data-parallel programs. However, the semanticsof a standard such as MPI that is intended for sequen-tial languages are not entirely clear when its mecha-nisms are invoked from a parallel language. For ex-ample, a \process" in MPI is assumed to be an inde-

Producer (task 0):!HPF$ processors prod_procs(4)real A(8, 8)!HPF$ distribute A(BLOCK, *) onto prod_procsdo i = 1, Ncall produce_data(A)call MPI_Send(A, 8*8, MPI_REAL, 1, 99,& MPI_COMM_WORLD, ierr)end doConsumer (task 1):!HPF$ processors cons_procs(2)real B(8, 8)!HPF$ distribute B(*, BLOCK) onto cons_procsdo i = 1, Ncall MPI_Recv(A, 8*8, MPI_REAL, 0, 99,& MPI_COMM_WORLD, status,& ierr)call consume_data(B)end do
Figure 2. Producer-consumer example writ-
ten using HPF/MPI.pendent thread of control executing on a single proces-sor. This is ambiguous when applied to the executionmodel of HPF, where one logical thread of control isreplicated across many physical processors. Similarly,data structures in MPI are assumed to reside withina single address space, yet a fundamental premise ofHPF is that arrays can be distributed across multipleaddress spaces.Our de�nition of an HPF binding for MPI attemptsto resolve these di�culties. In an HPF/MPI program,each task constitutes an independent HPF program inwhich one logical thread of control operates on arraysdistributed across a statically-de�ned set of processors.At the same time, each task is also one logical processin an MPI computation. Therefore, tasks may com-municate and synchronize with one another by callingstandard MPI routines for point-to-point transfer andcollective operations. The combination of the seman-tics of our binding and the implicit nature of paral-lelism in HPF yields the following helpful consequence:when reading an HPF/MPI program one may ignorethe HPF directives and treat the remainder as a par-allel Fortran 90 program containing explicit message-passing calls.We use a very simple producer-consumer exampleto illustrate the usage of the HPF binding for MPI;Figure 2 shows the source code for the example. Theproducer task calls the function produce data, which2
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Figure 3. Movement of distributed data from
producer to consumer.performs a series of data-parallel operations on the ar-ray A using four processors. Then the producer callsMPI Send to transmit the contents of A to the consumer,in a message with a tag value of 99. The consumerreceives this data into an array B, using MPI Recv. Fi-nally, the consumer processes the data in parallel onits two processors by calling consume data.What distinguishes this example from an ordinarysequential MPI program is that each of the two logicalMPI processes is an HPF task executing on several pro-cessors. Hence the source array being transferred viaMPI calls is actually distributed across the processorsof task 0, and the message destination is distributedacross those of task 1. Figure 3 depicts the complexpattern of data movement from source to destinationrequired to perform this transfer. Yet from the pro-grammer's perspective, one invokes just a single trans-fer operation; all the complexity is encapsulated in theHPF/MPI library.The example of Figure 2 does not show how the twotasks were connected together in a pipeline. This canbe achieved in two ways:1. During execution, tasks may invoke the inquiryfunction MPI Comm rank to determine their iden-tity, and perform conditional processing based onthe returned value. (This is similar to the opera-tion of SPMD programs.)2. The startup mechanism of an HPF/MPI imple-mentation must permit de�nition of the size ofeach task. If the startup mechanism also letsthe user specify di�erent programs to be executedby di�erent tasks, then a collection of separately-compiled executables may be combined into a sin-gle HPF/MPI computation. (Many implementa-tions of sequential MPI permit this.)

