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MODIFIED CHOLESKY FACTORIZATIONS IN INTERIOR-POINT
ALGORITHMS FOR LINEAR PROGRAMMING
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Abstract. We investigate a modified Cholesky algorithm similar to those used in current
interior-point codes for linear programming. Cholesky-based interior-point codes are popular for
three reasons: their implementation requires only minimal changes to standard sparse Cholesky
codes (allowing us to take full advantage of software written by specialists in that area); they tend
to be more efficient than competing approaches that use different factorizations; and they perform
robustly on most practical problems, yielding good interior-point steps even when the coefficient ma-
trix is ill conditioned. We explain the surprisingly good performance of the Cholesky-based approach
by using analytical tools from matrix perturbation theory and error analysis, illustrating our results
with computational experiments. Finally, we point out the limitations of this approach.
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1. Introduction. Most interior-point codes for linear programming share a com-
mon feature: their major computational operation—solution of a large linear system
of equations—is performed by a direct sparse Cholesky algorithm. In this algorithm,
row and column orderings are determined a priori by well-known heuristics (minimum
degree and enhancements, minimum local fill, nested dissection) that are based solely
on the sparsity pattern and not on the numerical values of the nonzero elements. The
ordering phase is followed by a symbolic factorization phase, in which the nonzero
structure of the Cholesky factor is determined and storage is allocated. Finally, a
numerical factorization phase fills in the numerical values of the lower triangular
Cholesky factor. In interior-point codes, the first two phases usually are performed
just once, during either the first interior-point iteration or computation of a starting
point.

In the interior-point context, the unadorned Cholesky algorithm can run into dif-
ficulties because of extreme ill conditioning. Some of the diagonal pivots encountered
during the numerical factorization phase can be zero or negative, causing the stan-
dard Cholesky procedure to break down. Instead of crashing, most codes apply a
“patch” to the algorithm to handle such pivots. The offending pivot element is some-
times replaced by a huge number, as in LIPSOL [17] or PCx [1]. In other codes such
as IPMOS [16], the pivot is replaced by a moderate number, but the corresponding
right-hand side element 1s set to zero, as are the off-diagonal elements in the corre-
sponding column of the Cholesky factor. The first practical interior-point code, OB1
[6], explicitly zeroes the components of the solution vector that correspond to small
pivots. All these strategies are essentially equivalent to the algorithm we describe
in this paper. To date, there has been little investigation of them from a numerical
analysis viewpoint.

The “patches” described above have the advantage that they can be implemented
by changing just a few lines in general sparse Cholesky codes. It is therefore possible
to take advantage of the long-term development effort that has gone into designing
such codes and their underlying algorithms. The recent codes LIPSOL [17] and PCx
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[1] make explicit use of the freely available sparse Cholesky code of Ng and Peyton
[8]. Other codes either modify the well-known SPARSPAK routines of George and
Liu [3] or include customized linear algebra routines that implement well established
algorithmic ideas. (At least one author has experimented with modifications to the
standard heuristics: Mészaros [7] describes an inexact version of the minimum local
fill ordering.)

One possible remedy for small pivots i1s diagonal pivoting. At each iteration, a
“large” diagonal element is selected from the unreduced portion of the matrix and
moved to the pivot position by symmetric row and column pivoting. The algorithm
is terminated when none of the remaining diagonal elements is sufficiently large, and
an approximate solution is computed with the partial factors. (See Higham [4, Chap-
ter 10] for details and error analysis.) This strategy is not particularly appealing in
the context of interior-point linear programming codes because of the loss of efficiency
due to shifting of data during the numerical factorization. Moreover, there is little
incentive to test this strategy because the simple patches described above perform so
well in practice.

In this article, we use standard results from numerical analysis to explain the
good performance of these patching strategies on the vast majority of problems. We
also gain some insight into their limitations and into how and why they fail.

Our error analysis for the modified Cholesky algorithm is rigorous, with explicitly
stated assumptions and precise bounds (see Sections 3 and 4). We revert, however, to
a more informal style when applying these results to the interior-point context (Section
5). The reason is pure pragmatism. A fully rigorous analysis would be impossibly
complex, notationally speaking, and unduly pessimistic. The informal analysis yields
adequate 1nsight into the typical performance of the algorithm, as our computational
results in Section 6 demonstrate.

A number of other papers on linear algebra operations in barrier and interior-point
methods have appeared in recent years. Wright [12] has considered the Newton-
logarithmic barrier method for general constrained optimization, in which the linear
system to be solved for the Newton step is positive semidefinite and ill conditioned
during later iterations. She uses a Cholesky factorization with diagonal pivoting to
identify the subspace spanned by the active constraint Jacobian. From this infor-
mation, an accurate solution of the Newton equations can be obtained, in which the
components of the step in both the range space of the active constraint Jacobian and
the null space of its transpose are well resolved. Our analysis has a similar flavor
to Wright’s, but the application is somewhat different. The unknowns in our linear
system are the unconstrained dual variables rather than the primals and, since this
problem is linear, we have little interest in resolving the component of the step in
the near-null space of the coefficient matrix. We focus too on Cholesky algorithms
that perform no pivoting during the numerical factorization, reflecting computational
practice in the current generation of interior-point linear programming codes.

In an earlier paper [14], we considered the stability of algorithms for the symmetric
indefinite form of the step equations at each iteration of a interior-point method for
linear programming. We showed that, despite the ill-conditioning of the coefficient
matrix, the steps obtained by this approach are good search directions for the interior-
point method. Forsgren, Gill, and Shinnerl [2] perform a similar analysis in the context
of logarithmic barrier methods.

The remainder of this paper is organized as follows. In Section 2, we introduce
primal-dual interior-point methods and derive the linear equations to be solved at each



iteration of these methods. Section 3 introduces Algorithm modchol, the modified
Cholesky procedure, and examines the accuracy of the solution obtained with this
factorization, under certain assumptions on the eigenvalues of the factored matrix.
In Section 4, we account for the effect of finite-precision floating-point arithmetic on
solution accuracy. We return to the interior-point application in Section 5, showing
that Algorithm modchol yields good steps for these methods until the duality gap
becomes very small, even if the linear program is primal or dual degenerate. The
analytical results are verified by computational experiments with an interior-point
code using Algorithm modchol, which are reported in Section 6.

Notation. We summarize here the notation used in the remainder of the paper.

The ith singular value of a matrix A is denoted by o;(A). We use o; alone to
denote the 7th singular value of the exact Cholesky factor L in Section 3.

For any matrix M and index steps Z and J, Mz 7 denotes the submatrix formed
by the elements M;;, for i € Z and j € J. The ¢th column of M is denoted by M,
and the column submatrix consisting of columns 7 € J is denoted by M. s.

Unit roundoff error is denoted by u. Higham [4, Chapter 1] defines u implicitly
by the statement that when « and { are any two floating-point numbers, op denotes
+, —, x, and /, and fi(-) denotes the floating-point representation of a real number,
we have

fAlaopC) = (aop¢)(1 +d) for some § satisfying |6] < u.

For any positive integer m with mu < 1, we define

mu

1 omn
(1) ot T—

(see Higham [4, Lemma 2.1]).

The notation || - || denotes the Euclidean vector norm || - [|2 and also its induced
matrix norm, unless otherwise noted. For any matrix A, the matrix consisting of the
absolute values of each element is denoted by |A|. We use 1 to denote the vector
(1,1,---, ).

Finally, we mention the parameter ¢ that defines the pivot threshold in the mod-
ified Cholesky algorithm. A second quantity €, which is related to € by

€= 2mZe,

appears frequently in the analysis because the incorporation of the scaling term 2m?
saves notational clutter.

