
STALK: An Interactive Virtual Molecular DockingSystemDavid Levine� Michael Facelloy Philip Hallstromz Greg ReederzBrian Walenzz Fred StevensxAbstractSeveral recent technologies|genetic algorithms, parallel and distributed computing, vir-tual reality, and high-speed networking|provide the foundation for a new approach to thecomputational study of molecular interactions. Parallel genetic algorithms are an e�cientand e�ective means to explore the large search spaces typical of these problems, while virtualreality provides an immersive environment for visualizing the interactions. In this paper wediscuss the STALK system, which uses high-speed networking to couple a parallel geneticalgorithm to a virtual reality environment. This combination allows a local or remote userto interact in real-time with the simulation through the virtual reality environment. Molec-ular docking experiments using an IBM SP parallel computer and a CAVE virtual realityenvironment are discussed.1 IntroductionA major challenge for computational biology is the development of e�cient algorithms for de-termining the sites of interactions between macromolecules and other macromolecules or smallligands. These interactions include protein-drug interactions, protein-protein interactions suchas found in antibody-antigen complex formation, and interactions of nucleic acids with proteinsand other ligands.The most important application is in the pharmaceutical industry, in which the ability tocomputationally screen potential interactions between hypothetical ligands and receptors couldmarkedly speed the development of new drugs, reduce the cost of development, and improvee�cacy. As conformations of biomedically relevant proteins continue to accumulate at an ac-celerated pace through crystallographic and nuclear magnetic resonance studies, the possiblecontribution of computational screening grows in parallel.Contemporary computational tools can provide substantial insight into the mechanisms ofinteraction found in complexes observed crystallographically, as well as guidance into protein�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439.yComputer Science Department, University of Illinois, Champaign, Illinois 61801.zScience and Engineering Research Semester Program, Argonne National Laboratory, Argonne, Illinois 60439.xCenter for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, Illinois 60439.

engineering approaches to optimize antibody-antigen interactions, or ligand modi�cations toimprove drug binding by a receptor molecule. However, given only the three-dimensional struc-tures of two molecules that interact through unidenti�ed interfaces, the success of computationalmethods in predicting the existence of interaction and identifying the sites of interaction hasbeen limited.In part, the limited success of computational methods is a consequence of a requirement facedby all computational analyses of macromolecules: the necessity to use approximated force �eldsand solvent representations to accommodate �nite computational resources and manageable ex-ecution times. Additionally, protein-protein interactions typically involve micro- to milli-secondtimeframes. Computational studies of these interactions are not feasible using traditional molec-ular dynamics approaches because of the overwhelming computational requirements associatedwith the femtosecond time scale required.Several recent technologies|genetic algorithms, parallel and distributed computing, virtualreality, and high-speed networking|provide the foundation for a new approach to the compu-tational study of molecular interactions. Using these techniques we have developed the STALKsystem for studying molecular docking. In this paper we discuss preliminary experiences withSTALK.2 Underlying TechnologiesIn this section we brie
y discuss the key technologies upon which our molecular docking systemis built.2.1 Parallel ComputingThe most popular parallel computing architecture today is the distributed-memory multipleinstruction multiple data (MIMD) computer. These systems have multiple \nodes." A nodeconsists of a processor and memory, a network interface, and usually a local disk. The nodesare connected via a network that allows them to communicate with each other. Parallelismis achieved when the processors compute simultaneously on the data in their memories. Bothlarge-scale massively parallel processors (MPPs) and workstation networks are members of thisarchitecture class.Message passing is a natural programming model for distributed-memory MIMD computers.In this model, software processes are mapped onto the computer's nodes and communicateby passing messages|transferring data from the address space of one process into the addressspace of another process. The Message Passing Interface (MPI) is a recently de�ned standard formessage-passing [5, 8]. MPI de�nes a set of functions, parameters, and their behavior. MPI wasdesigned by a large group of parallel-computer vendors, computer researchers, and applicationdevelopers as a standard for message passing. Both vendor-speci�c and third-party versions ofMPI exist.The master/slave model is a parallel programming model that can be naturally implementedusing message passing. In this model, a master process distributes work (computations to be2

