
MODIFIED CHOLESKY FACTORIZATIONS IN INTERIOR-POINTALGORITHMS FOR LINEAR PROGRAMMINGSTEPHEN WRIGHT�PREPRINT ANL/MCS-P600-0596, MAY, 1996, MATHEMATICS AND COMPUTER SCIENCE DIVISION, AR-GONNE NATIONAL LABORATORY, ARGONNE, IL 60439, USA.Abstract. We investigate a modi�ed Cholesky algorithm similar to those used in currentinterior-point codes for linear programming. Cholesky-based interior-point codes are popular forthree reasons: their implementation requires only minimal changes to standard sparse Choleskycodes (allowing us to take full advantage of software written by specialists in that area); they tendto be more e�cient than competing approaches that use di�erent factorizations; and they performrobustly on most practical problems, yielding good interior-point steps even when the coe�cient ma-trix is ill conditioned. We explain the surprisingly good performance of the Cholesky-based approachby using analytical tools from matrix perturbation theory and error analysis, illustrating our resultswith computational experiments. Finally, we point out the limitations of this approach.Key words. Interior-point algorithms and software, Cholesky factorization, Matrix perturba-tions, Error analysis.1. Introduction. Most interior-point codes for linear programming share a com-mon feature: their major computational operation|solution of a large linear systemof equations|is performed by a direct sparse Cholesky algorithm. In this algorithm,row and column orderings are determined a priori by well-known heuristics (minimumdegree and enhancements, minimum local �ll, nested dissection) that are based solelyon the sparsity pattern and not on the numerical values of the nonzero elements. Theordering phase is followed by a symbolic factorization phase, in which the nonzerostructure of the Cholesky factor is determined and storage is allocated. Finally, anumerical factorization phase �lls in the numerical values of the lower triangularCholesky factor. In interior-point codes, the �rst two phases usually are performedjust once, during either the �rst interior-point iteration or computation of a startingpoint.In the interior-point context, the unadorned Cholesky algorithm can run into dif-�culties because of extreme ill conditioning. Some of the diagonal pivots encounteredduring the numerical factorization phase can be zero or negative, causing the stan-dard Cholesky procedure to break down. Instead of crashing, most codes apply a\patch" to the algorithm to handle such pivots. The o�ending pivot element is some-times replaced by a huge number, as in LIPSOL [17] or PCx [1]. In other codes suchas IPMOS [16], the pivot is replaced by a moderate number, but the correspondingright-hand side element is set to zero, as are the o�-diagonal elements in the corre-sponding column of the Cholesky factor. The �rst practical interior-point code, OB1[6], explicitly zeroes the components of the solution vector that correspond to smallpivots. All these strategies are essentially equivalent to the algorithm we describein this paper. To date, there has been little investigation of them from a numericalanalysis viewpoint.The \patches" described above have the advantage that they can be implementedby changing just a few lines in general sparse Cholesky codes. It is therefore possibleto take advantage of the long-term development e�ort that has gone into designingsuch codes and their underlying algorithms. The recent codes LIPSOL [17] and PCx� Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South CassAvenue, Argonne, IL 60439. This work was supported by the Mathematical, Information, and Com-putational Sciences Division subprogram of the O�ce of Computational and Technology Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.1



[1] make explicit use of the freely available sparse Cholesky code of Ng and Peyton[8]. Other codes either modify the well-known SPARSPAK routines of George andLiu [3] or include customized linear algebra routines that implement well establishedalgorithmic ideas. (At least one author has experimented with modi�cations to thestandard heuristics: M�esz�aros [7] describes an inexact version of the minimum local�ll ordering.)One possible remedy for small pivots is diagonal pivoting. At each iteration, a\large" diagonal element is selected from the unreduced portion of the matrix andmoved to the pivot position by symmetric row and column pivoting. The algorithmis terminated when none of the remaining diagonal elements is su�ciently large, andan approximate solution is computed with the partial factors. (See Higham [4, Chap-ter 10] for details and error analysis.) This strategy is not particularly appealing inthe context of interior-point linear programming codes because of the loss of e�ciencydue to shifting of data during the numerical factorization. Moreover, there is littleincentive to test this strategy because the simple patches described above perform sowell in practice.In this article, we use standard results from numerical analysis to explain thegood performance of these patching strategies on the vast majority of problems. Wealso gain some insight into their limitations and into how and why they fail.Our error analysis for the modi�ed Cholesky algorithm is rigorous, with explicitlystated assumptions and precise bounds (see Sections 3 and 4). We revert, however, toa more informal style when applying these results to the interior-point context (Section5). The reason is pure pragmatism. A fully rigorous analysis would be impossiblycomplex, notationally speaking, and unduly pessimistic. The informal analysis yieldsadequate insight into the typical performance of the algorithm, as our computationalresults in Section 6 demonstrate.A number of other papers on linear algebra operations in barrier and interior-pointmethods have appeared in recent years. Wright [12] has considered the Newton-logarithmic barrier method for general constrained optimization, in which the linearsystem to be solved for the Newton step is positive semide�nite and ill conditionedduring later iterations. She uses a Cholesky factorization with diagonal pivoting toidentify the subspace spanned by the active constraint Jacobian. From this infor-mation, an accurate solution of the Newton equations can be obtained, in which thecomponents of the step in both the range space of the active constraint Jacobian andthe null space of its transpose are well resolved. Our analysis has a similar avorto Wright's, but the application is somewhat di�erent. The unknowns in our linearsystem are the unconstrained dual variables rather than the primals and, since thisproblem is linear, we have little interest in resolving the component of the step inthe near-null space of the coe�cient matrix. We focus too on Cholesky algorithmsthat perform no pivoting during the numerical factorization, reecting computationalpractice in the current generation of interior-point linear programming codes.In an earlier paper [14], we considered the stability of algorithms for the symmetricinde�nite form of the step equations at each iteration of a interior-point method forlinear programming. We showed that, despite the ill-conditioning of the coe�cientmatrix, the steps obtained by this approach are good search directions for the interior-point method. Forsgren, Gill, and Shinnerl [2] perform a similar analysis in the contextof logarithmic barrier methods.The remainder of this paper is organized as follows. In Section 2, we introduceprimal-dual interior-point methods and derive the linear equations to be solved at each2



iteration of these methods. Section 3 introduces Algorithm modchol, the modi�edCholesky procedure, and examines the accuracy of the solution obtained with thisfactorization, under certain assumptions on the eigenvalues of the factored matrix.In Section 4, we account for the e�ect of �nite-precision oating-point arithmetic onsolution accuracy. We return to the interior-point application in Section 5, showingthat Algorithm modchol yields good steps for these methods until the duality gapbecomes very small, even if the linear program is primal or dual degenerate. Theanalytical results are veri�ed by computational experiments with an interior-pointcode using Algorithm modchol, which are reported in Section 6.Notation. We summarize here the notation used in the remainder of the paper.The ith singular value of a matrix A is denoted by �i(A). We use �i alone todenote the ith singular value of the exact Cholesky factor L in Section 3.For any matrixM and index steps I and J , MIJ denotes the submatrix formedby the elements Mij, for i 2 I and j 2 J . The ith column of M is denoted by M�i,and the column submatrix consisting of columns j 2 J is denoted by M�J .Unit roundo� error is denoted by u. Higham [4, Chapter 1] de�nes u implicitlyby the statement that when � and � are any two oating-point numbers, op denotes+, �, �, and =, and (�) denotes the oating-point representation of a real number,we have (� op �) = (� op �)(1 + �) for some � satisfying j�j � u.For any positive integer m with mu < 1, we de�nem = mu1�mu(1)(see Higham [4, Lemma 2.1]).The notation k � k denotes the Euclidean vector norm k � k2 and also its inducedmatrix norm, unless otherwise noted. For any matrix A, the matrix consisting of theabsolute values of each element is denoted by jAj. We use 1 to denote the vector(1; 1; � � � ; 1)T .Finally, we mention the parameter � that de�nes the pivot threshold in the mod-i�ed Cholesky algorithm. A second quantity ��, which is related to � by�� def= 2m2�;appears frequently in the analysis because the incorporation of the scaling term 2m2saves notational clutter.2. Primal-Dual Algorithms for Linear Programming. We consider thelinear programming problem in standard form:min cTx subject to Ax = b; x � 0;(2)where x 2 IRn, c 2 IRn, A 2 IRm�n, and b 2 IRm. The dual of (2) ismax bT� subject to AT� + s = c; s � 0;(3)where s 2 IRn and � 2 IRm. We assume throughout the paper that A has full rowrank, so that m � n. The Karush-Kuhn-Tucker (KKT) conditions, which identify a3