2. Primal-Dual Algorithms for Linear Programming. We consider the
linear programming problem in standard form:

(2) min ¢f'z  subject to Az =1b, x>0,
where # € R", c € R", A € R™*"  and b € R". The dual of (2) is
(3) max 0T subject to ATr4+s=c¢, s >0,

where s € R” and # € R™. We assume throughout the paper that A has full row
rank, so that m < n. The Karush-Kuhn-Tucker (KKT) conditions, which identify a



vector triple (z, 7, s) as a primal-dual solution for (2), (3), can be stated as follows:

(4a) ATr4s = ¢
(4b) Ax = b,
(4c) x5 = 0, e=1,2,...,n,
(4d) (z,s) > 0.

We assume throughout the paper that a primal-dual solution exists. We make no
assumptions about uniqueness or nondegeneracy; our analysis in Section 5 continues
to hold when the problem (2) is primal or dual degenerate. It is well known that
the index set {1,2,...,n} can be partitioned into two sets 8 and A such that for all
primal-dual solutions (z*, 7*, s*) we have

(5) z; =0 forallie N, st =0 foralliehB.

Primal-dual interior-point algorithms generate a sequence of iterates (z, 7, s) that
satisfy the strict inequality (x,s) > 0. They find search directions by applying a
modification of Newton’s method to the system of nonlinear equations formed by the
first three KKT conditions (4a),(4b),(4c), namely,

(6) Ar —b=0, ATr4s—c=0, XS1 =0,

where X = diag(zy,®s,...,2,), S = diag(s1,s2,...,5,), and 1 = (1,1,...,1)T.
In general, the search direction (Az, Am, As) is obtained from the following linear
system:

0 AT 7 Az —7e
(7) A 0 0 Ar | = | —r |,
S 0 X As —Tgs

where the coefficient matrix is the Jacobian of (6) and the right-hand side components
rp and r. are defined by

(8) r, = Az — b, r. = ATr+s—ec.

In a pure Newton (affine-scaling) method, the remaining right-hand side component
res 18 defined by

(9) Tes = XS1,

and, in this case, we denote the solution of (7) by (Az*® Ax®T As¥T). In a path-
following method, we have

(10) rps = XS1 — (pul,
where p is the duality gap defined by
(11) p==zls/n,

and ¢ € [0,1] is a centering parameter. In the “Mehrotra predictor-corrector” al-
gorithm, which is used as the basis of many practical codes, the search direction is
calculated by setting

(12) res = XS1 + AXTASMT — ¢y,
4



where AX®T and AS®T are the diagonal matrices formed from the affine-scaling step
components Az*F and As*. Hence, Mehrotra’s method requires the solution of two
linear systems at each iteration—the affine scaling system (7), (8), (9), and the search
direction system (7), (8), (12). A heuristic based on the effectiveness of the affine
scaling direction is used to determine the value of ¢ in (12).

Once a search direction has been determined, the primal-dual algorithm takes a
step of the form

(z,m,s) + a(Aw, Am, As),
where « 1s chosen to maintain strict positivity of the # and s components; that is,
(13) (z,8) + a(Ax,As) > 0.

In most codes, « is chosen to be some fraction of the step-to-boundary .y defined
as

(14) Omax = sup {a|(z,s) + o(Ax, As) > 0}.
a€l0,1]

A typical strategy is to set
Q@ = TN)max,

where 1 € [.9, 1.0) approaches 1 as the interior-point method approaches the solution
set.
By applying block elimination to (7) and using the notation

(15) D? = S7'X,

we obtain the following equivalent system:

(16a) AD’ATAR = —rp+ ADZ(rc — X_lrxs),
(16b) As = —r.— AT Anr,

(16¢) Az = —S_l(%s + XAs).

In many codes, the solution is obtained from just this formulation. A sparse Cholesky
factorization, modified to handle small pivots, is applied to the symmetric positive
definite coefficient matrix AD?A” in (16a) and the solution Ax is obtained by tri-
angular substitution with the computed factor. The remaining direction components
are recovered from (16b) and (16¢). This technique yields steps (Az, Ar, As) that
are useful search directions for the interior-point algorithm, even when the matriz
AD?AT s il conditioned, as often happens during later iterations. This observa-
tion is somewhat surprising, since a naive application of error analysis results would
suggest that the combination of ill-conditioning and roundoff would corrupt the di-
rection hopelessly. The results of Sections 3, 4, and 5 provide an explanation for this
phenomenon.

The following observation is crucial to our analysis: In computing A from (16a),
we are not interested so much in the error in Ar itself as in the effect of this error
on the remaining step components As and Az that are recovered from (16b) and
(16¢), respectively. If the relative errors in these components are large, the posi-
tivity requirement (13) may cause the step length o to be significantly shortened,
thereby curtailing the algorithm’s progress. We return to this issue in Section 5, after
describing and analyzing the modified Cholesky algorithm in Sections 3 and 4.
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3. A Modified Cholesky Algorithm. In this section, we describe and an-
alyze Algorithm modchol, a modified Cholesky algorithm designed to handle ill-
conditioned matrices for which small or negative pivots may arise during the factor-
ization.

Algorithm modchol accepts an m x m symmetric positive definite matrix M as
input, together with a small positive user-defined parameter €, which defines a thresh-
old of acceptability for the pivot elements. If a candidate pivot element is smaller than
this threshold, the algorithm simply skips a step of factorization. Algorithm modchol
outputs an approximate lower triangular factor L and an index set J C {1,2,...,m}
containing the indices of the skipped pivots. In the following specification, we use
M to denote the unfactored part of M that remains after i steps of the algorithm.

Algorithm modchol

Given € with 0 < € < 1;
Set MO« M; L 0;J +0; f=maxi—1 2 _m Mi;
for i=1,2,...,m
it MY < e
(* skip this elimination step *)

Set J + J U{i} and

0 S 0
D . D
(17) B0 - | : 0 0 ’ M® = pli-1) _ g,
o] a0 o 0]

else
(* perform the usual Cholesky elimination step *)

[N/Z'Z' — M(i_l); M(Z) +~0

21

for j=i+1,i4+2,...,m
: i1y .
Ly = M~/ Lii ;

for j=i+1,i4+2,...,m

for k=i4+1,i+2,...,m
i i-1) 7

The ith column of L is zero for each i € J; that is, E.j = 0. If we denote
(18) E=3"p®
1€T
and denote the complement of J in {1,2,...,m} by J, it follows from (17) that
(19) Ez7=0.

That is, the row or colum~n index of each nonzero element in £ must liein J. It follows
from the algorithm that L is the exact Cholesky factor of the perturbed matrix M — F,
which we denote for convenience by M. That is, we have
(20) LT =M=M-E.
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By partitioning this equation into its 7 and J components and using E.j =0 and

(19), we obtain
(21a) Mgy = Lgly+Ez5=0Lz515;
(21D) Mgy = Lzl% +Ez5=1Ls7L%;+Ez;.

The exact Cholesky factor L (whose existence is guaranteed by the assumed positive
definiteness of M) satisfies

(22) LIT = M.
Given the linear system
(23) Mz=r,
where M is the matrix factored by modchol, the exact solution obviously satisfies
(24) r=M"Yr=L"TL 71y

The approximate solution Z is chosen so that the partial vector Z 7 solves the reduced
system M 77Z7 = rz, while the complementary subvector 2z is set to zero. From
(21a), we see that Z7 can be calculated by performing a pair of triangular substitu-
tions; that is,

(25) ;=17

Note that z = Z when J = ). When J # 0, on the other hand, the difference between
Z and z can be large in a relative sense. We have

o — ZJ—O
o= =|[ 220 )] 2 et

and there 18 no reason to expect zy to be small with respect to the full vector z.