performed) to slave processes. The slaves perform the work and return the result to the master.In many implementations, the master plays a bookkeeping role only and does not perform anycomputation.2.2 Wide-Area Distributed ComputingThe goal in wide-area distributed computing is to integrate geographically-distributed, hetero-geneous computing resources, such as parallel supercomputers, database servers, and graphicsenvironments, via high-speed networks into a uni�ed, distance-independent environment. Manypeople believe that in the current �scal environment this is a more realistic scenario for increas-ing computing power than is trying to situate all of these resources in one place. However, suchenvironments raise a number of issues.Systems issues that arise include the need for a uniform authentication mechanism, distributedprocess startup, and a single interface to schedule and initiate runs. Software issues include howto identify the di�erent computational resources, how to handle di�erent data representations onthese resources, and how to develop and maintain applications across the resources. The mainperformance issues are optimizing communication routines, for example, allowing communicationinside a resource to use resource speci�c communication, rather than a general resource toresource method, and developing load balancing techniques, since resources will typically containdi�erent amounts of processing power.2.3 Genetic AlgorithmsGenetic algorithms (GAs) are search algorithms. They were developed by Holland [10] and arebased on an analogy with natural selection and population genetics. One popular use of GAs isfor �nding approximate solutions to di�cult optimization problems. Unlike other optimizationmethods, genetic algorithms work with a population of candidate solutions instead of just asingle solution. We use the term \string" to refer to an individual solution.Genetic algorithms work by assigning a value to each string in the population according toa problem-speci�c �tness function. A \survival-of-the �ttest" step selects strings from the oldpopulation, according to their �tness. These strings recombine using operators such as crossover(swapping substrings) and mutation (random perturbations of a string's value(s)) to producea new generation of strings that are (one hopes) more �t then the previous one. These newstrings are than evaluated by the problem-speci�c �tness function. A generic genetic algorithmis shown in Figure 1.Although most of the steps of a genetic algorithm can be executed in parallel, in many real-life applications, including ours, the evaluation of a string is the dominant cost. In these cases,a master/slave model where the master process distributes strings to the slave processes forevaluation will usually be computationally e�cient. The PGAPack [14, 15] parallel geneticalgorithm library provides a parallel master/slave implementation and was used in our work.PGAPack is a general-purpose, data-structure-neutral, parallel genetic algorithm library. Itprovides most genetic algorithm capabilities and features in an integrated, seamless, and portable3

t 0initialize P (t)evaluate P (t)foreach generationt t+ 1select P (t + 1) from P (t)recombine P (t + 1)evaluate P (t+ 1)endforFigure 1: Simple Genetic Algorithmmanner. Key features include C and Fortran interfaces, binary-, integer-, real-, and character-valued native data types, object-oriented design, multiple choices for GA operators and parame-ters, and easy extensibility. PGAPack makes MPI message-passing calls and so can run on mostparallel computers and workstation networks.2.4 Virtual RealityA virtual reality (VR) system uses visual and audio cues such as wide �eld of view, stereo dis-play, viewer-centered perspective, and localized and synthesized sound to provide an immersiveenvironment for the user. Additionally, some VR systems, by tracking the user's instantaneousposition and orientation and allowing the user to manipulate objects, provide an interactiveenvironment. In this way, virtual reality strives to be a more natural user interface. It allowsthe scientist to focus on the data rather than the computer interface and to take advantage ofthe human ability to process 3-D spatial information [1, 13].The CAVE1 (CAVE Automatic Virtual Environment) [4] is the virtual reality system we used.The CAVE is a 10� 10� 9-foot cube in which the user is surrounded by stereoscopic computerimages rendered on the walls and
oor. Left- and right-eye images are projected onto the wallsand
oor in rapid alternating succession to create a 3D stereo e�ect. A person standing insidethe CAVE wears LCD shutter glasses that synchronize the left and right eye views, giving theillusion of three-dimensional immersion. The user is tracked by an electromagnetic trackingsystem, so that his or her instantaneous position and orientation are known. Figure 2 is apicture of the CAVE environment.The user is able to manipulate objects within the CAVE by using a wand, a three-dimensionalanalog of a computer mouse. The wand has three buttons and provides a joystick interfaceto the CAVE simulation. The position and orientation of the wand is also tracked by theelectromagnetic tracking system. The CAVE allows multiple users to share the virtual experienceby each wearing LCD shutter glasses.The CAVE is driven by a Silicon Graphics (SGI) Onyx workstation. The SGI Onyx is a1The Cave is a trademark of the Board of Trustees at the University of Illinois.4