In the next section, we present the design of a li-brary that implements a subset binding of MPI, basedon the ideas just presented. In Section 3, we evaluatethe performance of a prototype HPF/MPI library, anddetermine the sources of overheads that a�ect its per-formance. Section 4 contains a discussion of promisingtechniques for extending our library to include addi-tional MPI features. Finally, in Section 5 we compareour techniques for introducing task parallelism intodata-parallel languages with other approaches, stateour conclusions regarding the e�ectiveness of our ap-proach, and suggest directions for future work.2. An Implementation StrategyWe have designed and implemented a subset of anHPF binding for MPI that provides the communicationoperations described above. Because the implementa-tion of all of MPI is a daunting task, we have restrictedour e�orts to a small subset so that we can focus onanalyzing and understanding design and performanceissues. Our HPF/MPI implementation operates withthe commercial HPF compiler pghpf, developed by thePortland Group, Inc. [9]The design of our HPF/MPI library was guided fromthe outset by several underlying assumptions and ob-jectives, including the following:� The primary target platforms on which we wouldrun HPF/MPI applications would be distributed-memory multicomputers.� We wished to maintain a high degree of portabilityacross hardware and software platforms, includingacross di�erent HPF compilation systems.� The library should achieve good performance forcommunication patterns typical of the sorts ofmixed task/data-parallel applications we wishedto support.� When users express optimization hints throughMPI facilities (such as the fact that a particularcommunication pattern is repeated many times),HPF/MPI should be able to exploit these oppor-tunities.� It should be possible to build upon the subset li-brary to extend it into a full implementation of allof the MPI standard.These guiding principles carry with them a numberof important consequences for our design. For exam-ple, the characteristics of our intended target platformsimply that to achieve high transfer bandwidth for large3



arrays, during communication we should try to utilizethe high connectivity of the target's network by per-forming multiple transfers in parallel. As a result, wehave developed a design based on a parallel strategy(described below).Furthermore, as a result of our desire for portability,we chose a sequential implementationof MPI as the un-derlying communication substrate, because it is avail-able on many multicomputers and utilized by manyHPF compilers. We note, however, that HPF/MPIcan be layered atop other communication substrates.In Section 4, we discuss how functionality beyond thatprovided by MPI could aid in extending our subset li-brary.Many of the applications we wish to support re-quire low latency for certain communications whichare repeated frequently [1]. MPI includes the func-tions MPI Send init and MPI Recv init for de�ningpersistent requests for sends and receives; persistentrequests allow an implementation to recognize and op-timize such repeated operations. Therefore we selectedpersistent requests as the �rst MPI optimization facil-ity to add to our library. The di�culty of incorporatingthis feature into the library also served as a measureof the modularity of our design: the more modular thedesign, the easier it will be to extend HPF/MPI tosupport the entire MPI standard.2.1. Details of the implementationWhen an HPF task invokes an HPF/MPI communi-cation function, the library takes a number of actions toe�ect the data transfer. Here we examine the sequenceof steps taken by the producer (task 0) in Figure 2 as itcalls MPI Send to transfer distributed source array A todestination array B in task 1. The steps are as follows:1. Distribution inquiry : Standard Fortran 90 andHPF intrinsic inquiry functions are called to cre-ate an array descriptor for A that speci�es its sizeand distribution.2. HPF extrinsic call : A C language data transmis-sion routine mpi send c is invoked. Because theroutine is not written in HPF, it must be invokedin local mode: for the duration of the call, eachprocessor in task 0 has a separate thread of con-trol (SPMD-style execution) rather than the singlethread of control implied by HPF.3. Array descriptor exchange: Processors in task 0join in a collective operation with those of task 1.This operation has the e�ect of broadcasting thearray descriptor of A to all processors in task 1, and