We can show, however, that the difference between LTz and LT is relatively small

under certain assumptions; this result is the culmination of the analysis of this section

(Theorem 3.6). As we see in Section 5, this difference determines the usefulness of

the computed solution of (16) as a search direction for the interior-point algorithm.
To simplify the analysis, we assume 1implicitly throughout the paper that

(26) g=1

A trivial scaling, which affects neither the algorithm nor its analysis, can always be
applied to the symmetric positive definite matrix M to yield (26).

We start with a sequence of three results that lead to a bound on the difference
between LTz and LT 7. These results require few assumptions on the matrix M and
are relatively simple to prove.

LEMMA 3.1. The submatriz formed by the last m — i rows and columns of M)
1s symmetric positive definite, for all i = 0,1,...,m — 1. Moreover, the diagonal
elements of all these submatrices are bounded by 1.

Proof. This observation follows by a simple inductive argument. By assumption,
the starting matrix M(®) = M is positive definite. Suppose that the desired property
holds for MU=1, If 4 ¢ J, then the lower right (m — ) x (m — ) submatrix of
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M) is identical to the lower right (m — i) x (m — i) submatrix of M=1 which
is positive definite by assumption. Otherwise, if i ¢ 7, then M is obtained by
applying one step of Cholesky reduction to M~ It is known that the remaining
submatrix resulting from this operation is positive definite; hence, the lower right
(m — i) x (m — {) submatrix in question is positive definite, and the desired property
holds.

The second claim follows immediately from the fact that M;; < 8 =1, ¢ =
1,2,...,m and the fact that the diagonal elements cannot increase during Algorithm
modchol. O

LEMMA 3.2. For each i € J, we have

IED s < EQNlp < (2me)'/?.
Therefore,
(27) £l < |1Ellr < €/,

where € = 2m7%e.
Proof. From Lemma 3.1, we have (M(

i
1,...,m. Suppose i € J, so that Mi(ii_l) <e.
MU=1) are bounded by 1, we have Ml(j_l) < 1 and therefore

1))2 < Mi(yii_l)Ml(j_l) for each | = i +

Since the diagonals of each submatrix

. . . 1/2
Y < (M) T =i

Hence, we have

1B < BV F < ()7 42 30 (M ™)2 < € 4 2(m = i)e < 2me,
l=i+1

thereby proving the first claim. By (18), we have

1B = > IV < 1T [2me < 2m’,
1ed

thereby proving (27). O

In the case in which all the small pivots appear in the bottom right corner of the
matrix (that is, 7 = {p+1,p+2,...,m} for some index p), the estimate (27) can be
improved to

(28) IE|l2 < | Ellp < m2e = 5¢,

This stronger estimate applies in most instances of the interior-point application of
Section 5.
We are now able to derive an estimate of the difference between LTz and LTz,
THEOREM 3.3. For the exact solution z and approrimate solution z defined in
(24) and (25), respectively, we have that

(29) 1Lz = Al = 1L77E75271 S L7 M1 Ez sl 2zl



Proof. From (24) together with (21), we have

rg = Mggig+Mzgzg

7T T 7T
grlzzis+ [ijﬂgj + Ejy} 27
T

| Il
t~e

ij.jZ—I—EjJZj,

while from (25), we have

By combining these two relations, we obtain

Since E.j = 0, the result follows immediately. O

The remaining analysis of this section requires some additional assumptions on
the distribution of the singular values of M and on the parameter €. Accordingly,
we introduce a little more notation. The eigenvalues of M are denoted by ¢?, i =
1,2,...,m, where
(31) ci>oi> >0 >0

We define the diagonal matrix ¥ by

(32) Y =diag(o1,02,...,0m).

It follows that there exists an orthogonal matrix ) such that

(33) M = Qx2QT.

Because the largest diagonal in M is 1, we have by elementary analysis that
(34) 1<o? <m.

In the subsequent analysis, we assume that there is an integer p with 1 <p <m
such that
e ¢ is small relative to 0'12,; and
e if p < m, there is a significant gap in the spectrum of M between o2 and

5 P
o
(We will be more specific about these two assumptions presently.) By partitioning
the spectrum at the gap, we obtain
(35) T, =diag(o1, 09, ..., 0p), Yo = diag(ops1, Opt2, -, Om).
From (33), @ can be partitioned accordingly to obtain

Q=1[Q:11Q:), M= QT +@.22Q".

Since M = LL" | it follows that ¢;, ¢ = 1,2,...,m are the singular values of L. In
fact, we must have

(36) ' =uxQ”
9



for some m x m orthogonal matrix U, where X and @) are defined as above.
We use 67, i =1,2,...,m to denote the eigenvalues of the perturbed matrix M.
It follows immediately from (20) that the singular values of L are gi,t=1,2,...,m.
The rank of L is | 7|, because Ejj is lower triangular with nonzero diagonals while

L.7 = 0. Therefore, we have

(37) 017 > 0| 7141 = = m = 0.

As in (36), there are orthogonal m x m matrices U and Q such that
(38) LT =uxQ",

where

Y= diag(&l,&z, .. .,O’m).

It is an immediate consequence of an eigenvalue perturbation result of Stewart and
Sun [10, Corollary IV.4.13] and Lemma 3.2 that

m 1/2
(39) {Z[of - &3]2} <||Bllr = &2

i=1

The main assumption of this section is that | 7| = p; that is, Algorithm modchol
correctly identifies the numerical rank of the matrix M. One might expect that we
should not have to assume this equality at all—that it should follow from the spectrum
gap and from a judicious choice of €. Practical experience supports this expectation;
the algorithm has little trouble determining the numerical rank on the vast majority
of problems. In fact, part of the result—the bound | 7| > p—follows from a minimal
assumption on €.

LEMMA 3.4. Ifé'/? < 0'12), we have |J| > p.

Proof. 1f | J| < p, we have from (37) and (39) that

% < Oig11 = [T~ g | S €77
contradicting our assumption that /2 < ¢2. 0O

However, the conditions on ¢, oy, and 0,41 needed to prove the other half of
the result—|J| < p—are too rigorous to be useful. This is a consequence of the
fact that poorly conditioned triangular matrices need not have particularly small
diagonal elements (see Lawson and Hanson [5, p. 31] for the classic example of this
phenomenon).

Our next result concerns perturbation of the subspace spanned by )1, which is
the invariant subspace of “large” eigenvalues of M.

LEMMA 3.5. Suppose that |J| = p < m and that the values op and opy1 from
(31) and € from Lemma 3.2 satisfy the conditions

(40a) Tt <,
Tp
(40b) ol —oly, > 5e

10



Then there is a p x p symmetric positive definite matriz A and an orthonormal m x p
matriz Q1 such that

(41) M = QAQT,
- 9¢l/2
12 - <
(12) =@l <
(43) JA-x7] < 2d/7

(The constants used in (40a) and in similar expressions should not be taken too
seriously. We assign them specific values only to avoid an excess of notation.)

Proof. The result 1s a straightforward consequence of Theorem V.2.8 of Stewart

and Sun [10, p. 238]. Since M = M —E, we use (33) and partition as in (35) to obtain

2 0 , F

T T T 1 e

M M E — .

rwa-ova-wso-[§ 5[5 12

We now make the following identifications with the quantities in the cited result:
A= IELI< NPl =B <&/2 =Rl < e
0 = se (E%,Ez) ||F11||—||F22||20'12)—0'12)+1—2€1/2>2€1/2,

where sep(-, ) is the minimum distance between the spectra of its two arguments.