vector triple (x; �; s) as a primal-dual solution for (2), (3), can be stated as follows:AT� + s = c;(4a) Ax = b;(4b) xisi = 0; i = 1; 2; : : : ; n;(4c) (x; s) � 0:(4d)We assume throughout the paper that a primal-dual solution exists. We make noassumptions about uniqueness or nondegeneracy; our analysis in Section 5 continuesto hold when the problem (2) is primal or dual degenerate. It is well known thatthe index set f1; 2; : : :; ng can be partitioned into two sets B and N such that for allprimal-dual solutions (x�; ��; s�) we havex�i = 0 for all i 2 N ; s�i = 0 for all i 2 B:(5) Primal-dual interior-point algorithms generate a sequence of iterates (x; �; s) thatsatisfy the strict inequality (x; s) > 0. They �nd search directions by applying amodi�cation of Newton's method to the system of nonlinear equations formed by the�rst three KKT conditions (4a),(4b),(4c), namely,Ax� b = 0; AT� + s � c = 0; XS1 = 0;(6)where X = diag(x1; x2; : : : ; xn), S = diag(s1; s2; : : : ; sn), and 1 = (1; 1; : : :; 1)T .In general, the search direction (�x;��;�s) is obtained from the following linearsystem: 24 0 AT IA 0 0S 0 X 3524 �x���s 35 = 24 �rc�rb�rxs 35 ;(7)where the coe�cient matrix is the Jacobian of (6) and the right-hand side componentsrb and rc are de�ned by rb = Ax� b; rc = AT� + s� c:(8)In a pure Newton (a�ne-scaling) method, the remaining right-hand side componentrxs is de�ned by rxs = XS1;(9)and, in this case, we denote the solution of (7) by (�xa� ;��a�;�sa�). In a path-following method, we have rxs = XS1 � ��1;(10)where � is the duality gap de�ned by� = xT s=n;(11)and � 2 [0; 1] is a centering parameter. In the \Mehrotra predictor-corrector" al-gorithm, which is used as the basis of many practical codes, the search direction iscalculated by setting rxs = XS1 +�Xa��Sa�1� ��1;(12) 4



where �Xa� and �Sa� are the diagonal matrices formed from the a�ne-scaling stepcomponents �xa� and �sa�. Hence, Mehrotra's method requires the solution of twolinear systems at each iteration|the a�ne scaling system (7), (8), (9), and the searchdirection system (7), (8), (12). A heuristic based on the e�ectiveness of the a�nescaling direction is used to determine the value of � in (12).Once a search direction has been determined, the primal-dual algorithm takes astep of the form (x; �; s) + �(�x;��;�s);where � is chosen to maintain strict positivity of the x and s components; that is,(x; s) + �(�x;�s) > 0:(13)In most codes, � is chosen to be some fraction of the step-to-boundary �max de�nedas �max = sup�2[0;1]f� j (x; s) + �(�x;�s) � 0g:(14)A typical strategy is to set � = ��max;where � 2 [:9; 1:0) approaches 1 as the interior-point method approaches the solutionset. By applying block elimination to (7) and using the notationD2 = S�1X;(15)we obtain the following equivalent system:AD2AT�� = �rb + AD2(rc �X�1rxs);(16a) �s = �rc �AT��;(16b) �x = �S�1(rxs +X�s):(16c)In many codes, the solution is obtained from just this formulation. A sparse Choleskyfactorization, modi�ed to handle small pivots, is applied to the symmetric positivede�nite coe�cient matrix AD2AT in (16a) and the solution �� is obtained by tri-angular substitution with the computed factor. The remaining direction componentsare recovered from (16b) and (16c). This technique yields steps (�x;��;�s) thatare useful search directions for the interior-point algorithm, even when the matrixAD2AT is ill conditioned, as often happens during later iterations. This observa-tion is somewhat surprising, since a naive application of error analysis results wouldsuggest that the combination of ill-conditioning and roundo� would corrupt the di-rection hopelessly. The results of Sections 3, 4, and 5 provide an explanation for thisphenomenon.The following observation is crucial to our analysis: In computing �� from (16a),we are not interested so much in the error in �� itself as in the e�ect of this erroron the remaining step components �s and �x that are recovered from (16b) and(16c), respectively. If the relative errors in these components are large, the posi-tivity requirement (13) may cause the step length � to be signi�cantly shortened,thereby curtailing the algorithm's progress. We return to this issue in Section 5, afterdescribing and analyzing the modi�ed Cholesky algorithm in Sections 3 and 4.5



3. A Modi�ed Cholesky Algorithm. In this section, we describe and an-alyze Algorithm modchol, a modi�ed Cholesky algorithm designed to handle ill-conditioned matrices for which small or negative pivots may arise during the factor-ization.Algorithmmodchol accepts an m �m symmetric positive de�nite matrix M asinput, together with a small positive user-de�ned parameter �, which de�nes a thresh-old of acceptability for the pivot elements. If a candidate pivot element is smaller thanthis threshold, the algorithm simply skips a step of factorization. Algorithmmodcholoutputs an approximate lower triangular factor ~L and an index set J � f1; 2; : : : ;mgcontaining the indices of the skipped pivots. In the following speci�cation, we useM (i) to denote the unfactored part of M that remains after i steps of the algorithm.AlgorithmmodcholGiven � with 0 < �� 1;Set M (0)  M ; ~L 0; J  ;; � = maxi=1;2;:::;m Mii;for i = 1; 2; : : : ;mif M (i�1)ii � ��(* skip this elimination step *)Set J  J [ fig andE(i) = 266666664 0 0 � � � � � � 00 M (i�1)ii � � � � � � M (i�1)im... ... 0 0... ... . . . ...0 M (i�1)mi 0 � � � 0 377777775 ; M (i) = M (i�1) �E(i);(17) else (* perform the usual Cholesky elimination step *)~Lii  qM (i�1)ii ; M (i)  0for j = i + 1; i+ 2; : : : ;m~Lji =M (i�1)ij =~Lii ;for j = i + 1; i+ 2; : : : ;mfor k = i + 1; i+ 2; : : : ;mM (i)jk  M (i�1)jk � ~Lji~Lki.The ith column of ~L is zero for each i 2 J ; that is, ~L�J = 0. If we denoteE = Xi2J E(i)(18)and denote the complement of J in f1; 2; : : : ;mg by �J , it follows from (17) thatE �J �J = 0:(19)That is, the row or column index of each nonzero element in E must lie in J . It followsfrom the algorithm that ~L is the exact Cholesky factor of the perturbed matrixM�E,which we denote for convenience by ~M . That is, we have~L~LT = ~M = M �E:(20) 6



By partitioning this equation into its J and �J components and using ~L�J = 0 and(19), we obtain M �J �J = ~L �J � ~LT�J � + E �J �J = ~L �J �J ~LT�J �J(21a) M �JJ = ~L �J � ~LTJ � + E �JJ = ~L �J �J ~LTJ �J +E �JJ :(21b)The exact Cholesky factor L (whose existence is guaranteed by the assumed positivede�niteness of M ) satis�es LLT = M:(22)Given the linear system Mz = r;(23)where M is the matrix factored by modchol, the exact solution obviously satis�esz = M�1r = L�TL�1r:(24)The approximate solution ~z is chosen so that the partial vector ~z �J solves the reducedsystem M �J �J ~z �J = r �J , while the complementary subvector zJ is set to zero. From(21a), we see that ~z �J can be calculated by performing a pair of triangular substitu-tions; that is, ~z �J = ~L�T�J �J ~L�1�J �J r �J ; ~zJ = 0:(25)Note that z = ~z when J = ;. When J 6= 0, on the other hand, the di�erence between~z and z can be large in a relative sense. We havekz � ~zk = � zJ � 0z �J � ~z �J � � kzJ k;and there is no reason to expect zJ to be small with respect to the full vector z.We can show, however, that the di�erence between LT z and LT ~z is relatively smallunder certain assumptions; this result is the culmination of the analysis of this section(Theorem 3.6). As we see in Section 5, this di�erence determines the usefulness ofthe computed solution of (16) as a search direction for the interior-point algorithm.To simplify the analysis, we assume implicitly throughout the paper that� = 1:(26)A trivial scaling, which a�ects neither the algorithm nor its analysis, can always beapplied to the symmetric positive de�nite matrix M to yield (26).We start with a sequence of three results that lead to a bound on the di�erencebetween ~LT z and ~LT ~z. These results require few assumptions on the matrix M andare relatively simple to prove.Lemma 3.1. The submatrix formed by the last m � i rows and columns of M (i)is symmetric positive de�nite, for all i = 0; 1; : : : ;m � 1. Moreover, the diagonalelements of all these submatrices are bounded by 1.Proof. This observation follows by a simple inductive argument. By assumption,the starting matrixM (0) = M is positive de�nite. Suppose that the desired propertyholds for M (i�1). If i 2 J , then the lower right (m � i) � (m � i) submatrix of7