that of B to all processors in task 0. (We exploitthe fact that each descriptor is initially presenton all processors of one task by implementing thisoperation using a set of point-to-point transfers;this is typically more e�cient than a broadcast.)4. Communications scheduling : Using the array de-scriptors for A and B, each processor of task 0 com-putes a communications schedule, that is, the setsof elements of its local portion of A that must besent to each processor of task 1. The schedule iscomputed by algorithms based on the FALLS rep-resentation of Ramaswamy and Banerjee [8].5. Transfer bu�er packing : The elements to be sentto a single processor of task 1 are packed (gath-ered) into a single contiguous transfer bu�er .6. Data transmission: The contents of the transferbu�er prepared in Step 5 are transmitted to thereceiving process using point-to-point operationsof the underlying communication substrate.Note that Steps 5 and 6 are performed by a sendingprocessor once for each receiving processor that re-quires array elements from the sender.In the case of a task receiving data using MPI Recv(such as the consumer task of Figure 2), the sequence ofsteps is essentially the same through the end of Step 4.In Step 5, each processor receives data from a sendingprocessor into a transfer bu�er, using the sequentialversion of MPI Recv. Finally, in Step 6 the contentsof the transfer bu�er are unpacked (scattered) to their�nal locations in the destination array. As in the caseof a sending task, Steps 5 and 6 are repeated once forevery sending process from which elements must be re-ceived. The iteration ordering for each receiver over itsset of senders is chosen to match the iteration orderingfor senders over their receivers, so that the send andreceive operations comprising a data transfer matchcorrectly.When a task creates a persistent request for a sendor receive using MPI Send init or MPI Recv init, itsprocessors execute Steps 1 through 4 of the sequencepresented above, and the resultant communicationsschedule is cached in an MPI Request object. When therequest is subsequently executed using MPI Start, thiscommunications schedule is used to perform Steps 5and 6. Therefore the delay incurred by descriptor ex-change and the processing overhead of communicationsscheduling can be amortized over many operations.4



2.2. Properties of the implementationTo obtain the best performance, it is important thattransfers between di�erent senders and receivers pro-ceed in parallel. This implies that two senders shouldnot try to send to the same receiver at the same time.As transfers are performed iteratively by each sender,the parallelization of transfers depends on the iterationordering of each sender over its set of receivers, whichis selected by the FALLS-based algorithms. Transfersgenerally proceed in parallel if both of the followingconditions are met:1. There are at least as many receivers as senders.This condition depends on the sizes of the sendingand receiving tasks.2. All senders possess the same set of receivers. Thiscondition holds for most common redistributions.Because there is no synchronization between senders asthey iterate over receivers, it is possible for one senderto overtake another, with the result that both sendto the same receiver at the same time. The receiverthen becomes a hotspot, and parallelism is reduced.However, if each transfer is of roughly the same size(as is the case for many common redistributions), thisis unlikely to occur.As noted above, portability across platforms andHPF compilation systems was one of our major goals.To this end, we de�ned a simple link-level interfacewhich we believe permits our library to work with therun-time system of any HPF compiler that uses MPIas its communication substrate. The key to portabilityis that the interface does not require access to the HPFsystem's internal data structures. When we tested thisinterface with pghpf, only minimalmodi�cations to thesource code of pghpf's run-time system were necessary.High-quality implementations of HPF may store thelocal portion of a distributed array in a non-contiguousformat denoted by an internal run-time array descrip-tor: this permits optimization of compiler-synthesizedcommunication (e.g. by padding arrays with \ghost el-ements"), and e�cient operation on array subsections.To avoid dependence on pghpf's array descriptor for-mat, we explicitly declare HPF/MPI communicationroutines to be extrinsics, or routines not written inHPF. This declaration causes array arguments to becopied into a contiguous temporary array before enter-ing the extrinsic, and copied back from the temporaryupon return. The temporary array possesses the prop-erty of sequence association currently required by theHPF/MPI library. As a result, the library remains
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Figure 4. Communication operations per-
