
Multimethod Communication forHigh-Performance MetacomputingApplicationsIan Fostery Jonathan Geislery Carl Kesselmanz Steve TueckeyyMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439U.S.A.ffoster,geisler,tueckeg@mcs.anl.govzBeckman InstituteCalifornia Institute of TechnologyPasadena, CA 91125U.S.A.carl@compbio.caltech.eduPreprint ANL/MCS-P601-0596AbstractMetacomputing systems use high-speed networks to connect supercomputers, massstorage systems, scienti�c instruments, and display devices with the objective of enablingparallel applications to access geographically distributed computing resources. However,experience shows that high performance often can be achieved only if applications canintegrate diverse communication substrates, transport mechanisms, and protocols, chosenaccording to where communication is directed, what is communicated, or when communi-cation is performed. In this article, we describe a software architecture that addresses thisrequirement. This architecture allows multiple communication methods to be supportedtransparently in a single application, with either automatic or user-speci�ed selection cri-teria guiding the methods used for each communication. We describe an implementationof this architecture, based on the Nexus communication library, and use this implemen-tation to evaluate performance issues. The implementation supported a wide variety ofapplications in the I-WAY metacomputing experiment at Supercomputing 95; we useone of these applications to provide a quantitative demonstration of the advantages ofmultimethod communication in a heterogeneous networked environment.1 IntroductionFuture networked computing systems will be increasingly heterogeneous in terms of both thetypes of networked devices and the capabilities of the networks used to connect these devices.At the same time, the applications that run on these networks are becoming more sophisticated1



in terms of the computations they perform and the types of data that they communicate [6].The various gigabit testbeds showcased early examples of high-performance networked applica-tions, while in the I-WAY networking experiment at Supercomputing 95, around sixty groupsdemonstrated applications designed to exploit networked supercomputers, mass storage sys-tems, scienti�c instruments, and advanced display devices [10].Experiences on the I-WAY and other networking testbeds show that metacomputing appli-cations often need to exploit multiple network interfaces, low-level protocols, data encodings,and quality of service choices if they are to achieve acceptable performance. Coupled mod-els, which use multiple supercomputers to exploit large aggregate memory or to run di�erentcomponents more quickly on di�erent architectures, need to use machine-speci�c communica-tion methods within computers and optimized wide area protocols between computers [21, 22].Collaborative environments require a mixture of protocols providing di�erent combinations ofhigh throughput, multicast, and high reliability [11, 12]. Applications that connect scienti�cinstruments or other data sources to remote computing capabilities need to be able to switchamong alternative communication substrates in the event of error or high load [20]. In general,the choice of communication method can vary according to where communication is directed,what is communicated, or when communication is performed.Metacomputing applications requiring multiple communication methods have previouslybeen developed in an ad hoc fashion, with di�erent program components coded to use di�erentlow-level communication mechanisms. While e�ective, this approach is tedious, error prone,and nonportable. A simpler approach would be to allow programmers to develop applicationsusing a single high-level notation, such as the Message Passing Interface (MPI) [19] or a parallellanguage, and then provide mechanisms that allow the methods used for each communicationto be determined independently of the program text. However, the realization of this approachrequires solutions to challenging problems: separate speci�cation of communication operationand communicationmethod; identi�cation of applicable communicationmethods; selection fromamong alternative methods; and the incorporation of multiple communication methods into animplementation.In this article, we describe a software architecture that addresses the problems just listed.This architecture allows programmers to specify communications in terms of high-level ab-stractions such as message passing or remote procedure call, while supporting diverse low-levelmethods for actual communications. Communication methods can be associated with individ-ual communication operations, and the selection of an appropriate method can be guided byboth automatic and user-speci�ed criteria. The architecture also incorporates solutions to var-ious problems that arise when multiple communication methods are incorporated into a singleimplementation. Central to this multimethod communication architecture is an abstractioncalled a communication link, which provides a concise, mobile representation of both the targetof a communication operation and the methods used to perform that operation.These multimethod communication techniques have been implemented in the context of theNexus multithreaded runtime system [15, 16]. Nexus has been used to implement a variety ofparallel languages and communication libraries [7, 14, 12], including the MPI implementationused extensively in the I-WAY wide area computing experiment [10]. We use Nexus to study theperformance of alternative approaches to the implementation of various multimethod commu-nication structures. We conclude with a case study in which our multimethod communicationtechniques are used to improve dramatically the performance of an MPI-based climate model.In brief, the contributions of this article are as follows:1. The de�nition of a software architecture that permits application-level communications to2