M (i) is identical to the lower right (m � i) � (m � i) submatrix of M (i�1), whichis positive de�nite by assumption. Otherwise, if i =2 J , then M (i) is obtained byapplying one step of Cholesky reduction to M (i�1). It is known that the remainingsubmatrix resulting from this operation is positive de�nite; hence, the lower right(m� i)� (m� i) submatrix in question is positive de�nite, and the desired propertyholds.The second claim follows immediately from the fact that Mii � � = 1, i =1; 2; : : : ;m and the fact that the diagonal elements cannot increase during Algorithmmodchol.Lemma 3.2. For each i 2 J , we havekE(i)k2 � kE(i)kF � (2m�)1=2:Therefore, kEk2 � kEkF � ��1=2;(27)where �� = 2m2�.Proof. From Lemma 3.1, we have (M (i�1)i;l )2 � M (i�1)i;i M (i�1)l;l for each l = i +1; : : : ;m. Suppose i 2 J , so that M (i�1)i;i � �. Since the diagonals of each submatrixM (i�1) are bounded by 1, we have M (i�1)l;l � 1 and therefore���M (i�1)i;l ��� � �M (i�1)i;i M (i�1)l;l �1=2 � �1=2; l = i+ 1; : : : ;m:Hence, we havekE(i)k22 � kE(i)k2F � (M (i�1)i;i )2 + 2 mXl=i+1(M (i�1)i;l )2 � �2 + 2(m � i)� � 2m�;thereby proving the �rst claim. By (18), we havekEk2F = Xi2J kE(i)k2F � jJ j2m� � 2m2�;thereby proving (27).In the case in which all the small pivots appear in the bottom right corner of thematrix (that is, J = fp+ 1; p+2; : : : ;mg for some index p), the estimate (27) can beimproved to kEk2 � kEkF � m2� = :5��;(28)This stronger estimate applies in most instances of the interior-point application ofSection 5.We are now able to derive an estimate of the di�erence between ~LT z and ~LT ~z.Theorem 3.3. For the exact solution z and approximate solution ~z de�ned in(24) and (25), respectively, we have thatk~LT [z � ~z]k = k~L�1�J �JE �JJ zJ k � k~L�1�J �J k kE �JJ k kzJ k:(29) 8



Proof. From (24) together with (21), we haver �J = M �J �J z �J +M �JJ zJ= ~L �J �J ~LT�J �J z �J + h~L �J �J ~LTJ �J + E �JJ i zJ= ~L �J �J ~LT� �J z + E �JJ zJ ;while from (25), we haver �J = ~L �J �J ~LT�J �J ~z �J = ~L �J �J h~LT�J �J ~z �J + ~LJ �J ~zJ i = ~L �J �J ~LT� �J ~z:By combining these two relations, we obtain~LT� �J [z � ~z] = �~L�1�J �JE �JJ zJ :(30)Since ~L�J = 0, the result follows immediately.The remaining analysis of this section requires some additional assumptions onthe distribution of the singular values of M and on the parameter �. Accordingly,we introduce a little more notation. The eigenvalues of M are denoted by �2i , i =1; 2; : : : ;m, where �21 � �22 � � � � � �2m > 0:(31)We de�ne the diagonal matrix � by� = diag(�1; �2; : : : ; �m):(32)It follows that there exists an orthogonal matrix Q such thatM = Q�2QT :(33)Because the largest diagonal in M is 1, we have by elementary analysis that1 � �21 � m:(34)In the subsequent analysis, we assume that there is an integer p with 1 � p � msuch that� � is small relative to �2p; and� if p < m, there is a signi�cant gap in the spectrum of M between �2p and�2p+1.(We will be more speci�c about these two assumptions presently.) By partitioningthe spectrum at the gap, we obtain�1 = diag(�1; �2; : : : ; �p); �2 = diag(�p+1; �p+2; : : : ; �m):(35)From (33), Q can be partitioned accordingly to obtainQ = [Q1 jQ2]; M = Q1�21QT1 + Q2�22QT2 :Since M = LLT , it follows that �i, i = 1; 2; : : : ;m are the singular values of L. Infact, we must have LT = U�QT(36) 9



for some m�m orthogonal matrix U , where � and Q are de�ned as above.We use ~�2i , i = 1; 2; : : : ;m to denote the eigenvalues of the perturbed matrix ~M .It follows immediately from (20) that the singular values of ~L are ~�i, i = 1; 2; : : : ;m.The rank of ~L is j �J j, because ~L �J �J is lower triangular with nonzero diagonals while~L�J = 0. Therefore, we have~�j �J j > ~�j �J j+1 = � � � = ~�m = 0:(37)As in (36), there are orthogonal m �m matrices ~U and ~Q such that~LT = ~U ~� ~QT ;(38)where ~� = diag(~�1; ~�2; : : : ; ~�m):It is an immediate consequence of an eigenvalue perturbation result of Stewart andSun [10, Corollary IV.4.13] and Lemma 3.2 that( mXi=1[�2i � ~�2i ]2)1=2 � kEkF = ��1=2:(39)The main assumption of this section is that j �J j = p; that is, Algorithmmodcholcorrectly identi�es the numerical rank of the matrix M . One might expect that weshould not have to assume this equality at all|that it should follow from the spectrumgap and from a judicious choice of �. Practical experience supports this expectation;the algorithm has little trouble determining the numerical rank on the vast majorityof problems. In fact, part of the result|the bound j �J j � p|follows from a minimalassumption on �.Lemma 3.4. If ��1=2 < �2p, we have j �J j � p.Proof. If j �J j < p, we have from (37) and (39) that�2p � �2j �J j+1 = ����2j �J j+1 � ~�2j �J j+1��� � ��1=2;contradicting our assumption that ��1=2 < �2p.However, the conditions on �, �p, and �p+1 needed to prove the other half ofthe result|j �J j � p|are too rigorous to be useful. This is a consequence of thefact that poorly conditioned triangular matrices need not have particularly smalldiagonal elements (see Lawson and Hanson [5, p. 31] for the classic example of thisphenomenon).Our next result concerns perturbation of the subspace spanned by Q1, which isthe invariant subspace of \large" eigenvalues of M .Lemma 3.5. Suppose that j �J j = p < m and that the values �p and �p+1 from(31) and � from Lemma 3.2 satisfy the conditions�2p+1�2p � :1;(40a) �2p � �2p+1 > 5��1=2:(40b) 10