formed for the centralized strategy. Ovals
are tasks, small circles are individual proces-
sors.portable across HPF compilation systems. Unfortu-nately, this portability comes at a cost in performance;see Section 3.2.3. An alternative strategyThe parallel strategy presented above involves allprocessors in simultaneous transfers of sections of thearray. This reduces transfer time for large arrays atthe expense of requiring all array descriptors to bedistributed to all processors, which can increase totaltransfer time for small arrays. Therefore, for trans-fers of small arrays, or when executing on networkswith low connectivity where parallel transfers are notappropriate, we have developed an alternative designbased on a centralized strategy . This design does notrequire global distribution of descriptors and does notattempt parallel transfers. This scheme is depicted inFigure 4; it operates as follows:1. The entire array is gathered at a single sendingprocessor using a sequential MPI collective opera-tion.2. The entire array is transmitted to a single receiv-ing processor using sequential MPI functions.3. The array is scattered to all receivers using a se-quential MPI collective operation.3. Performance ResultsIn this section we evaluate the performance of animplementation of a subset of the HPF binding of MPIthat relies on the parallel strategy. We use a standardsynthetic benchmark to identify sources of overhead in5



the implementation and to investigate the e�ectivenessof the optimization for persistent operations. We sug-gest techniques for reducing the overheads revealed bythese measurements. Then, we compare the executiontimes of pure HPF and HPF/MPI versions of a 2D FFTapplication kernel, to judge the utility of HPF/MPI foraccelerating real data-parallel programs.All experiments were performed on Argonne's IBMSP system, which consists of 128 Power 1 processorslinked by an SP2 interconnection network. The un-derlying sequential MPI library was MPICH [4]. AllHPF programs were compiled with pghpf, using whatwe determined to be the most e�ective optimizationswitches.3.1. Communication performanceTo evaluate the performance of our library at trans-ferring distributed arrays between tasks, we use a data-parallel variant of the standard \ping-pong" communi-cation benchmark. This program consists of two taskswith equal numbers of processors that alternately sendand receive 2D arrays of a �xed size a large numberof times. The arrays are distributed (BLOCK, *) onthe sending side and (*, BLOCK) on the receiving side.Hence a worst-case redistribution is performed duringeach transfer, as each sending processor must commu-nicate with all receivers.The performance achieved by HPF/MPI depends inpart on the performance of the underlying sequentialMPI implementation. There is a simple, widely-usedmodel that accurately characterizes the behavior ofpoint-to-point transfer operations by many message-passing libraries running on multicomputers. Thismodel assumes that for a message N bytes long, thetime TN to transfer the message between two proces-sors is governed by the equationTN = ts +N � tbwhere ts is the communication startup time, or latency,and tb is the time to transfer one byte of the message(inversely related to the bandwidth). For the MPICHlayer used in our experiments, we measured a latencyts of 87.9 �sec and a per-byte cost tb of 0.0326 �sec,which corresponds to a bandwidth of 30.7 Mbytes/sec.Figure 5 shows the time measured using the ping-pong benchmark for one-way non-persistent and persis-tent transfers of small and large messages, with varyingnumbers of processors P per task. In general, for shortmessages we �nd that transfer time increases with in-creasing P , while transfer time decreases as P risesfor large messages. In terms of the above model, forsmall non-persistent transfers, ts is 85:3 � P + 1290

�sec; for persistent transfers, ts is 60:0�P +827 �sec.Both are roughly proportional to the latency of thesequential MPI substrate. (These values were deter-mined using a least-squares �t.) For large messages,the per-byte cost is 0.081 �sec, which yields a peakbandwidth of 12.4 Mbytes/sec. The persistent opti-mization decreases transfer time by 26{32% for smallmessages, depending on P , while for large messages ithas negligible e�ect.By examining the time spent in each of the six pro-cessing steps of our design, we can often identify thesources of overheads that contribute to the transfertime. Such a breakdown of the total time is repre-sented by the shaded regions within each vertical barof Figure 5. The time for each step appearing here isthe maximumamong all processors (the variance acrossprocessors was low). Since we are interested