Figure 2: The CAVE virtual reality environment. Computer images sent to the projectors aredirected onto the CAVE walls and
oor.shared-memory multiprocessor. The graphics subsystem for the Onyx at Argonne NationalLaboratory has 256 MB RAM, 10 GB disk, four R4400 processors, and three RealityEngine2graphics coprocessors. Each graphics coprocessor is connected to a high-resolution projectorthat projects the image onto the walls of the CAVE.All of the CAVE code is executed on the SGI Onyx. CAVE applications are typically writtenin C or C++ and make OpenGL or OpenInventor calls. Calls to the CAVE library managethe computation of user-centered perspective, synchronization of frames across the walls, andtracking and wand I/O.3 Molecular Docking FormulationComputational methods for the evaluation of protein-ligand and protein-protein interactionshave received substantial attention in recent years (see, for instance, [9, 11, 16, 17, 18, 21]and references cited therein). This attention is prompted both by the fundamental and appliedsigni�cance of these interactions, and by the improvements in computational resources that havemade such methods feasible.As described by Kuntz and coworkers [16, 17, 18, 19], docking methods can be characterizedby three di�erent strategies by which the interacting molecules are juxtapositioned. First, theligand may be positioned manually, guided by some experimental data that provides clues tothe identity of the interacting surface and to the complex evaluated by energy minimization. In5

a second approach, the ligand is positioned in an approximate location, and molecular dynamicsused to bring the molecules together in an energetically favorable relationship. As in the �rststrategy, substantial experimental guidance is required to make this practicable. Finally, inother cases, little a priori information about the geometry of the interaction is necessary, andexhaustive searches and evaluations of potential complex formations are made. Success is highlydependent on the thoroughness of the search strategy [16]. The e�ectiveness of genetic algorithmsas search optimization techniques has prompted recent interest in its application to docking issues[2, 7, 12, 22].Our goal is to study protein-ligand docking. Numerically, this is formulated as an optimizationproblem where the goal is to minimize the free energy of the molecular system by maximizingthe intermolecular interaction energy between the two molecules. In our formulation the proteinmolecule is �xed and the degrees of freedom are the translation and rotation of the centerof mass of the ligand molecule. This yields six variables: three translation values and threerotation values. In this \rigid body" formulation, it is assumed that no modi�cation of theprotein backbone or side chain positions occurs.2 The goal of the optimization procedure is tosearch the space of possible conformations for the lowest energy con�guration between the twomolecules.The energy, E, is computed by using a Lennard-Jones potential energy function for Van derWaals energy terms and Coulombic term for electrostatic contributions [16]. We de�ne thefollowing terms. Let Pi be the set of atoms in molecule i (the protein or the ligand), withjPij = ni. Let aij be the jth atom of Pi. Let qij be the charge of atom j in molecule i. Letd(aij ; ai0j0) be the Euclidean distance between the two atoms. Let D be the dielectric constantand Aij and Bij be Van der Waals constants dependent on the type of atom. Then the energyis given by E = n1Xj=1 n2Xj0=1A1j A2j0 = d(a1j; a2j0)6 �B1j B2j0 = d(a1j; a2j0)12 +n1Xj=1 n2Xj0=1 0:322 q1i q2i0 = (D d(a1j; a2j0)): (1)This formula implies an O(n1n2) time algorithm for computing E, which can be computa-tionally expensive for large macromolecules. To reduce the computation time, we approximateE. We do this by using a three-dimensional subdivision of the space, with the size of a cell of thesubdivision speci�ed by a parameter. The cell containing an atom is computed for each atom.When E is computed, only pairs of atoms that lie in the same cell or immediately adjacent cells,contribute to the energy sum. For the results presented later in this paper, a cell size of 10 �Awas used.Each string in the GA population represents a potential minimizer of Eq. (1). Each string hassix parameters. The �rst three parameters represent the x-, y- and z-translations of the ligand.The second three parameters represent the x-, y-, and z-rotations about the center of mass ofthe protein. Each parameter is represented by using a
oating-point number.When a run is made, the center of mass of the protein is translated to the origin of the systemand remains stationary throughout the run. The GA strings are generated randomly. The initial2Allowing sidechain angles as additional degrees of freedom is under development.6