From the given result, there is a matrix P of dimension (m — p) x p such that the
matrix @1 defined by

(44) Q1= Q1+ QP

1s an invariant subspace for M, where

5 € 1/2
(45) 1Pl < T < ‘ <1
K 0'12,—0' 41 —261/2

Moreover, the representation of M with respect to Ql 18
(46) QTMQy =A =%+ Fiy + FioP.

The bound (42) follows from (44), (45), and ||Q2]| = 1. It follows immediately from
the first equality in (46) that A is symmetric, and we have

1A =S| < 1Full + | Pl P < 262,

verifying the inequality (43) This inequality implies that the smallest singular value
of A is no smaller than 0'p 2¢1/2 > 0, so A is symmetric positive definite.

The cited result states further that the matrix Qs = Q> — Q1 PT is orthogonal to
@1 and also defines an invariant subspace for M. In fact, we have

.

for some (m — p) x (m — p) symmetric matrix A. Since A and M both have rank b,
we must have A = 0, so we have

e

[Ql |Q2]TM[Q1 |Qz] = [ /8

o

1=(01Q | ) § 1@ = aiaer

11



Hence, (41) is also satisfied, and the proof is complete. O
Combining (40b) with (39), we obtain

(47) 51 <o+ <ol + 207 < 207,

Another quantity that enters into our error bounds is the norm of E}} We denote
def F_1 T -1

(48) r & max(|| L35 ]], 1) = max (aljl(ij) ,1),

where o) 7 (L77) denotes the | J|th singular value of L 77. (The lower bound of 1 in

(48) simplifies our analysis.) Note from (21a) that

(49) M7l = L5511 < 72

Since [|M 7 7|| < ||M]| < o, we have from (34) and (49) that

(50) k(M77) < oir? <mr?

Under the assumption |J| = p, the nonzero part of L—the submatrix E,jfhas
full rank p and singular values 51,...,6,. Since L 7 differs from L 77 in the presence
of the additional rows L 7.7, we have

and therefore

The additional rows Ejj can have nontrivial magnitude relative to Ejj, S0 0p may
be significantly larger than r=!. However, G, cannot be too large, since from (39),

(40b), and (34), we have that
=2 2, £1/2 2 2
0,<o,te / <120, <1207 <1.2m.

For the purposes of our analysis, we make the assumption that 7'5'12) 1s moderate in
size. Specifically, we assume that

(51) o7 < 10.

Because of (39) and (40b), we have N; > 0'12) —érz> .80’12), so (51) implies that
7'0'12, < 1.257”12, <13

and, in addition,

(52) Tetl? < 2102 < 25752 < 3

We can now prove the main result of this section.
THEOREM 3.6. Suppose that |J| = p < m, that the conditions (40) hold, and
that the estimate (51) is satisfied. We then have

. o?
||LT(z —z)|| < (560_—:1,)61/2 + 60’10'p+1) 7|lz7]]-
P
12



Proof. From (36), we have
ILT(Z = 2)[| = [U=QT (2 — 2)[| = [|12QT (2 = =),

since U is orthogonal. Now from the partition (35), and using the fact that ||Q2|| = 1
(unless of course X9 and Q2 are vacuous), we obtain

L7 (2 = 2]

< 1227 G = )|+ 11z — I

< ISTUHIZRY G - )+ a1 - =)
<

(53) ISTHHIAQT (2 = )l + IETHHIAQT = S3QTNIZ — 2l + 1B 12 — 211

The first term in this expression is easiest to bound. From (35), we have |27} =
0'p_1. Applying the relations (41), (20), (38), (47), (29), (27), and (48), respectively,

we obtaln

IRQTG -l = 4G -2
ILLT (2 - 2]
BT (2 - )
20| L7 (2 = 2
20 |L7 511 Ez 2N 271l

201727

IN A IA

IN

We therefore have

_ TAT ~ o1 _
(54) I=THHIAQT (2 = )] < 2U—r61/2||m||~
P

The second and third terms in (53) require a bound on ||Z — z||. From (30) and the
fact that Z7 = 0, we have

(55) E?j(Zj—Zj):E§j2j+i}}EjJZ‘7,
and therefore
(56) 127 — 2zl < ILZ5I (llLlel +ILZ5] ||Ejyll) |z 1]-

From (47), we have ||Ejj|| < 61 < 201, while from (27), we have ||Ez /|| < ez,
Substituting these estimates into (56) and using (52), we obtain

(57) 127 = 27l < 7201 + 7€ /%)||z5]| < (2017 + 37) |27 .
Finally, using Z7 = 0 together with 7 > 1, (34), and (57), we obtain
(68)  F =zl <77 — 2zl + lzall < Qour + 37+ )l[27]| < 6au7[]z7]l

Turning specifically to the second term in (53), we have from (34), Lemma 3.5,

(47), and (40) that

IAQT —Z1QTI < IISE = AllllQull + IAHIQ1 — @l
13



< 28?2 452 -
0'12,—0'1)_|_1—261/2
2
< 2?1+ 2 12201 1 2]
O'p_o'p+1_2€/
2.207
_1/2 1
< 2 o2 — g2, —2el/2
P r+1
1
/2
_1/291 Tp+1 €
< 45 /§[1 g —271
P P P
2
< 4.5*1/2%[1 14!
P
2
_ o=1/271
P

By combining this bound with (58) and |7 = 0'p_1, we obtain

1 o}
= (9222) Gerlzal)

Tp D

I=THIHIAQT — STQT(11Z — <l

IN

a? ~1/2
(59) = 54;7’6 [|lz7]l-
2

For the third term in (53), we have from ||Zs|| = op41 that
(60) 1Z2([ {12 = z[| < 6o10p417||27]]-

The result of the theorem is obtained by substituting (54), (59), and (60) into
(53). O B

Note that if J = @ (that is, |J| = m), we have Z = z, so the conclusion of
Theorem 3.6 holds trivially in this case as well is we define ¢,,41 = 0.

4. The Effect of Finite Precision Computations. In the analysis of the
preceding section, we assumed for simplicity that all arithmetic was exact. In this
section, we take account of the roundoff errors that are introduced when the approx-
imate solution Z is calculated in a finite-precision environment.

Our analysis above focused on the approximate solution Z obtained from (25),
where the subvector z s satisfies the following system:

(61) Mgzi7=LsslG750 =17,
while the subvector zs is fixed at zero. In this section, we use z to denote the finite
precision analog of Z. We examine errors in 2z due to

e roundoff error in Algorithm modchol,

e error arising during the triangular substitutions in (61), and

e evaluation error in the right-hand side .
As we see in Section 5, evaluation error in the right-hand side is a significant feature
of the application to interior-point codes. We denote this error by e, so that the
right-hand side 77 in the system (61) is replaced by r7 + e 7.

Fortunately, our results follow in a straightforward way from existing results for
the Cholesky factorization, since a close inspection of Algorithm modchol shows that
it simply performs a standard Cholesky factorization on the submatrix M 7 7.

14



Before stating the main results, we introduce two more assumptions. The first
concerns the relative sizes of 7 and u, specifically,

1
2
(62) T Ym+1 < B’

where 4,41 1s defined as in Section 1. Since 7 > 1 and m > 1, it follows immediately
that

(63) MYmt+1 < 2.