in the end-to-end time to transfer data from a sender to a receiver,the times for corresponding steps for sending and re-ceiving messages have been summed together.From this breakdown, we �nd that distribution in-quiry (Step 1) has a small, �xed cost, never more than10% of the total. The time to compute a communica-tion schedule (Step 4) also has a modest cost, thoughit rises with P . This is because the FALLS-based al-gorithms require time proportional to the larger of thenumber of senders or receivers. For small messages,descriptor exchange (Step 4) requires about 500 �sec,which is 15{30% of the total (depending on P ). Forlarge messages, a long time is spent in this step (upto 20 millisec, or 22%). This phenomenon is not dueto a message-size-dependent cost for exchanging de-scriptors, but rather because of synchronization delaysresulting from a load imbalance: after a sender com-pletes transmission of a message, it immediately ini-tiates a receive, and waits at the descriptor exchangestep|a synchronization point|while the receiver �n-ishes receiving and unpacking data messages. All threeof these steps are skipped when persistent communica-tions are performed; however, for large messages mostof the time spent in descriptor exchange shifts to datatransmission (Step 6), which is the other point of syn-chronization during a transfer.The cost of the HPF extrinsic call (Step 2) includesboth a �xed overhead of about 200 �sec (mostly sub-routine call overhead) and a per-byte cost for argumentcopying, as noted in the previous section. As a result,this step takes 10-20% of the total time. Presumablymuch of this overhead would disappear if our librarywere able to operate directly on pghpf's internal rep-resentation of arrays, so that it would not need to beinvoked using the HPF extrinsic mechanism.Bu�er packing and unpacking (Step 5) includes a6
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Figure 5. One-way message transfer times for small (4 kilobyte) and large (1 megabyte) messages,
using non-persistent and persistent operations. The time spent in different processing steps is
denoted by the shaded regions within each vertical bar.per-byte cost that causes this step to consume about20% of the total time for large messages. The process-ing in this step is a kind of scatter-gather operation.Because data is always copied to an intermediate bu�erbefore being transferred to its �nal location, we will re-fer to this operation as an indirect scatter-gather. Theuser-de�ned datatype facilities of MPI make it possi-ble to specify a direct scatter-gather, in which datacan be transferred directly between the network inter-face and non-contiguous locations within a program'sdata structures, without bu�ering. However, not allMPI implementations can actually perform this directtransfer. Therefore, in principle it should be possiblefor HPF/MPI to specify a direct scatter-gather in thisstep, which could result in a large reduction in over-head on some platforms. However, for many redistri-butions the complexity of the required MPI datatypesis quite high. (The creation of these datatypes is evenmore complex if one performs the direct scatter-gatheron the HPF run-time system's non-contiguous inter-nal representation of arrays.) Hence modifying thelibrary to perform a direct scatter-gather on generaldistributions would require extensive enhancements tothe FALLS-based scheduling algorithms, though thereare common, simpler redistributions that are easier to

handle.The time spent performing data transmission(Step 6) varies in a predictable manner with N andP . For small messages, the time is roughly propor-tional to P ; this is to be expected, as each processormust send and receive P messages. The constant ofproportionality is about the same as the value of tsfor the underlying sequential MPI library. For largemessages, the time is proportional to the amount ofdata per processor (hence inversely related to P ). Theachieved bandwidth per processor ranges from 16 to 26Mbytes/sec, always at least half that of the underlyingMPI substrate. The bandwidth generally drops withincreasing P . We suspect that this decrease in band-width is due to the domination of startup overheadas the amount of data per processor drops, as well assynchronization delays, but further investigation is re-quired.3.2. Application performanceSynthetic communication microbenchmarks such asthe ping-pong program are an inadequate means ofgauging the e�ectiveness of a parallel programmingsystem for speeding up real programs, because the7
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Figure 6. Time to perform 2D FFT on a single input dataset, as a function of the number of processors.