translation values are selected uniformly randomly from a parameterized box about the proteincenter of mass. The rotation values are selected uniformly randomly from the range [��; �].From the six parameters and the initial coordinates of the ligand atoms, one can compute anew set of atom centers using linear transformations of the atom coordinates by using matrixoperations.The formulation used allows for the possibility the molecules may overlap. The traditionalapproach in these situations is to de�ne a penalty term to add to Eq. (1) to degrade the �tnessof the string when an overlap occurs. Although we experimented with explicit penalty terms,we found that since the Van der Waals component of the energy is very high when atoms areclose together, this provides a natural overlap penalty, and therefore we do not need an explicitpenalty.4 STALK Architecture and FeaturesThe system we developed for studying protein-ligand docking is named STALK. STALK consistsof two parts: a numerical simulation program and a visualization program. The numerical simu-lation program runs the genetic algorithm on a parallel computer using the master/slave modelto execute the function evaluations in parallel. It is written in Fortran and makes PGAPack andMPI library calls. The program's main components are routines to run the genetic algorithm,evaluate Eq. (1), and communicate with the visualization program.The visualization program communicates with the numerical simulation program allowingboth observation of the genetic algorithm's progress and an interactive interface. The visual-ization program is written in C and makes OpenGL and CAVE library calls. The visualizationprogram is a shared-memory program with one process for wand navigation, one process forcomputation, and three processes for display. These processes communicate with each otherthrough a set of shared variables. The navigate process polls the wand and manipulates theprogram based on the program states. The computation process handles all communicationwith the numerical simulation program. Each display process updates the view on one wall ofthe CAVE.Each iteration of the genetic algorithm, the string corresponding to the lowest energy con-formation found so far is transmitted to the CAVE. From the string's parameter values thevisualization program computes and displays the low-energy conformation in the CAVE. Themolecules are drawn as a collection of spheres that represent the di�erent atoms, connected bylines representing molecular bonds. The current GA generation, the string's parameter values,and the energy are displayed on the front wall of the CAVE. This capability allows the user tomonitor the progress of the GA and to examine the best conformation found. Figure 3 is a viewfrom the CAVE simulator showing the output of the visualization program.Several features allow the user to modify the CAVE display. Using the wand, the user cantranslate or rotate the conformation displayed. A menu displayed on one of the CAVE wallssupports additional display features. One is a toggle that allows the ligand atoms to be displayedin cyan in order to di�erentiate them from the protein atoms. A second menu feature is a surfacerepresentation display of the protein molecule. A third menu feature removes the sidechain atomsfrom the display and displays only the backbone atoms. Finally, the atoms in each sidechain7