be speci�ed independently of the low-level methods used to perform communication andthat supports both automatic and manual selection of the methods used for particularcommunication operations.2. The description and evaluation of implementation techniques that support the simulta-neous use of multiple communication methods within a single application.3. A demonstration that multimethod communication can signi�cantly improve the perfor-mance of realistic scienti�c applications.2 Multimethod CommunicationThe need for multiple communication methods in a single application can arise for a numberof reasons, some of which we consider here.� Transport mechanisms. Complex applications such as those demonstrated on the I-WAYmay integrate diverse computational resources, including visualization engines, parallelsupercomputers, and database computers [10, 20, 21, 22]. While the Internet Protocol (IP)provides a standard transport mechanism for routed networks [8], parallel computers andlocal area networks often support alternative, more e�cient mechanisms. As we will showin Section 4, the use of specialized transport mechanisms can be crucial to applicationperformance.� Network protocols. Many network services are available in addition to the point-to-pointreliable delivery typically provided by message-passing libraries. Applications such ascollaborative engineering [12] can exploit specialized protocols such as Unreliable Data-gram Protocol (UDP), IP multicast, reliable multicast, and Realtime Transport Protocol(RTP) or application-speci�c protocols for selected data, such as shared state updatesand video.� Quality of service (QoS). Future networks will support channel-based QoS reservationand negotiation [26, 4]. High-performance multimedia applications probably will wantto reserve several channels providing di�erent QoS; for example, they might use a low-latency, low-bandwidth channel for control information and a high-bandwidth, unreliablechannel for image data transfer.� Interoperability of tools. Parallel applications must increasingly interoperate with othercommunication paradigms, such as CORBA and DCE. In heterogeneous environments,an MPI program may need to interoperate with other MPI implementations. In eachcase, di�erent protocols must be used to communicate with di�erent processes.� Security. Di�erent mechanisms may be used to authenticate or protect the integrity orcon�dentiality of communicated data [27], depending on where communication is directedand what is communicated. For example, control information might be encrypted outsidea site, but not within, while data is not encrypted in either case.These examples show that it can be necessary to vary the methods used for a particularcommunication according to where communication is directed, what is communicated, andeven|since many of the choices listed above can vary over time|when communication isperformed. 3



2.1 RequirementsRecognizing that multimethod communication is important, we face the challenge of devel-oping tools and techniques that allow programmers to use multiple communication methodse�ciently without introducing overwhelming complexity. We argue that a fundamental require-ment is that the programmer be able to specify communications in terms of a single abstraction(whether message passing, remote procedure call, etc.), independently of the low-level methodused to e�ect a particular communication. In addition, it should be easy to distinguish com-munications intended for a particular purpose (for example, communications directed to aparticular remote location), so that programmers can associate di�erent methods with di�er-ent subsets of the communication operations within a program. The examples presented aboveshow that it is not enough to specify communication method based solely on the source anddestination processors.Implementations of multimethod communication must permit the coexistence of multiplemethods within a single application. This is a nontrivial problem, since di�erent methodsmay use quite di�erent mechanisms for initiating and processing communications. It is alsoimportant to have 
exible techniques for selecting the communicationmethod to be used. Whileease of use demands automatic selection mechanisms, programmer-directed selection must alsobe supported, and automatic and programmer-directed selection must be able to coexist. Forexample, automatic selection might be used to determine whether to use shared memory orTCP/IP between two computers, while manual selection could be used to specify that datais to be compressed before communication. For some communication methods, programmersneed to manage low-level behavior by specifying values for important parameters. For example,a TCP-based method might allow a programmer to specify socket bu�er sizes.Finally, both automatic and manual selection require access to information about the avail-ability and applicability of di�erent communication methods and about system state and con�g-uration. For example, shared-memory communication is appropriate only if directed to anotherprocess within the same shared address space. An implementation of multimethod communica-tion must provide this information via enquiry functions. Enquiry functions should also enableprogrammers to evaluate the e�ectiveness of automatic selection or to tune manual selections.2.2 Communication PrimitivesThe preceding discussion has identi�ed requirements for an implementation of multimethodcommunication. These requirements can be satis�ed in a variety of ways. We advocate anapproach based on a one-sided asynchronous communication mechanism implemented by acommunication link and remote service request.Before going into details of our approach, let us consider the limitations of supportingmultimethod communication with traditional two-sided message passing primitives. We startwith the observation that two-sided communication de�nes a speci�c protocol for synchronizingand extracting data at the receive side of the transfer. This protocol can hinder communicationmethods, such as stream communication, in which an explicit receive operation may not beappropriate.Message-passing libraries such as PVM [17], MPL, or NX provide no notion of commu-nication context: a receive can potentially match any send. This feature makes it di�cultto associate a communication method with a speci�c set of communication operations or tosupport di�erent methods on di�erent communication operations. The situation is improvedin MPI [19] by the introduction of communicators, which provide a scope for communication.4