Varying dataset sizes are shown.dynamic computation and communication behaviorof real programs is often di�erent from that of mi-crobenchmarks. Therefore, we have measured the per-formance of HPF/MPI using a number of applicationkernel benchmarks, such as pipeline codes and a multi-block code. Here we compare the performance of apure HPF (data-parallel) and an HPF/MPI (mixedtask/data-parallel) version of a two-dimensional fastFourier transform (2D FFT) kernel.The structure of the HPF/MPI version of 2D FFT isa pipeline containing two tasks of equal size, with oneperforming a (sequential) 1D FFT on each row of amatrix, then passing the matrix to a second task thatperforms a 1D FFT on each column. Therefore thematrix is distributed (BLOCK, *) in the �rst task, and(*, BLOCK) in the second, and a worst-case redistribu-tion between tasks is required. (The structure is quitesimilar to that of the producer-consumer example inFigure 2, with routine produce data performing row-wise FFTs, and consume data column-wise ones.) Inthe pure HPF version, there is just one matrix which isdistributed (BLOCK, *) across all processors and trans-posed between the two phases of 1D FFTs.Figure 6 shows the time required by the two versionsof the program to perform a 2D FFT on a single N�Nmatrix, for varying values of N and P . The time rep-resents an average per dataset when a large number ofdatasets are processed in a single run; hence taking thereciprocals of these times yields the throughput. Theperformance of the HPF/MPI version is generally bet-ter. In particular, for a �xed matrix size, HPF/MPIprovides an increasing improvement in speedup as Pincreases; for �xed P , the relative improvement inspeedup of the HPF/MPI version decreases as N in-creases.

The performance di�erence between the pure HPFand HPF/MPI versions is due to higher communicationoverhead in the HPF version. During the matrix trans-pose stage of the HPF program, a message of lengthN2=P 2 is exchanged between each pair of processors,so each processor sends and receives P�1 messages. Incontrast, each processor of the HPF/MPI version mustsend or receive P=2 messages of length 4N2=P 2. Forsmaller N or larger P , message startup costs dominatetotal communication time, causing the HPF versionwith its larger number of messages to run more slowly.On the largest matrix size plotted (128 � 128),HPF/MPI provides an improvement of up to 30% overpure HPF. While these results are promising, we be-lieve they could be improved signi�cantly if the over-heads we have identi�ed were reduced through furtherperformance tuning. Another approach is to incorpo-rate additional MPI features that let library users tunecommunication performance. We discuss some of thesefeatures in the next section.4. Extending the HPF/MPI SubsetThe subset MPI binding presented above includesonly a small portion of the functionality of the MPIstandard|just non-blocking, standard mode point-to-point communications, persistent operations, and afew simple inquiry functions such as MPI Comm rank.Clearly HPF/MPI's utility to programmers would beenhanced by the addition of other MPI functionality.Here we briey consider techniques for extending theprototype design of Section 2 to incorporate featuresthat we feel are most likely to ease development orimprove performance of typical task/data-parallel ap-plications.8
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with task 1 the root. The return value is
received only by the root task.4.1. Collective operationsUnlike point-to-point operations, in which there isprecisely one sender and one receiver, collective oper-ations permit groups of arbitrary size to communicateusing a single operation. In addition, collective oper-ations encapsulate patterns of communication and co-operative computation such as broadcast and reduc-tion that occur frequently in parallel applications|including HPF/MPI programs.The complexity of performing a collective operationin HPF/MPI depends critically upon whether any of itsarguments are distributed. First, we note that becausebarriers do not involve any transfer of user data, anHPF/MPI version may be obtained trivially througha call to the sequential version of MPI Barrier by allprocessors that are members of tasks participating inthe barrier.The next case to consider is that in which the collec-tive call transfers data, but none of its arguments aredistributed arrays. Then one may rely on the followingsimple technique, illustrated by Figure 7:1. One distinguished processor from each participat-ing task joins in a call to the sequential version ofthe operation, passing its local copy of the argu-ments.2. Within each participating task that is to receivethe return value from the operation, the distin-guished processor broadcasts the return value toall of the task's other processors. For example,for MPI Reduce there is a broadcast within justthe root task, while for MPI Allreduce there is abroadcast within all participating tasks.This approach is e�cient for most cases and scales well.