Figure 3: Output of the Visualization Program Displayed in the CAVE Simulator.can be highlighted by displaying them in orange.The visualization program allows the user to interact through the CAVE environment withthe numerical simulation program in real time. To do this, the user �rst selects a menu itemto suspend the genetic algorithm. Using the wand, the user may translate or rotate the ligandrelative to the position of the protein. The visualization program communicates the ligand'snew position and orientation to the numerical simulation program. The user may either requestan energy evaluation or restart the GA. If an energy evaluation is requested, it is performedand the new energy value returned. If the GA is restarted, the new ligand position may eitherbe ignored or be incorporated into the numerical simulation in one of two ways: the new ligandparameters can be used to replace the worst population member, or, alternatively, the currentGA population can be replaced with strings that are random perturbations of the new ligandparameters.This interactive capability allows scientists to use their intuition to assist the algorithm in�nding a low-energy conformation, or to specify alternative starting positions from which tostudy the docking process. A recent e�ort, similar in spirit to STALK, is VIBE [3]. VIBEcouples a CAVE and IBM SP together in the context of a molecular dynamics algorithm.8

5 ResultsIn this section we discuss our early experiences with STALK. We performed the experimentsin Section 5.1 to measure the e�ciency and accuracy of the numerical simulation program.Section 5.2 is more qualitative and discusses our experiences using the interactive capabilitiesof STALK.5.1 Numerical ResultsThe test case we used is the protein Ribonuclease S. Ribonuclease S is formed by the cleavageof the peptide bond between positions 20 and 21 of Ribonuclease A. We used the helix-formingS-peptide as a model ligand, and the S-protein as a model receptor. The S-peptide has 297atoms, and the S-protein has 1,564 atoms. The coordinates for Ribonuclease S are taken fromthe Brookhaven Database entry, 1RBH [20].Applying the potential of Eq. (1) to the coordinates from [20], an energy of �37:8 kcal/molwas calculated. To test the GA we randomly translated and rotated the S-peptide away from theS-protein and then used the numerical simulation program to attempt a redocking to the crys-tallographically determined position. Our experiments were performed on an IBM SP parallelcomputer with 128 nodes, each of which consisted of an IBM RS/6000 Model 370 workstationprocessor, 128 MB of memory, and a 1 GB local disk.Each test run used a unique random number seed. The following GA parameters were used.The population size was 1,000 and 100 strings were replaced each GA iteration. New stringswere created either via uniform crossover (with probability 0.9) or mutation (with probability0.1). Mutation was performed by randomly adding or subtracting a quantity generated from aGaussian distribution with mean 0.0 and standard deviation 0.1. The mutation rate was 1=6.Two sets of runs were made. In the �rst, the translation values were randomly initialized byusing a 2 �A box, and the rotation values were in the range [��; �]. For each of 1, 2, 4, 7, 14, 26,51, and 101 processors, six runs of 4,000 iterations each were made. In the second set of runs,the translation values were randomly initialized by using a 100 �A box, and the rotation valueswere in the range [��; �]. The same number of total runs were made.The results of the runs are summarized in Table 1. The �rst column is the box size used forgenerating translation values. The second and third columns are the mean energy and associatedstandard deviation from all runs. The fourth and �fth columns are the minimum and maximumenergy values found. Although the means are approximately equal, the standard deviation issigni�cantly higher in the case of the 100 �A box. The wider variability results in signi�cantlybetter, and signi�cantly worse, solutions being found.Table 1: Docking StatisticsBox Mean � Min. Max.Size Energy Energy Energy Energy2 �A -41.8 2.2 -44.2 -36.9100 �A -42.0 5.5 -58.2 -32.79