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bookkeeping needs to be performed by the application.A key to the utility of the communication link abstraction is the portability of the startpoint.A process can create a link, associate a communication method with the startpoint, and thencommunicate that startpoint to other processes, providing those processes with a handle thatthey can use to perform RSRs to the remote location. In addition, the communication methodassociated with any startpoint can be altered, so a process receiving a startpoint can changethe communication method to be used, on the basis of sender-side requirements. In general,then, the communication link and RSR abstractions overcome the limitations of two-sidedcommunication primitives for multimethod communication.3 Implementing Multimethod CommunicationWe now turn our attention to the techniques used to implement multimethod communica-tion. We describe these techniques in the context of Nexus [15, 16], a portable, multithreadedcommunication library designed for use by parallel language compilers and higher-level com-munication libraries. In the discussion that follows, we refer to an address space, or virtualprocessor, as a context. In the communication architecture that we present below, the range ofpossible communication methods available to a computation is de�ned by the contexts in whichthe startpoint and endpoint reside; the actual method used for a particular RSR is determinedby the data structures associated with the startpoint and endpoint.3.1 Multimethod Communication ArchitectureFigure 2 provides an overview of the data structures used to support multiple communica-tion methods. A communication method is implemented by a communication module. Eachcommunication module implements a standard interface that includes communication-orientedfunctions, an initialization function, and functions used to construct communication descriptorsand communication objects. To enable the coexistence of many di�erent communication mod-ules within an executable, Nexus accesses interface functions within a module via a functiontable, constructed when the module is loaded. To date, communication modules have beenconstructed for local (intracontext) communication, TCP sockets, Intel NX message passing,IBM MPL, AAL-5 (ATM Adaptation Layer 5), Myrinet, unreliable UDP, and shared memory;others are being developed.Several methods are provided for determining which communication modules can be usedby a particular executable. When the Nexus library is built, a default set of modules is de-�ned. Additional communication modules can be speci�ed by entries in a resource database,by command line arguments, or by function calls from within the program. The function tableinterface is designed so that if a required module has not been compiled into the Nexus library,it can be loaded dynamically.A communication descriptor contains the information that a communication module needsin order to communicate with a speci�c context. For example, when using MPL to communicatebetween nodes on IBM SP multicomputers, a communication descriptor contains a node numberand a globally unique session identi�er, which is used to distinguish between di�erent SPpartitions. On the Intel Paragon, the descriptor also includes the name of the process withwhich we wish to communicate, since on the Paragon, a parallel computation can containseveral processes executing on the same processor. Communication descriptors are grouped into6
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The mechanisms that we have described are very general and hence powerful, but makestartpoints rather heavyweight entities. While this situation is acceptable in a wide-area con-text, where the cost of communicating a few tens of bytes of descriptor table is insigni�cant, itcan be unacceptable in more tightly coupled systems. Fortunately, it is possible to recognizespecial cases in which a default descriptor table is used repeatedly, as is often the case withcommunication links between nodes within a parallel computer. In such situations, the size ofa startpoint and the cost of manipulating it can be reduced signi�cantly by not attaching adescriptor table.3.2 Selecting a Communication MethodUpon receipt of a startpoint, a context must determine which of the methods contained in theattached descriptor table are to be used for subsequent communication using that startpoint.As explained in Section 2.1, we wish to support both automatic and manual method selection.Nexus currently uses a simple automatic selection rule: a received descriptor table is scannedin order and the �rst \applicable" communication method is used. A method is \applicable"if it is supported by both the local and remote contexts and meets additional method-speci�ccriteria. For example, the MPL communication method can be used only if both contexts residein the same SP partition.Figure 3 illustrates automatic method selection. Consider a network con�guration in whichthree nodes are connected