The last case occurs when any of a collective call'sarguments are distributed arrays. Such calls could beimplemented as a composition of point-to-point callsusing standard techniques such as combining trees,with HPF/MPI calls replacing sequential ones, whereneeded, to handle distributed arguments. But this sim-ple approach misses many opportunities for optimiza-tion, because the cost of transferring a distributed ar-ray between two tasks varies greatly depending on thedata distributions within each task.As a simple illustration of the problem, suppose thatFigure 7 instead depicts a single call to MPI Reducethat performs a pointwise vector addition of three dis-tributed vectors V0, V1, and V2, with Vi owned bytask i. Suppose further that V0 and V2 share the samedistribution, V1's is di�erent, and it is expensive toconvert between the two distributions. A naive im-plementation based on standard combining tree tech-niques might transfer V0 and V2 to task 1, so that task 1must participate in two expensive redistributions. Inmany cases it will be more e�cient to:1. Transmit V2 to task 0 (a best-case transfer involv-ing no redistribution).2. Compute the sum of V0 and V2 within task 0.3. Transmit the partial sum to task 1, which com-putes the �nal sum.This approach requires just one expensive redistribu-tion.Much more complex examples may arise in prac-tice, as the number of ways of performing the operationgrows exponentially with the number of participatingtasks. To be useful, a general algorithm for selecting ane�cient mapping and ordering of processing steps fora collective operation must not consume an inordinateamount of processing time or perform a large amountof communication. Development of such an algorithmappears to us to be a fundamentally hard problem.4.2. Non-blocking communicationsMPI provides many facilities for optimizing point-to-point communications. As many task/data-parallelapplications depend heavily on the performance ofinter-task array transfers, it is worthwhile to considertechniques for incorporating analogs of these facilitiesinto HPF/MPI. We have already discussed the imple-mentation of an HPF/MPI version of one such facility,namely persistent operations. We now examine non-blocking communications, which allow a sender or re-ceiver to continue processing after a send or receive9



operation has been posted , or initiated. This featureprovides two major bene�ts:1. It makes possible the overlap of computation andcommunication.2. It makes it easier for a receiver to specify a receivebu�er in advance of the arrival of the message,which reduces bu�er copying in some instances.For the purposes of this discussion, we will assume thatthe non-blocking operations of the underlying sequen-tial MPI implementation can provide these bene�ts; inpractice, not all can. Given this assumption, for trans-fers of large arrays a non-blocking variant of the designpresented in Section 2 can also provide these bene�ts ifthe data transmission step is implemented using non-blocking sequential MPI calls.At �rst sight, extension of the design to providenon-blocking operations appears problematic, becausethere is synchronization between sending and receivingtasks during descriptor exchange. Modifying this stepto use the non-blocking operations of the underlyingsequential MPI library removes this synchronization,but exposes a more fundamental problem: each sidecan only compute a communication schedule (Step 4)after it has received the other's descriptor. Similarly, areceiver can only perform the unpacking of Step 6 afterthe data to be unpacked has arrived in Step 5.In general, what is needed to permit maximumover-lap between HPF/MPI library processing and appli-cation processing is some form of message-driven ex-ecution: the ability for some computation speci�edby HPF/MPI to occur upon arrival of certain mes-sages [10]. When a message with an array descriptorarrives (Step 3), communication schedule computationshould begin (Step 4), and when a data message arrivesat a receiver (Step 5), it should be unpacked (Step 6).Unfortunately, within the current MPI standard theonly means by which this can occur is if the applica-tion itself polls for message arrival (e.g. using MPI Waitor MPI Test), which is cumbersome for the program-mer. Proposed support for message-driven executionin MPI-2 might alleviate this problem.Finally, the provision of non-blocking receive oper-ations in HPF/MPI may increase the library's bu�erspace requirements. Depending on the mechanism formessage-driven execution, on each processor there mayneed to be one transfer bu�er per remote processorfrom which data messages are to be received. This isbecause data messages could arrive at any time andinitiate their own upacking into the destination array;hence, each message must be stored in a separate bu�erto prevent corruption of one message's data by another.We address this di�culty below.