Then there is a p� p symmetric positive de�nite matrix ~� and an orthonormal m� pmatrix ~Q1 such that ~M = ~Q1~� ~QT1 ;(41) k ~Q1 �Q1k � 2��1=2�2p � �2p+1 � 2��1=2 ;(42) k~���21k � 2��1=2:(43)(The constants used in (40a) and in similar expressions should not be taken tooseriously. We assign them speci�c values only to avoid an excess of notation.)Proof. The result is a straightforward consequence of Theorem V.2.8 of Stewartand Sun [10, p. 238]. Since ~M = M�E, we use (33) and partition as in (35) to obtainQT ~MQ = QTMQ�QTEQ = � �21 00 �22 �� � F11 F12FT12 F22 � :We now make the following identi�cations with the quantities in the cited result:~ = kFT12k � kFk = kEk � ��1=2; ~� = kF12k � ��1=2;~� = sep(�21;�22)� kF11k � kF22k � �2p � �2p+1 � 2��1=2 > 2��1=2;where sep(�; �) is the minimum distance between the spectra of its two arguments.From the given result, there is a matrix P of dimension (m � p) � p such that thematrix ~Q1 de�ned by ~Q1 = Q1 +Q2P(44)is an invariant subspace for ~M , wherekPk � ~~� � 2��1=2�2p � �2p+1 � 2��1=2 < 1:(45)Moreover, the representation of ~M with respect to ~Q1 is~QT1 ~M ~Q1 = ~� = �21 + F11 + F12P:(46)The bound (42) follows from (44), (45), and kQ2k = 1. It follows immediately fromthe �rst equality in (46) that ~� is symmetric, and we havek~�� �21k � kF11k+ kF12kkPk � 2��1=2;verifying the inequality (43). This inequality implies that the smallest singular valueof ~� is no smaller than �2p � 2��1=2 > 0, so ~� is symmetric positive de�nite.The cited result states further that the matrix ~Q2 = Q2�Q1P T is orthogonal to~Q1 and also de�nes an invariant subspace for ~M . In fact, we have[ ~Q1 j ~Q2]T ~M [ ~Q1 j ~Q2] = � ~� 00 �̂ � ;for some (m � p) � (m � p) symmetric matrix �̂. Since ~� and ~M both have rank b,we must have �̂ = 0, so we have~M = [ ~Q1 j ~Q2] � ~� 00 0 � [ ~Q1 j ~Q2]T = ~Q1~� ~QT1 :11



Hence, (41) is also satis�ed, and the proof is complete.Combining (40b) with (39), we obtain~�21 � �21 + ��1=2 < �21 + :2�2p < 2�21:(47)Another quantity that enters into our error bounds is the norm of ~L�1�J �J . We denote� def= max(k~L�1�J �J k; 1) = max��j �J j(~L �J �J )�1; 1� ;(48)where �j �Jj(~L �J �J ) denotes the j �J jth singular value of ~L �J �J . (The lower bound of 1 in(48) simpli�es our analysis.) Note from (21a) thatkM�1�J �J k = k~L�1�J �J k2 � �2:(49)Since kM �J �J k � kMk � �21, we have from (34) and (49) that�(M �J �J ) � �21�2 � m�2:(50)Under the assumption j �J j = p, the nonzero part of ~L|the submatrix ~L� �J|hasfull rank p and singular values ~�1; : : : ; ~�p. Since ~L� �J di�ers from ~L �J �J in the presenceof the additional rows ~LJ �J , we have�j �J j(~L �J �J ) = �p(~L �J �J ) � ~�p;and therefore � ~�p � 1:The additional rows ~LJ �J can have nontrivial magnitude relative to ~L �J �J , so ~�p maybe signi�cantly larger than ��1. However, ~�p cannot be too large, since from (39),(40b), and (34), we have that~�2p � �2p + ��1=2 � 1:2�2p � 1:2�21 � 1:2m:For the purposes of our analysis, we make the assumption that � ~�2p is moderate insize. Speci�cally, we assume that � ~�2p � 10:(51)Because of (39) and (40b), we have ~�2p � �2p � ��1=2 � :8�2p, so (51) implies that��2p � 1:25�~�2p � 13:and, in addition, ���1=2 � :2��2p � :25�~�2p � 3:(52)We can now prove the main result of this section.Theorem 3.6. Suppose that j �J j = p < m, that the conditions (40) hold, andthat the estimate (51) is satis�ed. We then havekLT (~z � z)k � �56�31�3p ��1=2 + 6�1�p+1� �kzJ k:12



Proof. From (36), we havekLT (~z � z)k = kU�QT (~z � z)k = k�QT (~z � z)k;since U is orthogonal. Now from the partition (35), and using the fact that kQ2k = 1(unless of course �2 and Q2 are vacuous), we obtainkLT (~z � z)k� k�1QT1 (~z � z)k+ k�2k k~z � zk� k��11 k k�21QT1 (~z � z)k+ k�2k k~z � zk� k��11 k k~� ~QT1 (~z � z)k+ k��11 k k~� ~QT1 � �21QT1 k k~z � zk+ k�2k k~z � zk:(53)The �rst term in this expression is easiest to bound. From (35), we have k��11 k =��1p . Applying the relations (41), (20), (38), (47), (29), (27), and (48), respectively,we obtain k~� ~QT1 (~z � z)k = k ~M (~z � z)k= k~L~LT (~z � z)k� ~�1k~LT (~z � z)k� 2�1k~LT (~z � z)k� 2�1k~L�1�J �J k kE �JJ k kzJ k� 2�1���1=2kzJ k:We therefore have k��11 k k~� ~QT1 (~z � z)k � 2�1�p ���1=2kzJ k:(54)The second and third terms in (53) require a bound on k~z � zk. From (30) and thefact that ~zJ = 0, we have~LT�J �J (~z �J � z �J ) = ~LTJ �J zJ + ~L�1�J �JE �JJ zJ ;(55)and therefore k~z �J � z �J k � k~L�T�J �J k�k~LJ �J k+ k~L�1�J �J k kE �JJ k� kzJ k:(56)From (47), we have k~LJ �J k � ~�1 � 2�1, while from (27), we have kE �JJ k � ��1=2.Substituting these estimates into (56) and using (52), we obtaink~z �J � z �J k � � (2�1 + ���1=2)kzJ k � (2�1� + 3� )kzJ k:(57)Finally, using ~zJ = 0 together with � � 1, (34), and (57), we obtaink~z � zk � k~z �J � z �J k+ kzJ k � (2�1� + 3� + 1)kzJ k � 6�1�kzJ k:(58)Turning speci�cally to the second term in (53), we have from (34), Lemma 3.5,(47), and (40) thatk~� ~QT1 � �21QT1 k � k�21 � ~�k kQ1k+ k~�k kQ1 � ~Q1k13



� 2��1=2 + ~�21 2��1=2�2p � �2p+1 � 2��1=2� 2��1=2 "1 + 1:2�21�2p � �2p+1 � 2��1=2#� 2��1=2 2:2�21�2p � �2p+1 � 2��1=2� 4:5��1=2�21�2p "1� �2p+1�2p � 2��1=2�2p #�1� 4:5��1=2�21�2p [1� :1� :4]�1= 9��1=2�21�2p :By combining this bound with (58) and k��11 k = ��1p , we obtaink��11 k k~� ~QT1 � �21QT1 k k~z � zk � 1�p �9��1=2�21�2p� (6�1�kzJ k)= 54�31�3p ���1=2kzJ k:(59)For the third term in (53), we have from k�2k = �p+1 thatk�2k k~z � zk � 6�1�p+1�kzJ k:(60)The result of the theorem is obtained by substituting (54), (59), and (60) into(53).Note that if J = ; (that is, j �J j = m), we have ~z = z, so the conclusion ofTheorem 3.6 holds trivially in this case as well is we de�ne �m+1 = 0.4. The E�ect of Finite Precision Computations. In the analysis of thepreceding section, we assumed for simplicity that all arithmetic was exact. In thissection, we take account of the roundo� errors that are introduced when the approx-imate solution ~z is calculated in a �nite-precision environment.Our analysis above focused on the approximate solution ~z obtained from (25),where the subvector ~zJ satis�es the following system:M �J �J ~z �J = ~L �J �J ~LT�J �J ~z �J = r �J ;(61)while the subvector ~zJ is �xed at zero. In this section, we use ẑ to denote the �niteprecision analog of ~z. We examine errors in ẑ due to� roundo� error in Algorithmmodchol,� error arising during the triangular substitutions in (61), and� evaluation error in the right-hand side r.As we see in Section 5, evaluation error in the right-hand side is a signi�cant featureof the application to interior-point codes. We denote this error by e, so that theright-hand side r �J in the system (61) is replaced by r �J + e �J .Fortunately, our results follow in a straightforward way from existing results forthe Cholesky factorization, since a close inspection of Algorithmmodchol shows thatit simply performs a standard Cholesky factorization on the submatrix M �J �J .14