The second assumption is that finite precision does not affect cutoff decisions in Al-
gorithm modchol. That is, the presence of roundoff error in each submatrix A —1)
does not affect whether the threshold criterion Mi(il_l) < (e passes or fails for each
¢. This assumption concerns the relative sizes of u and ¢, and i1t requires some ex-
planation. We cannot expect to take care of the “borderline cases” in which some
candidate pivots fall just to one side or the other of the threshold. Rather, we want
the cases in which there is a clear distinction between small and large pivots in exact
arithmetic to retain this distinction in finite precision arithmetic, and we want the
threshold e to fall comfortably inside the “gap” in both settings. In finite precision,
the size of rounding error introduced into Mi(il_l) by earlier steps of Algorithm mod-
chol is comparable to fu. (FEach time M;; is updated by the algorithm, a positive
number no larger than itself is subtracted from it. Since |M;;| < 3, the floating-point
error introduced here is bounded by fu.) We want these errors to be smaller than
the threshold (e, so that pivots that are tiny in exact arithmetic do not exceed the
threshold in finite precision. Hence, we can state this assumption roughly as follows:
(64) €>u.

The following lemma accounts for the effects of finite precision on the approximate
solution Z obtained from Algorithm modchol and (25).

LEMMA 4.1. Suppose that Algorithm modchol and the triangular substitutions
in (61) are performed in finite-precision arithmetic with perturbed right-hand side
r7 + ez to yield an approximate solution 2. Suppose, too, that (62) holds and that
roundoff error does not affect the composition of J. We then have

(65) 17 = 21 < 30m® Pyia 72l 4 272 le g,

where z is the exact solution from (23).

Proof. Algorithm modchol operates as a standard Cholesky factorization on the
submatrix M 7.7, so we can apply a standard perturbation theorem to bound the error
in the subvector z7. From Higham [4, Theorem 10.4], we find that Z 7 satisfies

(66) (Mzz+E57):7 =r7+ez,
where
2mymy1
EY | < 2 M)
(67) 1E351 < T2t M7

Comparing (66) with (61), we find that

ij(gj — éj) = E}jéj —e7.
15



Manipulating in the usual way, we obtain

1

(68) 27 — 2711 < - -
L= ||MZ [ ES ]

17 A1 (LEZ 2 171+ lleglD) -

It follows immediately from (67) that

) 2mymy1

(69) I Z5 1 51 < KM 7 g) el

Combining (50), (62), and (63), we obtain

2mMYm 2(2mym
R(My ) —2mtL T (2mYmy1) <5
1 —myms1 .8

so that the denominator in (68) is bounded below by .5. Hence, by substitution into
(68), using (34), (49), (69), and (63), we have that

127 = 25l < 2AMZ A UEZAE N+ llez1l)

2m’7m+1 ~
< 27’2<m7 Z7|| + e)
< |2+ feg |
(70) < Sy TP lZ 7] 4 27 e g

Finally, we bound [|Z7|| in terms of ||z||. From (34) and (57), we have
12711 < llzzll + 127 = 271l < llz7 1l + (2017 + 37) |27 ]| < 6o17(|2]) < 6m'/*7|z]).

By combining this bound with (70), we obtain the result. O
The major results of Sections 3 and 4 can be summarized in the following theorem.
THEOREM 4.2. Suppose that Algorithm modchol and the triangular substitutions
in (61) are performed in finite-precision arithmetic with perturbed right-hand side
r7 + ez to yield an approximate solution 2. Suppose, too, that (62) holds and that
roundoff errors do not affect the composition of J. Finally, suppose that either
- J=06;0r
- |J| = p < m, the conditions (40) hold, and the estimate (51) is satisfied.
We then have

(7)) L7z =)l

o3
< {560_—;)61/2 +6010p41 + 30m3'ym+172} 7|z]] 4 2m* 2 r2|e 7).
P

Proof. When J = @, the result is immediate from Lemma 4.1 and # = z. For the
remaining case, we obtain (71) by combining the results of Theorem 3.6 and Lemma
4.1. We need note only that ||z7|| < ||z|| and that, from (34), we have

ILT (2 = Nl NLIIZ = 2] = oullz — 2] < m*/?))z = 2]].
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5. Application to the Interior-Point Algorithm. In this section, we return
to the motivating application: primal-dual interior-point software for linear program-
ming and, in particular, the linear system (16) that is solved at each iteration. We
apply the main result—Theorem 4.2—and examine the effect of the parameter ¢ and
unit roundoff u on the quality of the computed search direction (Az, Am, As). Our
focus 1s on the later iterations of the interior-point algorithm, during which g is small
and the ill-conditioning gf\ADzAT can become acute. Our results show how and why
errors arise in (Az, Am, As) and what effect these errors have on the step length, the
convergence of the algorithm, and the accuracy that can be attained by this algorithm.
They also suggest an appropriate size for the parameter e.

In this section, we revert to an informal style of analysis, using order notation to
hide constants of moderate size. Thus if 5 and { are two positive numbers, we write
n = O(C) if the ratio /¢ is not too large. Similarly, we write n = Q(¢) if n = O(¢) and
¢ = O(n). Conventionally, order notation is used only when n and { are quantities
that approach zero in the limit of the algorithm in question. Here, however, we use
it in connection with the unit roundoff u, which is small but fized. This slight abuse
of notation results in a much clearer insight into the behavior of Algorithm modchol
in the interior-point context.

In the next subsection, we look closely at the affine-scaling step, for which 7,
is defined by (9). This step is important because it closely approximates the steps
taken by most rapidly converging algorithms during their final iterations. Subsection
5.2 shows that the steps calculated during the final stages of Mehrotra’s predictor
corrector algorithm (and therefore by most interior-point codes) have essentially the
same properties as affine-scaling steps.

5.1. Affine-Scaling Steps. We start by estimating the sizes of the various con-
stituents of the equations (16)—the residuals r, and 7., the B and A" components of
z, s, and the diagonal matrix D. In standard infeasible-interior-point algorithms (see,
for example, Wright [15, Chapter 6]), we have

lIrell = O(k),  lrell = O(n),
(72) r; = Q1) (i € B), v, =Qp) (ieN),
s = Qp) (i €B), 5 = Q1) (1eN).

These estimates are also observed to hold in practice on the majority of problems for
values of y greater than u'/2. An immediate consequence of these estimates and the
definition (15) is that

(73) D =Q(u™") (i€B),  Di=Qu) (i€N)

We assume the coefficient matrix A to be well conditioned; that is, o1(A4) and
om(A) are both Q(1). We assume further that the submatrix A.z of columns A.;,
t € B, 1s well conditioned. It follows from this assumption together with the estimate
(73) that the matrix A.5D%zA%; has full rank min(|B|,m). In fact, since Az is well
conditioned, all nonzero singular values of A 5D%zA%; are Q(p~!) in size. Likewise,
it follows from (15) and (73) that A.x D3,y AL = O(p), so we conclude that

(74a) ci(AD?AT) = Qu7h, i=1,2,...,min(m,|B]),
(74b) i (AD?AT) = O(p), i=min(m, |B])+1,...,m.
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Since the largest diagonal element of AD?A7T is also Q(u~!), the scaled coefficient
matrix for (16a) is

(75) pAD? AT where p = Q(u).

For consistency with Section 3, the singular values of the matrix in (75) are denoted
by o?. From this definition together with (74) and (75), we deduce that

(76a)
(76b)

2 = Q), i=1,2,...,min(m,|Bl),
2 = oY), i=min(m, |B])+1,...,m.
Recalling our notation p of Section 3, we have in this case that
p = min(m, |B]).

The exact Cholesky factor L (see Sections 3 and 4) satisfies
(77) LT = pAD? AT,

Suppose now that Algorithm modchol is used to compute the solution of (16a),
where the right-hand-side component r,; is set to its affine-scaling value X .S1. This

—~ aff
process result in a computed solution Ar for (16a). The remaining step components

A\saﬂ and &aﬂ are obtained by substitution into (16b) and (16c¢), respectively, again
in finite-precision arithmetic. Our main tool for analyzing the errors in the computed
step is Theorem 4.2.