4.3. Control over system bu�eringThe design appearing in Section 2 provided juststandard mode communications, in which the userleaves decisions about bu�ering and synchronizationbetween sender and receiver up to the MPI imple-mentation. The MPI standard includes other sendingmodes that provide more control over system policies,allowing the user to reduce bu�er copy overhead orguarantee su�cient bu�er space.HPF/MPI can provide similar control over its re-source management policies. Here we consider bu�eredmode, in which the user supplies the library with mem-ory for bu�ering outgoing messages. This permits thelibrary to complete send operations without blocking,using bu�er space as necessary. The amount of spacerequired for a message of a given size may be deter-mined using the routine MPI Pack size. Our design forHPF/MPI requires a transfer bu�er for packing mes-sages; the underlying sequential version of MPI mustalso be supplied with a bu�er if messages are sent us-ing this mode. Therefore, one scheme for incorporatingbu�ered mode sends into HPF/MPI works as follows:� The HPF/MPI version of MPI Pack size returnsa size twice that returned by the underlying se-quential MPI.� When the user supplies a bu�er to the HPF/MPIlibrary by calling MPI Buffer attach, half is usedby HPF/MPI for packing messages, and the otherhalf is supplied to the underlying sequential MPI.To meet increased bu�ering requirements resultingfrom non-blocking receive operations, HPF/MPI couldalso use part of any user-supplied bu�er space for trans-fer bu�ers for incoming data messages.5. ConclusionsBy utilizing a mixture of both task and data par-allelism in parallel applications, one may extend therange of problems that can be solved e�ciently beyondwhat is possible with pure data-parallel programminglanguages alone. We have proposed an approach for in-troducing task parallelism into data-parallel languagessuch as High Performance Fortran that makes use ofa coordination library for coupling data-parallel tasks.In our case, the coordination library is a subset bindingof the Message Passing Interface.To our knowledge, this coordination library-basedapproach for constructing mixed task/data-parallelprograms is unique. However, many other techniques10



have been used to introduce task parallelism into data-parallel languages. These other techniques fall intotwo major categories: compiler-based approaches andlanguage-based approaches. Approaches based on com-pilers rely on sophisticated source code analyses andprogrammer-supplied directives to extract implicit taskparallelism from programs [6]. In language-based ap-proaches, language extensions permit programmers toexplicitly specify the division of a computation intotasks, the mapping of tasks to processors, and commu-nication between tasks [2]. Further comparison withother approaches appears in [3].We have presented a design for the subset binding ofMPI. Our evaluation of the performance of a prototypeHPF/MPI library is encouraging: compared to a puredata-parallel HPF code for the 2D FFT, a task-parallelHPF/MPI version achieves superior performance undermany parameters of execution which are of interest.However, a detailed analysis of the behavior of our li-brary during execution of a communication-intensivemicrobenchmark reveals that its performance wouldbene�t from a tighter binding with the run-time systemof the HPF compiler used in our experiments, and fromalgorithmic extensions that would permit the library toexploit direct scatter-gather capabilities of the under-lying sequential MPI substrate. An alternative is to in-corporate additional MPI performance-tuning featuresinto the library; we have suggested design techniquesfor several of these.There are many promising directions for futurework. Two have already been discussed: modi�ca-tions to the existing prototype library to enhance per-formance, and extension of the current subset bind-ing with additional MPI features that ease applicationdevelopment (such as collective operations) and appli-cation tuning (such as non-blocking communications).In addition, to evaluate more thoroughly the value ofour techniques, we wish to construct more ambitioustask/data-parallel applications than the kernels wehave written up to this point. Finally, HPF/MPI pro-vides just an explicit message-passing mechanism forinter-task interaction, yet there are many other usefulmechanisms, such as single-sided operations (message-driven execution) and client-server protocols. We wishto investigate the issues involved in extending our li-brary to incorporate some of these other mechanisms.References[1] A. N. Choudhary, Narahari, D. M. Nicol, andR. Simha. Optimal processor assignment for pipelinecomputations. IEEE Transactions on Parallel andDistributed Systems, 5(4):439{445, 1994.
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