Before stating the main results, we introduce two more assumptions. The �rstconcerns the relative sizes of � and u, speci�cally,�2m+1 � 15m2 ;(62)where m+1 is de�ned as in Section 1. Since � > 1 and m � 1, it follows immediatelythat mm+1 � :2:(63)The second assumption is that �nite precision does not a�ect cuto� decisions in Al-gorithm modchol. That is, the presence of roundo� error in each submatrix M (i�1)does not a�ect whether the threshold criterion M (i�1)ii � �� passes or fails for eachi. This assumption concerns the relative sizes of u and �, and it requires some ex-planation. We cannot expect to take care of the \borderline cases" in which somecandidate pivots fall just to one side or the other of the threshold. Rather, we wantthe cases in which there is a clear distinction between small and large pivots in exactarithmetic to retain this distinction in �nite precision arithmetic, and we want thethreshold �� to fall comfortably inside the \gap" in both settings. In �nite precision,the size of rounding error introduced into M (i�1)ii by earlier steps of Algorithmmod-chol is comparable to �u. (Each time Mii is updated by the algorithm, a positivenumber no larger than itself is subtracted from it. Since jMiij � �, the oating-pointerror introduced here is bounded by �u.) We want these errors to be smaller thanthe threshold ��, so that pivots that are tiny in exact arithmetic do not exceed thethreshold in �nite precision. Hence, we can state this assumption roughly as follows:� � u:(64)The following lemmaaccounts for the e�ects of �nite precision on the approximatesolution ~z obtained from Algorithmmodchol and (25).Lemma 4.1. Suppose that Algorithm modchol and the triangular substitutionsin (61) are performed in �nite-precision arithmetic with perturbed right-hand sider �J + e �J to yield an approximate solution ẑ. Suppose, too, that (62) holds and thatroundo� error does not a�ect the composition of J . We then havek~z � ẑk � 30m5=2m+1�3kzk+ 2�2ke �J k;(65)where z is the exact solution from (23).Proof. Algorithmmodchol operates as a standard Cholesky factorization on thesubmatrixM �J �J , so we can apply a standard perturbation theorem to bound the errorin the subvector ẑ �J . From Higham [4, Theorem 10.4], we �nd that ẑ �J satis�es(M �J �J +Eu�J �J )ẑ �J = r �J + e �J ;(66)where kEu�J �J k � 2mm+11�mm+1 kM �J �J k:(67)Comparing (66) with (61), we �nd thatM �J �J (~z �J � ẑ �J ) = Eu�J �J ẑ �J � e �J :15



Manipulating in the usual way, we obtaink~z �J � ẑ �J k � 11� kM�1�J �J k kEu�J �J kkM�1�J �J k �kEu�J �J k k~z �Jk+ ke �J k� :(68)It follows immediately from (67) thatkM�1�J �J k kEu�J �J k � �(M �J �J ) 2mm+11�mm+1 ;(69)Combining (50), (62), and (63), we obtain�(M �J �J ) 2mm+11�mm+1 � m�2(2mm+1):8 � :5;so that the denominator in (68) is bounded below by :5. Hence, by substitution into(68), using (34), (49), (69), and (63), we have thatk~z �J � ẑ �J k � 2kM�1�J �J k �kEu�J �J k k~z �J k+ ke �J k�� 2�2�m 2mm+11�mm+1 k~z �J k+ ke �J k�� 5m2m+1�2k~z �J k+ 2�2ke �J k:(70)Finally, we bound k~z �J k in terms of kzk. From (34) and (57), we havek~z �J k � kz �J k+ k~z �J � z �J k � kz �J k+ (2�1� + 3� )kzJ k � 6�1�kzk � 6m1=2�kzk:By combining this bound with (70), we obtain the result.The major results of Sections 3 and 4 can be summarized in the following theorem.Theorem 4.2. Suppose that Algorithmmodchol and the triangular substitutionsin (61) are performed in �nite-precision arithmetic with perturbed right-hand sider �J + e �J to yield an approximate solution ẑ. Suppose, too, that (62) holds and thatroundo� errors do not a�ect the composition of J . Finally, suppose that either- J = ;; or- j �J j = p < m, the conditions (40) hold, and the estimate (51) is satis�ed.We then havekLT (ẑ � z)k(71) � �56�31�3p ��1=2 + 6�1�p+1 + 30m3m+1�2� �kzk+ 2m1=2�2ke �J k:Proof. When J = ;, the result is immediate from Lemma 4.1 and ~z = z. For theremaining case, we obtain (71) by combining the results of Theorem 3.6 and Lemma4.1. We need note only that kzJ k � kzk and that, from (34), we havekLT (~z � ẑ)k � kLk k~z � ẑk = �1k~z � ẑk � m1=2k~z � ẑk:16



5. Application to the Interior-Point Algorithm. In this section, we returnto the motivating application: primal-dual interior-point software for linear program-ming and, in particular, the linear system (16) that is solved at each iteration. Weapply the main result|Theorem 4.2|and examine the e�ect of the parameter � andunit roundo� u on the quality of the computed search direction (c�x; c��; c�s). Ourfocus is on the later iterations of the interior-point algorithm, during which � is smalland the ill-conditioning of AD2AT can become acute. Our results show how and whyerrors arise in (c�x; c��;c�s) and what e�ect these errors have on the step length, theconvergence of the algorithm, and the accuracy that can be attained by this algorithm.They also suggest an appropriate size for the parameter �.In this section, we revert to an informal style of analysis, using order notation tohide constants of moderate size. Thus if � and � are two positive numbers, we write� = O(�) if the ratio �=� is not too large. Similarly, we write � = 
(�) if � = O(�) and� = O(�). Conventionally, order notation is used only when � and � are quantitiesthat approach zero in the limit of the algorithm in question. Here, however, we useit in connection with the unit roundo� u, which is small but �xed. This slight abuseof notation results in a much clearer insight into the behavior of Algorithmmodcholin the interior-point context.In the next subsection, we look closely at the a�ne-scaling step, for which rxsis de�ned by (9). This step is important because it closely approximates the stepstaken by most rapidly converging algorithms during their �nal iterations. Subsection5.2 shows that the steps calculated during the �nal stages of Mehrotra's predictorcorrector algorithm (and therefore by most interior-point codes) have essentially thesame properties as a�ne-scaling steps.5.1. A�ne-Scaling Steps. We start by estimating the sizes of the various con-stituents of the equations (16)|the residuals rb and rc, the B and N components ofx, s, and the diagonal matrixD. In standard infeasible-interior-point algorithms (see,for example, Wright [15, Chapter 6]), we havekrbk = O(�); krck = O(�);xi = 
(1) (i 2 B); xi = 
(�) (i 2 N );(72) si = 
(�) (i 2 B); si = 
(1) (i 2 N ):These estimates are also observed to hold in practice on the majority of problems forvalues of � greater than u1=2. An immediate consequence of these estimates and thede�nition (15) is thatD2ii = 
(��1) (i 2 B); D2ii = 
(�) (i 2 N ):(73)We assume the coe�cient matrix A to be well conditioned; that is, �1(A) and�m(A) are both 
(1). We assume further that the submatrix A�B of columns A�i,i 2 B, is well conditioned. It follows from this assumption together with the estimate(73) that the matrix A�BD2BBAT�B has full rank min(jBj;m). In fact, since A�B is wellconditioned, all nonzero singular values of A�BD2BBAT�B are 
(��1) in size. Likewise,it follows from (15) and (73) that A�ND2NNAT�N = O(�), so we conclude that�i(AD2AT ) = 
(��1); i = 1; 2; : : : ;min(m; jBj);(74a) �i(AD2AT ) = O(�); i = min(m; jBj) + 1; : : : ;m:(74b) 17