by an Ethernet. Nodes 1 and 2 are part of an IBM SP2 and hence arealso connected by MPL. Node 0 has a communication link to node 2. Because the associatedstartpoint was received from node 2, its attached descriptor table contains entries for bothEthernet (E) and MPL (M). However, node 0 supports only Ethernet and so this method isused. The startpoint is then migrated to node 1. On arrival at node 1, we determine that MPLis applicable, since it is supported by both nodes and since both nodes are on the same SPpartition.Because of the ordered scan of the descriptor table, placing the MPL descriptor before theEthernet descriptor results in a \fastest �rst" selection policy. This policy is easily extended.For example, network QoS parameters be incorporated into the selection policy, by looking atavailable network bandwidth rather than raw bandwidth before indicating that a module isacceptable. The user can also in
uence the choice of method by reordering entries within thecommunication descriptor table or by adding or deleting descriptors.3.3 Detecting and Processing Multimethod CommunicationStartpoints represent the sending side of a communication link; at the endpoint, incoming RSRsmust be detected and processed. Since di�erent communication methods may require di�erentdetection mechanisms, we must consider how incoming communication can be identi�ed acrossall the communication methods available to a context.A straightforward approach to checking for pending communication is to provide a singlepolling function that iterates over the elements of a context's communication descriptor table,invoking a method-speci�c poll operation for each entry. To evaluate the performance of thisapproach, we conducted experiments with a ping-pong microbenchmark that bounces a vectorof �xed size back and forth between two processors a large number of times. This process isrepeated to obtain one-way communication times for a variety of message sizes.8
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Figure 3: Communication method selection in Nexus. See text for details.We measured performance of three implementations of the ping-pong microbenchmark: apure MPL version, a Nexus version supporting a single communication method (MPL), anda Nexus version supporting two communication methods (MPL and TCP). In both Nexusversions, all communications were initiated with MPL; hence, any performance degradation inthe MPL/TCP Nexus version is due to overhead associated with TCP polling. All experimentswere run on the IBM SP2 at Argonne National Laboratory, which consists of Power 1 processorsconnected via an SP2 multistage switch. Both MPL and TCP operate over the switch and canachieve maximum bandwidths of about 36 and 8 MB/sec, respectively.Figure 4 shows our results. The lower two lines in the �rst graph show that for smallmessages, the message-driven execution model supported by Nexus introduces some overheadon the SP2, relative to native MPL; we have provided a detailed analysis of these overheadselsewhere [16]. In the other graph, these same two lines coincide, thus indicating that Nexusoverheads are not signi�cant for larger messages.The upper two lines in each graph reveal a disadvantage of the uni�ed polling scheme. Ingeneral, the cost of a poll operation can vary signi�cantly depending on the mechanism used.For example, on many parallel computers, the probe operation used to detect communicationfrom another processor is cheap, while a TCP select is expensive. On the SP2, the mpc statuscall used to detect an incoming MPL operation costs 15 microseconds, while a select costs over100 microseconds. A consequence of this cost di�erential is that an infrequently used, expensivemethod imposes signi�cant overhead on a frequently used, inexpensive method. On the SP2,the cost for a zero-byte message as measured by the ping-pong microbenchmark increases from83 to 156 microseconds with TCP polling, even though no TCP communication is performed.In addition, TCP support degrades MPL communication performance even for large messages.9
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Figure 4: One-way communication time as a function of message size, as measured with both alow-level MPL program and the ping-pong microbenchmark, using single-method and multimethodversions of Nexus. On the left, we show data for message sizes in the range 0{1000, and on the righta wider range of sizes. See the text for details.We hypothesize that this degradation is because repeated kernel calls due to select slow thetransfer of data from the SP2 communication device to user space.To reduce the additional overhead incurred in detecting multimethod communication, wetake advantage of the fact that the high latency inherent in the TCP interface means thatTCP messages will be delivered less frequently than MPL messages. Hence, it is acceptableto check for TCP communications less frequently than MPL communications. To apply thisoptimization, we extend Nexus to support a parameter, skip poll, that speci�es the frequencywith which TCP polls should be performed. For example, with a skip poll value of 2, theTCP interface will be checked every other time the polling function is called, while the MPLinterface will be checked every time. Note that the overall frequency at which the pollingfunction will be called will depend on characteristics of both the application program and theNexus implementation. However, the polling function will be called at least every time a Nexusoperation is performed.To demonstrate the e�ectiveness of the skip poll parameter, we use a second microbench-mark that runs two instances of the ping-pong program concurrently, one over MPL and thesecond over TCP (Figure 5). The two programs execute until the MPL ping-pong has per-formed a �xed number of roundtrips. Then the one-way communication time of each pair iscomputed. To simulate an environment in which we have two separate SP2s coupled by a highspeed network, we place the endpoints for the TCP communication in separate partitions, asoftware abstraction provided on the SP2. Processors in the same partition can communicateby using either TCP or IBM's proprietary Message Passing Library (MPL), while processorsin di�erent partitions can communicate via TCP only.The experiment was repeated for a range of skip poll values, yielding the results shown inFigure 6. The performance of the MPL ping-pong is degraded signi�cantly by the concurrentlyexecuting TCP ping-pong. As we might expect, MPL performance improves with increasingskip poll, while TCP performance degrades. For this experiment, we can see that a skip poll10