Performance results are given in Table 2 for the 2 �A case. The Total Proc. column is thenumber of SP processors used. The Compute Proc. column is the number of processors thatexecute function evaluations. For the special case of exactly two processors, both the masterand slave processes perform function evaluations. When more than two processors are used,one processor runs the master process, and the other processors perform function evaluations.The Time column is the average over six runs of the total time spent by the master process(executing the GA, packing and sending data to the slave processes, and waiting for results).The Speedup column is the ratio of the time to execute the one-processor case to the time toexecute with that number of processors. The speedup achieved is fairly constant, although notideal. Table 2: Solution Time vs. Number of ProcessorsTotal Compute TimeProc. Proc. (sec.) Speedup1 1 263581 1.02 2 148666 1.84 3 87208 3.07 6 46950 5.614 13 22150 11.926 25 12831 20.551 50 7193 36.6101 100 4181 63.05.2 Interactive UsageWe developed STALK using the environment shown in Figure 4. This �gure shows the 128-nodeIBM SP that ran the numerical simulation program, the SGI Onyx that ran the visualizationprogram, and the CAVE system. The network can be con�gured to use Ethernet, ATM, orHIPPI. During our development we used the HIPPI connection which runs at 800 Mbps. Oneproblem we faced was that the IBM SP was part of a production environment, whereas theSGI/CAVE was part of an experimental environment. In particular, issues pertaining to security,program startup, and �lesystems had not been previously addressed and required signi�cante�ort on our part.To test the computational steering capabilities, we let the GA run for an arbitrary, but small(usually less than 100), number of iterations, suspended the numerical simulation program, andattempted to dock the ligand using the wand. The mechanics of \hand-docking" consisted ofstepping into the CAVE and using the wand to translate and rotate the ligand to try to �t itinto the cleft in the protein. Once this was completed to the user's satisfaction, the new ligandcoordinates were sent to the numerical simulation program which returned an energy evaluation.Figure 5 shows a user inside the CAVE environment wearing LCD shutter glasses and holdingthe wand.In general, we found the hand-docked solutions were not as good as those the GA had alreadyfound. One limitation was a signi�cant lag from when the user moved the wand until the updatedposition was shown in the CAVE. This was due to the large number of spheres that needed tobe redrawn, and the slow sampling rate of the wand tracker. The result was that the user would10

Figure 4: STALK Development Environment.move the wand based on the rendered position of the ligand, not on the position last read bythe tracker. This led to jerky motion that made an accurate hand-docking di�cult to achieve.A second limitation was one of context. When immersed in a conformation, the large numberof atoms made it di�cult to determine which part of the molecule one was viewing. We found itnecessary to view the visualization from the front, rather than immersively, in order to maintaina sense of perspective. The disadvantage of this, however, is that we did not take advantageof the immersive capabilities, but instead tried to hand-dock the ligand from \afar." Usingthe option to remove sidechain atoms from the display helped alleviate the context problem.However, since the sidechain atoms were not visible it introduced another problem|an inabilityto determine if there were overlapping atoms in the new conformations.Since the hand-docked solutions were invariably worse than those already in the population,replacing the worse population member with the hand-docked solution had no e�ect. Regen-erating the entire population by perturbing the hand-docked solution invariably made the bestsolution found so far worse. However, the robustness of the GA usually found a \good" solutionagain quickly, although not any better, it appeared, than if the GA had run uninterrupted.We tested wide-area usage of STALK at the Supercomputing '95 conference as part of theInformation Wide Area Year (I-WAY) project. The I-WAY was an experimental high-speed net-work that linked together a number of high-performance computers and advanced visualizationenvironments around the country. Two important components of the I-WAY project were thebackbone network and the software environment.The backbone I-WAY network was based on Asynchronous Transfer Mode (ATM) technology.ATM is an emerging standard for advanced telecommunications networks. It is capable ofsimultaneously carrying voice, data, and video signi�cantly faster than conventional wide-area11