Since the largest diagonal element of AD2AT is also 
(��1), the scaled coe�cientmatrix for (16a) is �AD2AT ; where � = 
(�).(75)For consistency with Section 3, the singular values of the matrix in (75) are denotedby �2i . From this de�nition together with (74) and (75), we deduce that�2i = 
(1); i = 1; 2; : : :;min(m; jBj);(76a) �2i = O(�2); i = min(m; jBj) + 1; : : : ;m:(76b)Recalling our notation p of Section 3, we have in this case thatp = min(m; jBj):The exact Cholesky factor L (see Sections 3 and 4) satis�esLLT = �AD2AT :(77)Suppose now that Algorithmmodchol is used to compute the solution of (16a),where the right-hand-side component rxs is set to its a�ne-scaling value XS1. Thisprocess result in a computed solution c��a� for (16a). The remaining step componentsc�sa� and c�xa� are obtained by substitution into (16b) and (16c), respectively, againin �nite-precision arithmetic. Our main tool for analyzing the errors in the computedstep is Theorem 4.2.Consider the exact a�ne scaling step (�xa�;��a�;�sa�). Standard results forinfeasible-interior-point methods (see, for example, [15, Theorem 7.5]), together withthe conditions (72), imply thatk(�xa�;�sa�)k = O(�):(78)(This estimate holds only when � falls below a data-dependent threshold �(A; b; c)de�ned by Wright [15, Chapter 3].) From (16b) and (72), we have(AAT )�� = AT (�rc ��s) = O(�);so it follows from our assumptions about the well conditioning of A that��a� = O(�):(79)We can be more speci�c about the sizes of the critical components �xa�i , i 2 Nand �sa�i , i 2 B. If we multiply the third block row in (7) by (XS)�1 and use thede�nition (9), we obtain�xa�ixi + �sa�isi = �1; i = 1; 2; : : : ; n:Therefore, from (72) and (78), we have for i 2 N that�xa�ixi = �1 + O(�)
(1) = �1 + O(�);18



and therefore, using (72) again, we have�xa�i = �xi + O(�2); i 2 N :(80)In a similar way, we obtain�sa�i = �si +O(�2); i 2 B:(81)From the estimates (78), (80), and (81), we can show that a near-unit step canbe taken along the direction (�xa�;��a�;�sa�) without violating positivity of thex and s components. Substituting (�x;��;�s) = (�xa�;��a�;�sa�) in (14), wehave 1� �max = O(�):(82)To verify this estimate, suppose that si + ��sa�i = 0 for some index i 2 B. From(81), we have si(1� �) + O(�2) = 0;so it follows from (72) that 1� � = O(�2)=si = O(�):For the corresponding component xi, we have from (72) and (78) that xi = 
(1)and �xa�i = O(�). Hence, for all � su�ciently small and all � 2 [0; 1], we havexi+��xa�i > 0. Similar logic can be applied to the remaining indices i 2 N , therebycompleting our veri�cation of (82).Returning to the computed a�ne-scaling step (c�xa� ; c��a� ; c�sa�), we now applyTheorem 4.2 after checking that its assumptions of are satis�ed for small enough� and reasonable values of u and �. For double-precision computations, we haveu � 10�14. Hence, since A is well conditioned, we can expect the condition (62) tohold in all nonpathological circumstances. Because of (76), our assumption (40a) onthe singular value distribution clearly holds for all su�ciently small �. The condition(40b) is satis�ed for any reasonable choice of �. The assumption that Algorithmmodchol correctly identi�es the numerical rank (that is, j �J j = p) is, as we discussedin Section 3, di�cult to guarantee, but it was observed to hold on all problems that wetested. The assumption that rounding errors do not interfere with the makeup of thesmall pivot index set J is likewise impossible to verify rigorously; but, as discussedin Section 4, it can reasonably be expected to hold when � � u (64).A good choice for �|one that satis�es the assumptions just mentioned whilekeeping the bound (71) as small as possible|is therefore� = u:(83)For generality, we continue to use � and �� in the analysis that follows, substitutingthe speci�c value (83) only at the end.Having veri�ed that we can reasonably expect Theorem 4.2 to hold for the system(16a), we now estimate the quantities on the right-hand side of (71). From (76a), wehave �1=�p = O(1), while from (76b), we have �p+1 = O(�). The general estimate(34) yields �1 = O(1), while the de�nition of m+1 gives the estimate m+1 = O(u).19



We need to account, too, for the errors incurred in evaluating the right-hand sideof (16a). The oating-point error in forming rxs = XS1 is only O(�u) in magnitude,since just a single oating-point multiplication is needed to calculate each componentxisi of this vector, and each such element is O(�) (see (72)). The residuals rb andrc have magnitude O(�) in exact arithmetic (see (72)), but they are calculated asdi�erences of O(1) quantities and so contain evaluation error of absolute magnitudeO(u). Speci�cally, componentwise errors in the computed version of rc are boundedby �jAjT j�j+ jsj+ jcj�u, and similarly for rb. Because of the estimate (73), the errorsin rc are magni�ed to (��1u) when we multiply by AD2 in (16a). In fact, this termis the dominant one in the total right-hand-side evaluation error. The errors thatoccur when we perform oating-point addition of the terms rb, AD2rc, and AS�1rxsare less signi�cant; they lead to additional terms of sizes O(u) and O(��1u2). Insummary, the total right-hand-side evaluation error is O(��1u). Hence, after scalingby the factor � de�ned in (75), we havekek = O(u);(84)where e is the error vector of Section 4.Substituting the estimates (76), (79), and (84) into (71), we havekLT (c��a� ���a�)k � nO(��1=2) +O(�) + �2O(u)o �O(�) + �2O(u):If � = O(1)(85)(a reasonable estimate when the Cholesky factorization correctly identi�es the numer-ical rank and A�B is well conditioned), the error bound above simpli�es tokLT (c��a� ���a�)k � O(��1=2�+ �2 + u):(86)From (77) we have that �1=2DAT = QLT ;for some orthogonal matrix Q. Since orthogonal transformations do not a�ect theEuclidean norm of a vector, we can substitute �1=2DAT for LT in (86) and use (75)to write kDAT (c��a� ���a�)k = ��1=2kLT (c��a� ���a�)k� O(��1=2�1=2 + �3=2 + ��1=2u):(87)Note too that from (58), (65), (79), and (84), we havekc��a�k � kc��a� � ~��a�k+ k ~��a� ���a�k+ k��a�k = O(�+ u);(88)where ~��a� is the approximate solution that would be obtained by Algorithmmod-chol if it was used to solve (16a) in exact arithmetic.Next, we examine the e�ect of the error in c��a� and the evaluation error in theright-hand side of (16b) on the calculated step c�sa�. From (79) and (88), we havethat k��a� � c��a�k � k��a�k+ kc��a�k = O(� + u):(89) 20



Hence, taking into account the O(u) evaluation error in the term rc, we have imme-diately from (16b) that�sa� � c�sa� = O(u)� AT (��a� � c��a�) = O(� + u):(90)Clearly, for the \large" components of s|namely, the i 2 N components|errorsof this magnitude do not a�ect the step length �max to the boundary de�ned in (14).However, for the critical components i 2 B, the estimate (90) is not good enough toguarantee that �max is close to 1. (Repeating the argument that follows (82), we �ndonly that 1 � �max = O(1).) Fortunately, a re�ned estimate of the error in the Bcomponents is available. As in (90), we have�sa� � c�sa� = �AT (��a� � c��a�) +O(u) = D�1v + O(u);(91)where from (87) we havev = DAT (c��a� ���a�) = O(��1=2�1=2 + �3=2 + ��1=2u):(92)From (73), we have Dii = 
(��1=2) for i 2 B, so from (91) we obtainc�sa�i ��sa�i = O(��1=2�+ �2 + u); i 2 B:(93)As in the discussion following (82), we �nd that si + �c�sa�i = 0 is possible only if1� � = O(��1=2 + �+ ��1u):(94)This estimate suggests that near-unit steps can be taken, at least in the c�sa� com-ponents, provided that � is signi�cantly larger that u. When � = O(u), all bets areo�! Finally, we estimate the errors in the computed version of �xa� (obtained from(16c)) and estimate their e�ect on the �max. Again, we consider the components i 2 Band i 2 N separately.For i 2 B, the O(�u) evaluation error in (rxs)i is magni�ed by the term s�1i =
(��1). From (93), replacement of �sa� by c�sa� yields an additional error of sizeO(��1=2�) + O(�2) + O(u), which is also magni�ed by the 
(��1) factor. The otherarithmetic errors are less signi�cant. In summary, we �nd thatc�xa�i ��xa�i = O(��1=2 + �+ ��1u); i 2 B:(95)By the usual reasoning, we �nd that xi + �c�xa�i = 0 is possible for i 2 B only for �satisfying (94).For i 2 N , the O(�u) evaluation error in (rxs)i is not magni�ed appreciablyby s�1i , while from (90), the O(� + u) error in �sa� is actually diminished aftermultiplication by s�1i xi = O(�). We �nd thatc�xa�i ��xa�i = O(�u+ �2); i 2 N :(96)Hence, we can have xi + �c�xa�i = 0 for i 2 N only ifj1� �j = O(u+ �):(97) 21