Consider the exact affine scaling step (Az2T Ar® As¥T). Standard results for
infeasible-interior-point methods (see, for example, [15, Theorem 7.5]), together with
the conditions (72), imply that

(78) 1Az, As*T)[| = O(u).

(This estimate holds only when g falls below a data-dependent threshold €(A,¥b,¢)
defined by Wright [15, Chapter 3].) From (16b) and (72), we have

(AAT)Ar = AT (—r. — As) = O(n),
so 1t follows from our assumptions about the well conditioning of A that
(79) Ar™ = O(p).

We can be more specific about the sizes of the critical components Ax?ﬂ, ieN

and As¥ i € B. If we multiply the third block row in (7) by (X.5)~! and use the

definition (9), we obtain

AJ;?H n AS?H

Li &l

= -1, 1=1,2,...,n.

Therefore, from (72) and (78), we have for i € N that

A o) _
x—i——1+m——1+0(ﬂ),
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and therefore, using (72) again, we have

(80) AT = —z 40O, Q€N
In a similar way, we obtain

(81) AT = —s; +O(?), i€B.

From the estimates (78), (80), and (81), we can show that a near-unit step can
be taken along the direction (Az®T Ar3f As3) without violating positivity of the
z and s components. Substituting (Az, Am, As) = (Az? AraT As2f) in (14), we
have

(82) 1 = omax = O(p).

To verify this estimate, suppose that s; + aAsf = ( for some index i € B. From

(81), we have
si(l—a)+0(?) =0,
so it follows from (72) that
l—a=0(?)/si = O(n).

For the corresponding component x;, we have from (72) and (78) that »; = (1)
and Az = O(u). Hence, for all g sufficiently small and all o € [0, 1], we have
z; +aAz# > 0. Similar logic can be applied to the remaining indices i € A, thereby
completing our verification of (82).

Returning to the computed affine-scaling step (&aﬂ, &Taﬂ, A\saﬂ), we now apply
Theorem 4.2 after checking that its assumptions of are satisfied for small enough
p and reasonable values of u and e. For double-precision computations, we have
u ~ 1071% Hence, since A is well conditioned, we can expect the condition (62) to
hold in all nonpathological circumstances. Because of (76), our assumption (40a) on
the singular value distribution clearly holds for all sufficiently small yz. The condition
(40b) is satisfied for any reasonable choice of e. The assumption that Algorithm
modchol correctly identifies the numerical rank (that is, | 7| = p) is, as we discussed
in Section 3, difficult to guarantee, but it was observed to hold on all problems that we
tested. The assumption that rounding errors do not interfere with the makeup of the
small pivot index set J is likewise impossible to verify rigorously; but, as discussed
in Section 4, it can reasonably be expected to hold when ¢ > u (64).

A good choice for e—one that satisfies the assumptions just mentioned while
keeping the bound (71) as small as possible—is therefore

(83) €=u.

For generality, we continue to use ¢ and € in the analysis that follows, substituting
the specific value (83) only at the end.

Having verified that we can reasonably expect Theorem 4.2 to hold for the system
(16a), we now estimate the quantities on the right-hand side of (71). From (76a), we
have o1/0, = O(1), while from (76b), we have 0,41 = O(p). The general estimate
(34) yields o1 = O(1), while the definition of v,41 gives the estimate y,41 = O(u).
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We need to account, too, for the errors incurred in evaluating the right-hand side
of (16a). The floating-point error in forming ry; = XS1 is only O(pu) in magnitude,
since just a single floating-point multiplication is needed to calculate each component
z;s; of this vector, and each such element is O(u) (see (72)). The residuals rp and
re have magnitude O(y) in exact arithmetic (see (72)), but they are calculated as
differences of O(1) quantities and so contain evaluation error of absolute magnitude
O(u). Specifically, componentwise errors in the computed version of r. are bounded
by (JA/T|x|+ |s| + |c|) u, and similarly for r,. Because of the estimate (73), the errors
in 7. are magnified to (p~'u) when we multiply by AD? in (16a). In fact, this term
is the dominant one in the total right-hand-side evaluation error. The errors that
occur when we perform floating-point addition of the terms r,, AD?r., and AS™ 7.,
are less significant; they lead to additional terms of sizes O(u) and O(p~'u?). In
summary, the total right-hand-side evaluation error is O(u~1u). Hence, after scaling
by the factor p defined in (75), we have

(84) lell = O(u),

where e 1s the error vector of Section 4.
Substituting the estimates (76), (79), and (84) into (71), we have

127 (A7 = an®)| < {O(E12) + O() + 7*0(w) } 7O(4) + 72O ().
If
(85) r=0(1)

(a reasonable estimate when the Cholesky factorization correctly identifies the numer-
ical rank and A.g is well conditioned), the error bound above simplifies to

— aff
(36) L7 (& = AT < O/ 2 + 422 + ),
From (77) we have that
pl/ZDAT — QLT,
for some orthogonal matrix @. Since orthogonal transformations do not affect the
Euclidean norm of a vector, we can substitute p'/2?DAT for LT in (86) and use (75)
to write
— aff ——~ aff
IDAT (A" — Ar )| = LT (AR - AreT)
(87) O(El/Zﬂl/Z +/i3/2 —|—/J_1/2u).

Note too that from (58), (65), (79), and (84), we have

A

— aff ——~ aff ~ aff ~ aff
(88) A7 (| <flAm —Ar ||+ A7 — A 4+ [|A7*] = O(u + u),
where ANﬂ'aH is the approximate solution that would be obtained by Algorithm mod-

chol if it was used to solve (16a) in exact arithmetic.

Y
Next, we examine the effect of the error in Ar" and the evaluation error in the

—— aff
right-hand side of (16b) on the calculated step As . From (79) and (88), we have
that

— aff — aff
(89) AT — Ar || < [JA* T+ |A7 || = O(u + ).
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Hence, taking into account the O(u) evaluation error in the term r., we have imme-
diately from (16b) that

(90) AT Z A5 = Ou) — AT(ATT — Ax™) = O(u + ).

Clearly, for the “large” components of s—namely, the ¢ € A" components—errors
of this magnitude do not affect the step length amax to the boundary defined in (14).
However, for the critical components i € B, the estimate (90) is not good enough to
guarantee that amax is close to 1. (Repeating the argument that follows (82), we find
only that 1 — apmax = O(1).) Fortunately, a refined estimate of the error in the B
components is available. As in (90), we have

) A& = —AT(ArT - K7 4 Ofu) = DY+ Ou),

where from (87) we have

— aff

(92) v=DAT(Arn" — Ar®T) = Q@@ /2 + 13/ 4 =),

From (73), we have Dy = Q(u~1/?) for i € B, so from (91) we obtain
—aff
(93) As;, — AT =0@ ?u+p>+u), ieB.

— aff
As in the discussion following (82), we find that s; + «As; = 0 is possible only if

(94) l—a=0E""+p+p ).

This estimate suggests that near-unit steps can be taken, at least in the A\saﬁp com-
ponents, provided that y is significantly larger that u. When g = O(u), all bets are
off!

Finally, we estimate the errors in the computed version of Az®T (obtained from
(16c)) and estimate their effect on the apmax. Again, we consider the components ¢ € B
and i € N separately.

For ¢ € B, the O(pu) evaluation error in (rzs); is magnified by the term 5;1 =

— aff
Q(p~1). From (93), replacement of As* by As  yields an additional error of size
O(eY?u) + O(p?) + O(u), which is also magnified by the Q(pu~') factor. The other

arithmetic errors are less significant. In summary, we find that

— aff

(95) Ar; — AT =0@ " +p+p~tn), ieB

By the usual reasoning, we find that z; + aﬁ\x?ﬂv = 0 1is possible for i € B only for «
satisfying (94).