Figure 5: A User in the CAVE.12

networks. Much of the I-WAY consisted of existing �ber-optic lines that commercial long-distance carriers already had in place. The I-WAY network supported the Internet protocol(IP) over ATM.One role of the I-Soft [6] I-WAY software environment was to schedule the I-WAY compu-tational resources. In our case, these resources consisted of nodes on the IBM SP at ArgonneNational Laboratory (Illinois), nodes on the IBM SP in the Cornell Theory Center (New York),and the SGI Onyx/CAVE VR environment at Supercomputing '95 (San Diego). A second rolewas process creation and communication. For us, this required starting the numerical simulationprogram on the IBM SP(s) and the visualization program on the SGI Onyx. A third role was tohandle and support di�erent communication protocols for the MPI message-passing calls. ForSTALK, this meant that MPI calls within the IBM SP used a more e�cient communicationmechanism than the socket-based communication used to support MPI calls between the IBMSP and the SGI Onyx.We performed two experiments in the I-WAY environment. In the �rst, we ran the numericalsimulation program on 16 nodes of the IBM SP at Argonne National Laboratory and 16 nodesof the IBM SP at the Cornell Theory Center. Qualitatively, watching the GA iteration logbeing written at our workstation we did not observe any noticeable degradation in performancecompared to similar runs that had been made on 32 nodes of a single IBM SP in a localenvironment. It is possible, however, that the computationally expensive function evaluationsmasked the network latency.In our second experiment, we ran the numerical simulation program on 32 nodes of the IBMSP at Argonne National Laboratory, and the visualization program on the SGI Onyx in SanDiego. The actual experiment consisted of running the Ribonuclease test case for groups ofvisitors, stopping the simulation, \docking" the ligand by hand, returning an energy evaluation,and resuming the simulation. This experiment ran continuously for approximately forty-�veminutes and did not experience any hardware, software, or network failures.6 ConclusionsDistributed computing systems that couple virtual reality front-ends to (possibly remote) MPPsupercomputers over high-speed networks hold a great deal of potential for molecular scientists.The advantages of a virtual reality front-end are twofold. First, it allows a scientist to gain adeeper understanding of molecular docking by allowing immersive visualization of the confor-mations in three dimensions. Second, a scientist can use personal intuition to steer a simulationtowards a lower-energy conformation or to specify an alternative starting position from whichto study the docking process. The goal of such a system is to enable the discovery of solutionsthat are more e�ective than could be obtained by either the computer or the researcher alone.Our experiences with STALK, however, show that several limitations must be overcome beforesuch a system is useful in practice. One limitation was the lag from when the user moved thewand in the CAVE until the updated position was displayed. The lag led to situations where theuser would \oversteer" because the rendered position of the ligand was not the position last readby the wand tracker. A second limitation was that the large number of atoms in the moleculesmade it di�cult to determine which part of the molecule one was viewing. We found it necessary13

to view the visualization from a distance, rather than immersively, in order to maintain a senseof perspective. In almost all cases we found that the hand-docked solutions were worse thanthose found by the GA.Within the limitations faced by any docking method, the parallel genetic algorithm approachshows considerable promise. Many of the solutions found by the GA had energy values less thanthe crystallographically determined position. We found that initializing the GA in a region closeto the crystallographically determined position led to more consistent results than initializationwithin a wider region, but that the overall best (and worst) solutions found were from thoseruns where the initialized region was not restricted.We found that due to the complexity of Eq. (1), and the large number of strings that mustevaluate this equation, the GA approach is very computationally expensive. Further, the compu-tational expense can be expected to increase signi�cantly when more realistic models (sidechainrotations, solvent representation) are used to model larger macromolecules. We found a parallelimplementation was a necessity to solve our test problem in a reasonable amount of time.Several avenues for future work exist. First, we are currently working on allowing sidechainrotations as additional degrees of freedom and would also like to include a solvent model. Al-gorithmically, we would like to combine the GA with a traditional energy minimization systemto obtain more rapid convergence to a proposed docking solution, while avoiding prematureidenti�cation of local minima solutions. Finally, additional development and re�nement of thevirtual reality interface are needed to make this a robust tool for the study of real molecularsystems.AcknowledgmentsThis work was supported by the Mathematical, Information, and Computational Sciences Divi-sion subprogram of the O�ce of Computational and Technology Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38 and the O�ce of Health and Environmental Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.References[1] S. Bryson. Virtual reality in scienti�c visualization. Communications of the ACM, 39(5):62{71, 1996.[2] K. Clark and Ajay. Flexible ligand docking without parameter adjustment across fourligand-receptor complexes. J. Comp. Chem., 16:1210{1226, 1995.[3] C. Cruz-Neira, R. Langley, and P. Bash. VIBE: A virtual biomolecular environment forinteractive molecular modeling, 1996. To appear in Computers & Chemistry.[4] C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-screen projection-based virtual reality:The design and implementation of the CAVE. In ACM SIGGRAPH '93 Proceedings, pages135{142. Lawrence Erlbaum Associates, 1993.14