From (94) and (97), we conclude that the value of �max de�ned by (14), with thecalculated direction (c�xa� ; c��a� ;c�sa�) replacing the exact search direction, satis�esthe estimate 1� �max = O(��1=2 + �+ ��1u):(98)Note from (89), (90), and (96) that, in an absolute sense, the errors in c��a� ,c�sa� , and c�xa�i , i 2 N are small. By contrast, the O(��1u) term in (95) impliesthat the errors in c�xa�i , i 2 B, may become large as � # 0. These large errors mayin turn cause the residuals rb to grow as � # 0. These expectations are con�rmed bythe computational experiments of Section 6.The estimate (98) and the parameter choice � = u (83) suggest strongly that thealgorithm should be terminated when� � u1=2:(99)When � reaches this threshold, all three terms in the estimate (98) are in balance.Below this threshold, the O(��1u) term in c�xa�i may cause rb to grow, makingfurther reduction of � counterproductive. The convergence tolerances used by mostinterior-point codes|arrived at by practical experience rather than any theoreticalconsiderations|are similar to (99). The code PCx is typical. It declares optimalityif the following three conditions are satis�ed:krbk1 + kbk � tol; krck1 + kck � tol; ��cTx� bT���1 + jcTxj � tol;where the default value of tol is 10�8. (Note that 10�8 � u1=2 in double precisionarithmetic on most machines.)5.2. Mehrotra Predictor-CorrectorSteps. Having analyzed the a�ne-scalingsearch direction and its calculated approximation, we turn our attention briey to thesearch direction used by Mehrotra's predictor-corrector algorithm. As mentioned inSection 2, these steps are obtained by setting rxs as in (12), for some heuristic choiceof the centering parameter �. We can write the search direction as(�x;��;�s) = (�xa�;��a�;�sa�) + (�xcc;��cc;�scc);(100)where (�xcc;��cc;�scc) is the \corrector-centering" step component that satis�esthe following linear system:24 0 AT IA 0 0S 0 X 3524 �xcc��cc�scc 35 = 24 00��1 ��Xa��Sa�1 35 :Block elimination on this system yields the following special case of (16a):AD2AT��cc = AD2 �X�1(��1��Xa��Sa�1)� :Since we assume full rank of A, and since the diagonal elements of D are all strictlypositive, the coe�cient matrix is invertible, and we havek��cck � k(AD2AT )�1AD2k kX�1k k��1��Xa��Sa�1k:22



A result of Stewart [9] and Todd [11] states that the norm k(AD2AT )�1AD2k isbounded independently of D over the set of all positive de�nite diagonal matrices D(and therefore independently of x and s with (x; s) > 0). Therefore, we havek��cck = O(kX�1k)O(k��1��Xa��Sa�1k):From (72), we have kX�1k = O(��1), while from (78), it follows that k�Xa��Sa�1k =O(�2). Hence, we have k��cck = O(� + �):(101)A typical heuristic for choosing the centering parameter � is to set� = (�a�=�)3;where �a� is the value of � that results from a full step-to-boundary �max along thea�ne-scaling direction. If the search direction is exact, we have �a� = O(�2), sothis heuristic yields � = O(�3). Use of the calculated direction (c�xa�; c��a�; c�sa�)together with the estimate (98) leads us to expect �a� = O(�2) in this case too,provided that � � u1=2. Hence, we have from (101) that k��cck = O(�), and so,from (100) and (79), we have k��k = O(�);(102)where �� is the � component of the Mehrotra search direction.We also can apply the Stewart-Todd result to formulae for �xcc and �scc to showthat k(�xcc;�scc)k = O(�). Therefore, we havek(�x;�s)k = O(�);(103)corresponding to (78).Because of the estimates (102) and (103), the analysis of the preceding subsectioncan be applied without modi�cation to the calculated version of the search direction(100). In particular, if we rede�ne the step-to-boundary �max in terms of this cal-culated step (c�x; c��; c�s), we �nd that the estimate (98) still applies. We concludethat near-unit steps can still be taken along this direction provided that � � u1=2.6. Implementation and Computational Results. Most interior-point codesuse modi�ed Cholesky algorithms with essentially the same properties as Algorithmmodchol. They di�er slightly, however, in the implementation. The IPMOS code ofXu, Hung, and Ye [16] replaces small pivot elements by 1 and �lls out the correspond-ing column of the Cholesky factor with zeros and also inserts a zero in the right-handside. The criterion for identifying a small pivot is not explained in the reference [16],but otherwise this strategy is equivalent to Algorithm modchol. Zhang's LIPSOLcode [17] and the PCx code of Czyzyk, Mehrotra, and Wright [1] replace small pivotsby a huge number|10128|but otherwise leave the Cholesky algorithm unchanged.The net e�ect is, however, almost equivalent to Algorithm modchol and the trian-gular substitution procedure (25). The advantage of this approach is that it involvesminimal changes to a standard sparse Cholesky code. We need only add a loop tocalculate the largest diagonal element �, and a small pivot check immediately beforethe point at which the computation Lii = pMii is performed.23



To test that the analysis of this paper was reected in practical computations,we coded a primal-dual algorithm that used Algorithmmodchol in conjunction withthe formulation (16). The code was used to solve some small random linear programsin which the amount of degeneracy|the composition of index sets B and N|wascarefully controlled. At each iterate, we monitored various quantities and comparedthem against the estimates of Section 5.The linear programming test problems were posed in standard form (2) withm = 6 and n = 12. The matrix A is fully dense, with elements (�1 � :5)106(�2�:5),where �1 and �2 are random variables drawn from a uniform distribution on theinterval [0; 1]. (Of course, the values of �1 and �2 are di�erent for each element ofthe matrix.) We can reasonably expect this matrix A to satisfy the well-conditioningassumptions of Section 5. The user speci�es the number of indices to appear in B,and we setjN j = n� jBj; N = f1; 2; � � �; jN jg; B = fjN j+ 1; � � � ; ng:A primal solution x� is constructed withx�i = 0 (i = 1; 2; � � � ; jN j); x�i = 103(��:5) (i = jN j+ 1; � � � ; n);where � is randomly drawn from the uniform distribution on [0; 1]. We choose thedual solution �� to be the vector (1; 1; � � �; 1)T , and �x an optimal dual slack vectors� to be s�i = 104(��:5) (i = 1; 2; � � �; jN j); s�i = 0 (i = jN j+ 1; � � � ; n);where � is random as above. Finally, we set b = Ax� and c = AT�� + s�.The code was an implementation of the infeasible-interior-point algorithm de-scribed by Wright [13]. The details of this algorithm are unimportant; we need noteonly that its iterates satisfy the estimates (72) in exact arithmetic and that the algo-rithm takes steps along the a�ne scaling direction during its later iterations. At eachiteration of the algorithm, we calculated the a�ne scaling direction (whether or not itwas actually used as a search direction) and printed the norms kc�xa�k1, kc��a�k1,and kc�sa�k1 alongside the duality measure � and residual norm k(rb; rc)k1 for thecurrent point. We also kept track of the number of small pivots encountered duringthe factorization, that is, the number of elements in J . The parameter � was set to10�12, which is about 100u on the SPARCstation 5 that was used for the experiments.The results were not particularly sensitive to this parameter.Results are shown in Tables 1{4. For each iteration of the algorithm, these tableslist the number of small pivots jJ j, the base-10 logarithms of �, k(rb; rc)k1, andthe a�ne-scaling step norms mentioned above. The step-to-boundary �max along thecalculated a�ne-scaling direction is also tabulated. A horizontal line in each tableindicates the iterate at which termination occurs according to the criterion (99).In Table 1 we chose jBj = m = 6, making the linear program nondegenerateand the primal-dual solution unique. It is clear that c��a� and c�sa� satisfy theestimates (88) and (90), respectively, even when the algorithm is continues past thepoint of normal termination. The component c�xa�, on the other hand, clearly showsthe inuence of the O(��1u) error term in (95) when � becomes comparable to orsmaller than u. Note, too, that the error in c�xa� is transmitted to the residual rb24