For i € N, the O(pu) evaluation error in (rg;); is not magnified appreciably
by s;t, while from (90), the O(g + u) error in As* is actually diminished after
multiplication by si_la:i = O(u). We find that

— aff

(96) Ar; — AT =O(pa+p?),  PEN.
—— aff .
Hence, we can have z; + aAz; =0 for i € A only if

(97) I1—al= O+ p).
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From (94) and (97), we conclude that the value of apay defined by (14), with the

~aff —aff —aff
calculated direction (Aaja ,Aﬂ'a ,Asa ) replacing the exact search direction, satisfies
the estimate

(98) 1 — Omax = O(El/z—i—u—l—u_lu).
— aff
Note from (89), (90), and (96) that, in an absolute sense, the errors in Am |
— aff ——~ aff
As ,and Az; , i € N are small. By contrast, the O(p~'u) term in (95) implies

—~ aff
that the errors in Al‘? , © € B, may become large as p | 0. These large errors may

in turn cause the residuals 7, to grow as u | 0. These expectations are confirmed by
the computational experiments of Section 6.

The estimate (98) and the parameter choice € = u (83) suggest strongly that the
algorithm should be terminated when

(99) p<ull?

When g reaches this threshold, all three terms in the estimate (98) are in balance.
— aff
Below this threshold, the O(p~'u) term in Az, may cause r, to grow, making

further reduction of u counterproductive. The convergence tolerances used by most
interior-point codes—arrived at by practical experience rather than any theoretical
considerations—are similar to (99). The code PCx is typical. Tt declares optimality
if the following three conditions are satisfied:

|ch—bT7r|

1+ |cTx|

[I7ll

Lol =77 el

< tol < tol,

bl

where the default value of tol is 1073, (Note that 107% ~ u'/? in double precision
arithmetic on most machines.)

5.2. Mehrotra Predictor-Corrector Steps. Having analyzed the affine-scaling
search direction and its calculated approximation, we turn our attention briefly to the
search direction used by Mehrotra’s predictor-corrector algorithm. As mentioned in
Section 2, these steps are obtained by setting ry; as in (12), for some heuristic choice
of the centering parameter (. We can write the search direction as

(100) (Az, Am, As) = (AT A7 As™) 4 (A2 AT, As©),

where (Az®, Ar® As®) is the “corrector-centering” step component that satisfies
the following linear system:

0 AT 71 Agce 0
A 0 0 Arce | = 0
S 0 X As Cpl — AXEA G

Block elimination on this system yields the following special case of (16a):
AD?AT An® = AD? [X™H((pl — AXPTAST)] .

Since we assume full rank of A, and since the diagonal elements of D are all strictly
positive, the coefficient matrix is invertible, and we have

A7 < I(AD*AT)TPAD XY ICp1 — AXTAS .
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A result of Stewart [9] and Todd [11] states that the norm ||(AD?AT)~1AD?|| is
bounded independently of D over the set of all positive definite diagonal matrices D
(and therefore independently of  and s with (z,s) > 0). Therefore, we have

A7l = Ol X DO(IKp1 — AXTASY L))

From (72), we have || X ~!|| = O(p~1), while from (78), it follows that ||AX 3T A2 1|| =
O(p?). Hence, we have

(101) |AT*]] = O(C+ p).
A typical heuristic for choosing the centering parameter  is to set

¢ = (pare/p1)?,

where pae 1s the value of u that results from a full step-to-boundary ay,.x along the
affine-scaling direction. If the search direction is exact, we have p.g = O(u?), so

—aff —~ aff —~aff
this heuristic yields ( = O(p®). Use of the calculated direction (Az | Am | As )
together with the estimate (98) leads us to expect p.g = O(p?) in this case too,
provided that g > u'/2. Hence, we have from (101) that [|A7°|| = O(u), and so,

from (100) and (79), we have
(102) |Ax]| = O(p),

where A7 is the m component of the Mehrotra search direction.
We also can apply the Stewart-Todd result to formulae for Az®® and As®® to show
that [|(Az®, As®)|| = O(u). Therefore, we have

(103) (A2, As)[| = O(n),

corresponding to (78).

Because of the estimates (102) and (103), the analysis of the preceding subsection
can be applied without modification to the calculated version of the search direction
(100). In particular, if we redefine the step-to-boundary amax in terms of this cal-

culated step (&, A\ﬂ', A\s), we find that the estimate (98) still applies. We conclude
that near-unit steps can still be taken along this direction provided that g > u'/2.

6. Implementation and Computational Results. Most interior-point codes
use modified Cholesky algorithms with essentially the same properties as Algorithm
modchol. They differ slightly, however, in the implementation. The IPMOS code of
Xu, Hung, and Ye [16] replaces small pivot elements by 1 and fills out the correspond-
ing column of the Cholesky factor with zeros and also inserts a zero in the right-hand
side. The criterion for identifying a small pivot is not explained in the reference [16],
but otherwise this strategy is equivalent to Algorithm modchol. Zhang’s LIPSOL
code [17] and the PCx code of Czyzyk, Mehrotra, and Wright [1] replace small pivots
by a huge number—10'2%—but otherwise leave the Cholesky algorithm unchanged.
The net effect is, however, almost equivalent to Algorithm modchol and the trian-
gular substitution procedure (25). The advantage of this approach is that it involves
minimal changes to a standard sparse Cholesky code. We need only add a loop to
calculate the largest diagonal element 3, and a small pivot check immediately before
the point at which the computation L;; = \/Mjy; is performed.
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To test that the analysis of this paper was reflected in practical computations,
we coded a primal-dual algorithm that used Algorithm modchol in conjunction with
the formulation (16). The code was used to solve some small random linear programs
in which the amount of degeneracy—the composition of index sets B and N—was
carefully controlled. At each iterate, we monitored various quantities and compared
them against the estimates of Section 5.

The linear programming test problems were posed in standard form (2) with
m = 6 and n = 12. The matrix A is fully dense, with elements (7 — .5)105(72=5),
where 7 and 7 are random variables drawn from a uniform distribution on the
interval [0,1]. (Of course, the values of 71 and 72 are different for each element of
the matrix.) We can reasonably expect this matrix A to satisfy the well-conditioning
assumptions of Section 5. The user specifies the number of indices to appear in B,
and we set

A primal solution z* is constructed with
=0 (=12 WD), e =105 = L),

where 7 is randomly drawn from the uniform distribution on [0, 1]. We choose the
dual solution 7* to be the vector (1,1,---,1)7 and fix an optimal dual slack vector
s* to be

5?:104(7_'5) (i=1,2,--,|N]|), si=0 (i=|N|+1,---,n),

where 7 is random as above. Finally, we set b = Az* and ¢ = AT 7" + s*.

The code was an implementation of the infeasible-interior-point algorithm de-
scribed by Wright [13]. The details of this algorithm are unimportant; we need note
only that its iterates satisfy the estimates (72) in exact arithmetic and that the algo-
rithm takes steps along the affine scaling direction during its later iterations. At each
iteration of the algorithm, we calculated the affine scaling direction (whether or not it

ff —— aff
lloos [[AT " loo,

and ||A\saﬂp||Oo alongside the duality measure p and residual norm ||(7s, 7¢)||oo for the
current point. We also kept track of the number of small pivots encountered during
the factorization, that is, the number of elements in 7. The parameter ¢ was set to
10712, which is about 100u on the SPARCstation 5 that was used for the experiments.
The results were not particularly sensitive to this parameter.