[5] Message Passing Interface Forum. MPI: A message-passing interface standard. InternationalJ. Supercomp. Appls., 8(3/4), 1994.[6] I. Foster, J. Geisler, B. Nickless, W. Smith, and S. Tuecke. Software Infrastructure for theI-WAY High-Performance Distributed Computing Experiment. In Proceeeding of the FifthIEEE Symposium on High Performance Distributed Computing. IEEE Computer SocietyPress, 1996.[7] D. Gehlhaar, G. Verkhivker, P. Rejto, C. Sherman, D. Fogel, L. Fogel, and S. Freer. Molec-ular recognition of the inhibitor AG-1343 by HIV-1 protease: Conformationally
exibledocking by evolutionary programming. Chemistry & Biology, 2:317{324, 1995.[8] W. Gropp, E. Lusk, and A. Skjellum. USING MPI Portable Parallel Programming with theMessage-Passing Interface. MIT Press, Cambridge, 1994.[9] M. Helmer-Citterich and A. Tramontano. PUZZLE: A new method for automated proteindocking based on surface shape complementarity. J. Mol. Biol., 235:1021{1031, 1994.[10] J. Holland. Adaption in Natural and Arti�cial Systems. MIT Press, Cambridge, 1992.[11] R. Jackson and M. Sternberg. A continuum model for protein-protein interactions: Appli-cation to the docking problem. J. Mol. Biol., 250:258{275, 1995.[12] R. Judson, E. Jaeger, and A. Treasurywala. A genetic algorithm based method for docking
exible molecules. Computers & Chemistry, 308:191{206, 1994.[13] R. Kalawsky. The Science of Virtual Reality and Virtual Environments. Addison-Wesley,New York, 1993.[14] D. Levine. PGAPack, 1995. A public-domain parallel genetic algorithm library. Available byanonymous ftp from ftp.mcs.anl.gov in the directory pub/pgapack, �le pgapack.tar.Z.[15] D. Levine. User's Guide to the PGAPack Parallel Genetic Algorithm Library. TechnicalReport ANL-95/18, Argonne National Laboratory, Mathematics and Computer ScienceDivision, June 23, 1995.[16] E. Meng, D. Gschwend, J. Blaney, and I. Kuntz. Orientational sampling and rigid-bodyminimization in molecular docking. Proteins: Struct., Funct., Gen, 17:266{278, 1993.[17] E. Meng, B. Shoichet, and I. Kuntz. Automated docking with grid-based energy evaluation.J. Comp. Chem., 13:505{524, 1992.[18] B. Shoichet, D. Bodian, and I. Kuntz. Molecular docking using shape descriptors. J. Comp.Chem., 13:380{397, 1992.[19] B. Shoichet and I. Kuntz. Matching chemistry and shape in molecular docking. ProteinEng., 6:723{732, 1993.[20] R. Varadarajan and F. Richards. Crystallographic structures of Ribonuclease S variantswith nonpolar substitution at position 13: Packing and cavities. Biochemistry, 31:12315,1992. 15

[21] P. Walls and M. Sternberg. New algorithm to model protein-protein recognition based onsurface complementarity: Applications to antibody-antigen docking. J. Mol. Biol., 228:277{297, 1992.[22] Y. Xiao and D. Williams. Genetic algorithms for docking of Actinomycin D and De-oxyguanosine molecules with comparison to the crystal structure of Actinomycin D-Deoxyguanosine complex. J. Phys. Chem, 98:7191{7200, 1994.

16