on succeeding iterations but that this e�ect does not become destructive until � ismuch smaller than its normal termination threshold. The values of �max are alsoconsistent with the estimate (98). This step length approaches 1 until the normalpoint of termination is reached, after which the errors in c�xa� and rb make furtherprogress impossible.Table 2 shows the interesting case in which we choose jBj = 4, so that the co-e�cient matrix in (16a) has four singular values of magnitude 
(��1) and two ofmagnitude 
(�). The second column shows that Algorithmmodchol correctly iden-ti�es the numerical rank during the last few iterations and that the interior-pointalgorithm continues to generate useful steps and to make good progress even aftermodchol encounters small pivots. Apart from this feature, the behavior is the sameas in Table 1, with errors in c�xa� causing the interior-point algorithm to behavepoorly when it is permitted to run past its normal point of termination. We notedthat for all iterations, the \small" pivots were at the bottom right corner of theCholesky matrix, so that (28) rather than the general estimate (27) applies to theperturbation matrix E. In this case, we can replace ��1=2 by �� in estimates of Section5 such as (93), (95), and (98).Table 3 illustrates another case in which jBj = 4, with the added complicationthat A is rank de�cient. (We forced rank de�ciency by setting A1j = 0 and A2j = 0for j = 1; 2; � � � ; n� 1, so that the �rst and second rows each contain a single nonzeroin their last column.) The (2; 2) pivot is skipped at every invocation of Algorithmmodchol. As � becomes small, the �nal pivot is skipped as well, and the numericalrank is correctly determined. Since the small pivots are not localized in the bottomright corner, the special bound (28) does not apply, so we cannot strengthen thebounds on the step components as in the previous paragraph. The computationalbehavior is qualitatively the same as in Tables 1 and 2.Table 4 illustrates a problem for which jBj = 8. Here, the coe�cient matricesretain full numerical rank at all iterates, and the behavior is similar to that reportedin Table 1. One point of di�erence is that the errors in c�xa� , which start to increaseafter iteration 19, do not have an immediate e�ect on the residual rb. The reason issimply that this particular interior-point algorithm chose to take a path-following stepat iterations 21 and 22 rather than the a�ne scaling step, and the �x components werecalculated accurately in the path following step. An a�ne-scaling step is, however,taken at iteration 28, and the e�ect of the error in c�xa� on the residual rb at thefollowing iterate is obvious. REFERENCES[1] J. Czyzyk, S. Mehrotra, and S. J. Wright, PCx User Guide, Technical Report OTC 96/01,Optimization Technology Center, Argonne National Laboratory and Northwestern Univer-sity, May 1996.[2] A. Forsgren, P. Gill, and J. Shinnerl, Stability of symmetric ill-conditioned systems arisingin interior methods for constrained optimization, SIAM Journal on Matrix Analysis andApplications, 17 (1996), pp. 187{211.[3] A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive De�nite Systems,Prentice-Hall, 1981.[4] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM Publications, Philadel-phia, 1996.[5] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, EnglewoodCli�s, NJ, 1974. 25



Table 1A�ne scaling step characteristics for a problem with m = 6, n = 12, jBj = 6. k � k = k � k1,and the horizontal line represents the normal point of termination.Small log log log logIteration Pivots log� k(rb; rc)k kc�xa�k kc��a�k kc�sa�k �max...12 0 -0.6 -11.1 -0.1 -0.6 0.6 .2642613 0 -1.4 -10.7 0.4 -1.1 0.1 .7752014 0 -2.1 -10.7 1.2 -2.3 -1.1 .3937315 0 -3.3 -10.4 -0.3 -1.3 -0.1 .6227616 0 -4.8 -8.1 -1.1 -5.2 -3.9 .9969717 0 -7.2 -10.5 -3.5 -8.3 -7.1 .9999918 0 -12.0 -12.2 -8.2 -14.0 -12.5 >.9999919 0 -21.0 -12.0 -3.6 -14.9 -13.9 .9997520 0 -24.2 -4.6 -1.4 -15.0 -13.9 .9398921 0 -26.2 -1.5 1.4 -15.3 -14.5 .06843... Table 2A�ne scaling step characteristics for a problem with m = 6, n = 12, jBj = 4. k � k = k � k1,and the horizontal line represents the normal point of termination.Small log log log logIteration Pivots log� k(rb; rc)k kc�xa�k kc��a�k kc�sa�k �max...12 0 -0.6 -12.0 0.1 -1.3 0.7 .9513313 0 -1.9 -11.4 -1.5 -0.2 1.8 .5171914 0 -2.4 -9.5 -1.8 -0.9 1.0 .9045315 1 -3.4 -9.3 -2.7 -5.5 -3.5 .9877016 2 -5.2 -9.1 -4.4 -7.2 -5.2 .9997717 2 -8.5 -11.1 -7.7 -10.5 -8.5 >.9999918 2 -14.4 -13.2 -12.5 -15.9 -13.8 >.9999919 2 -25.1 -12.3 -2.1 -15.9 -13.7 >.9999920 2 -30.4 -1.8 5.0 -15.9 -14.5 .0001621 3 -30.4 2.3 10.6 -16.1 -13.5 <.00001... 26



Table 3A�ne scaling step characteristics for a problem with m = 6, n = 12, jBj = 4, in which A isrank de�cient. k � k = k � k1, and the horizontal line represents the normal point of termination.Small log log log logIteration Pivots log� k(rb; rc)k kc�xa�k kc��a�k kc�sa�k �max...12 1 -1.4 -11.3 0.1 0.5 1.0 .7861413 1 -2.1 -10.5 -1.9 1.7 2.0 .1772614 1 -2.7 -9.2 -0.8 1.2 1.3 .4130615 1 -2.9 -9.1 0.1 0.5 0.6 .0044216 1 -3.2 -8.9 -0.6 0.2 0.4 .7858517 1 -3.9 -8.8 -1.1 -2.0 -1.7 .9346618 1 -4.8 -9.7 -2.0 -2.0 -1.7 9917919 2 -6.2 -10.9 -3.4 -6.0 -5.5 9997020 2 -8.6 -10.1 -5.8 -8.3 -7.9 >.9999921 2 -12.7 -10.9 -10.2 -12.7 -12.0 >.9999922 2 -20.2 -11.5 -4.1 -12.3 -12.5 .9998823 2 -21.7 -4.6 -2.6 -12.9 -12.2 >.9999924 2 -27.3 -3.0 2.9 -12.5 -12.3 .00711... Table 4A�ne scaling step characteristics for a problem with m = 6, n = 12, jBj = 8. k � k = k � k1,and the horizontal line represents the normal point of termination.Small log log log logIteration Pivots log� k(rb; rc)k kc�xa�k kc��a�k kc�sa�k �max...12 0 -0.1 -5.7 3.5 -3.6 -2.3 .4285113 0 -0.9 -9.5 2.1 -2.4 -1.4 .6023414 0 -1.3 -9.9 1.8 -2.8 -1.7 .3889815 0 -2.0 -10.6 1.8 -1.8 -0.6 .3060816 0 -2.2 -10.6 1.2 -1.8 -0.6 .3740017 0 -3.3 -10.5 -1.0 -3.9 -2.7 .6881518 0 -4.2 -11.3 -0.3 -4.1 -2.9 .9969119 0 -6.7 -9.7 -3.0 -7.5 -6.3 .9999820 0 -11.3 -10.6 0.6 -12.4 -11.2 .9867421 0 -13.2 -10.4 2.3 -14.4 -13.1 .1974322 0 -13.3 -10.5 2.3 -14.6 -13.5 .04721...28 0 -18.8 �1 -2.2 -18.5 -14.4 .9999929 0 -23.7 -5.5 1.1 -15.0 -13.7 .59156... 27
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