Results are shown in Tables 1-4. For each iteration of the algorithm, these tables
list the number of small pivots ||, the base-10 logarithms of u, ||(7s,7¢)||oo, and
the affine-scaling step norms mentioned above. The step-to-boundary ay,,x along the
calculated affine-scaling direction is also tabulated. A horizontal line in each table
indicates the iterate at which termination occurs according to the criterion (99).

In Table 1 we chose |B| = m = 6, making the linear program nondegenerate

was actually used as a search direction) and printed the norms ||£;:a

~ aff —aff
and the primal-dual solution unique. It i1s clear that Arx and As satisfy the
estimates (88) and (90), respectively, even when the algorithm is continues past the

—~ aff
point of normal termination. The component Az , on the other hand, clearly shows

the influence of the O(pu~'u) error term in (95) when pu becomes comparable to or
—~ aff
smaller than u. Note, too, that the error in Az is transmitted to the residual Ty

24



on succeeding iterations but that this effect does not become destructive until y is
much smaller than its normal termination threshold. The values of a,.x are also
consistent with the estimate (98). This step length approaches 1 until the normal

—~ aff
point of termination is reached, after which the errors in Az and rp make further

progress impossible.

Table 2 shows the interesting case in which we choose |B| = 4, so that the co-
efficient matrix in (16a) has four singular values of magnitude Q(p~!) and two of
magnitude Q(y). The second column shows that Algorithm modchol correctly iden-
tifies the numerical rank during the last few iterations and that the interior-point
algorithm continues to generate useful steps and to make good progress even after
modchol encounters small pivots. Apart from this feature, the behavior 1s the same

as in Table 1, with errors in &aﬂ causing the interior-point algorithm to behave
poorly when it is permitted to run past its normal point of termination. We noted
that for all iterations, the “small” pivots were at the bottom right corner of the
Cholesky matrix, so that (28) rather than the general estimate (27) applies to the
perturbation matrix £. In this case, we can replace €'/2 by € in estimates of Section
5 such as (93), (95), and (98).

Table 3 illustrates another case in which |B| = 4, with the added complication
that A is rank deficient. (We forced rank deficiency by setting A;; = 0 and Ay; = 0
for j =1,2,---,n—1, so that the first and second rows each contain a single nonzero
in their last column.) The (2,2) pivot is skipped at every invocation of Algorithm
modchol. As u becomes small, the final pivot is skipped as well, and the numerical
rank is correctly determined. Since the small pivots are not localized in the bottom
right corner, the special bound (28) does not apply, so we cannot strengthen the
bounds on the step components as in the previous paragraph. The computational
behavior is qualitatively the same as in Tables 1 and 2.

Table 4 illustrates a problem for which |B| = 8. Here, the coefficient matrices
retain full numerical rank at all iterates, and the behavior is similar to that reported

in Table 1. One point of difference is that the errors in A\xaﬂ, which start to increase
after iteration 19, do not have an immediate effect on the residual r,. The reason is
simply that this particular interior-point algorithm chose to take a path-following step
at iterations 21 and 22 rather than the affine scaling step, and the Az components were
calculated accurately in the path following step. An affine-scaling step is, however,

—~ aff
taken at iteration 28, and the effect of the error in Az~ on the residual rp at the
following iterate is obvious.
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TaABLE 1
Affine scaling step characteristics for a problem with m =6, n =12, |B| =6. ||| = || - ||oo>
and the horizontal line represents the normal point of termination.

Small log log log log
Tteration  Pivots logp  [|(resre)ll 1Az || (1A% || 1A || cma
12 0 -0.6 -11.1 -0.1 -0.6 0.6 .26426
13 0 -1.4 -10.7 0.4 -1.1 0.1 77520
14 0 -2.1 -10.7 1.2 -2.3 -1.1 39373
15 0 -3.3 -10.4 -0.3 -1.3 -0.1 62276
16 0 -4.8 -8.1 -1.1 -5.2 -3.9 .99697
17 0 -7.2 -10.5 -3.5 -8.3 -7.1 .99999
18 0 -12.0 -12.2 -8.2 -14.0 -12.5  >.99999
19 0 -21.0 -12.0 -3.6 -14.9 -13.9 99975
20 0 -24.2 -4.6 -1.4 -15.0 -13.9 193989
21 0 -26.2 -1.5 1.4 -15.3 -14.5 .06843
TABLE 2
Affine scaling step characteristics for a problem with m =6, n =12, Bl =4. ||-|| = || - ||oo>

and the horizontal line represents the normal point of termination.

Small log log log log
Tteration  Pivots logp  [|(resre)ll 1Az || (1A% || 1A || cma
12 0 -0.6 -12.0 0.1 -1.3 0.7 .95133
13 0 -1.9 -11.4 -1.5 -0.2 1.8 51719
14 0 24 95 <18 -0.9 1.0 .90453
15 1 34 93 27 55 35 98770
16 2 -5.2 -9.1 -4.4 -7.2 -5.2 99977
17 2 85 ALl 7T <105 -85 >.99999
18 2 -14.4 -13.2 -12.5 -15.9 -13.8  >.99999
19 2 -25.1 -12.3 -2.1 -15.9 -13.7  >.99999
20 2 -30.4 -1.8 5.0 -15.9 -14.5 .00016
21 3 304 23 106  -161  -13.5 <.00001
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TABLE 3
Affine scaling step characteristics for a problem with m = 6, n = 12, |B| = 4, in which A is

rank deficient. || || = || - ||co, and the horizontal line represents the normal point of termination.
Small log log log log
—~ aff — aff — aff

Tteration Pivots logp |[(re,ve)ll [|Az || ||A% || ||As || Qmax
12 1 -1.4 -11.3 0.1 0.5 1.0 78614

13 1 -2.1 -10.5 -1.9 1.7 2.0 17726

14 1 -2.7 -9.2 -0.8 1.2 1.3 41306

15 1 -2.9 -9.1 0.1 0.5 0.6 .00442

16 1 -3.2 -8.9 -0.6 0.2 0.4 78585

17 1 -3.9 -8.8 -1.1 -2.0 -1.7 .93466

18 1 -4.8 -9.7 -2.0 -2.0 -1.7 99179

19 2 -6.2 -10.9 -3.4 -6.0 -5.5 99970

20 2 -8.6 -10.1 -5.8 -8.3 -7.9  >.99999

21 2 -12.7 -10.9 -10.2 -12.7 -12.0  >.99999

22 2 -20.2 -11.5 -4.1 -12.3 -12.5 199988

23 2 -21.7 -4.6 -2.6 -12.9 -12.2 >.99999

24 2 -27.3 -3.0 2.9 -12.5 -12.3 .00711

TABLE 4
Affine scaling step characteristics for a problem with m =6, n =12, |B| =8. ||| = || - ||oo>

and the horizontal line represents the normal point of termination.

Small log log log log
Tteration  Pivots logp  [[(re,re)|| 1Az || [1AT || [1As ]| cma
12 0 -0.1 -5.7 3.5 -3.6 -2.3  .42851
13 0 -0.9 -9.5 2.1 -2.4 -1.4 60234
14 0 -13 9.9 18 -28  -17 38898
15 0 20 110.6 18 -18  -0.6 .30608
16 0 -2.2 -10.6 1.2 -1.8 -0.6  .37400
17 0 -33 105 -1.0 -39 27 68815
18 0 -4.2 -11.3 -0.3 -4.1 -2.9  .99691
19 0 6.7 97 30 15 63 .99998
20 0 -11.3 -10.6 0.6 -12.4 -11.2 98674
21 0 -13.2 -10.4 2.3 -14.4 -13.1  .19743
22 0 -13.3 -10.5 2.3 -14.6 -13.5  .04721
28 0 -18.8 —00 -2.2 -18.5 -14.4  .99999
29 0 237 5.5 11 -15.0  -13.7 59156
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