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uxes. The models typically run for tensor hundreds of thousands of timesteps.To provide a controlled environment for our experiments, we run the two model componentsnot on two di�erent computers but instead on distinct partitions of the Argonne SP2. As notedabove, the SP2 programming environment permits the use of the fast MPL communicationlibrary only within a partition; communication between partitions must be performed with TCP(Figure 7). Since TCP over the SP2 switch runs at about 8 MB/sec and incurs small-messagelatencies of around 2 milliseconds, this two-partition con�guration has similar performancecharacteristics to two SP2 systems connected by a tuned OC3 or faster ATM network in ametropolitan area network. In our experiments, the atmosphere model runs on 16 processorsand the ocean model on 8 processors. Communication is achieved by using the MPICH [18]implementation of MPI layered on top of Nexus. This layering adds an execution time overheadof about 6 percent when compared with MPICH running on top of MPL.We measured execution times for the coupled model both without multimethod communica-tion and with various multimethod communication techniques. In the absence of multimethodcommunication support, both interpartition and intrapartition communication must be per-formed with TCP. This requirement results in a total execution time an order of magnitudegreater than the worst multimethod time, clearly demonstrating the advantages of multimethod12
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5 Related WorkMany researchers have proposed and investigated communicationmechanisms for heterogeneouscomputing systems (for example, [1, 3, 23]). However, this work has typically been concernedwith hiding heterogeneity by providing a uniform user-level interface rather than with exploitingand exposing the heterogeneous nature of networks and applications.Some communication libraries permit di�erent communication methods to coexist. Forexample, p4 and PVM on the Intel Paragon use the NX communication library for internalcommunication and TCP for external communication [5, 17]; p4 supports NX and TCP withina single process, while PVM uses a forwarding process for TCP. In both systems, the choice ofmethod is hard coded and cannot be extended or changed without substantial re-engineering.The x-kernel [24] and the Horus distributed systems toolkit [30] both support the concurrentuse of di�erent communication methods. Horus provides some support for varying the commu-nication method associated with an entire group. However, it does not provide for automaticmethod selection or for the migration of communication capabilities (with associated methodinformation) between processes. In other respects, the x-kernel and Horus complement our workby de�ning a framework that supports the construction of new protocols by the compositionof simpler protocol elements. These mechanisms could be used within Nexus to simplify thedevelopment of new communication modules. Early results with Horus suggest that these com-positional formulations simplify implementation but can introduce overheads similar to thoseencountered when layering MPICH on Nexus: additional message header information, functioncalls, and messages. Tschudin [28] and the Fox project [2] have explored similar concepts andreport similar results.Finally, we note that concepts similar to the Nexus communication link are used in othersystems. For example, Split-C [9] uses a global pointer construct to support remote put and getoperations within homogeneous systems. Nexus mechanisms also share similarities with ActiveMessages [29] and Fast Messages [25]. However the association of communication methodchoices with startpoints is unique to Nexus.6 ConclusionsWe have described techniques for representing and implementing multimethod communicationin heterogeneous environments. We use a startpoint construct to maintain information aboutthe methods that can be used to perform communications directed to a particular remotelocation. Simple protocols allow this information to be propagated from one node to anotherand provide a framework that supports both automatic and manual selection from amongavailable communication methods. These techniques have been incorporated in the Nexuscommunication library and used to support a wide variety of metacomputing applications inthe I-WAY wide-area computing experiment.We have used the Nexus runtime system to illustrate the implementation of the varioustechniques described in this article. Performance studies using both microbenchmarks and acoupled climate model application provide insights into the costs associated with multimethodcommunication mechanisms. In particular, we show that careful management of polling fre-quencies can improve multimethod communication performance signi�cantly and can provideperformance superior to techniques based on a forwarding processor.The results reported in this article suggest several directions for future work. Polling func-14
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