STALK: An Interactive Virtual Molecular Docking
System

David Levine* Michael Facello Philip Hallstrom* Greg Reeder?
Brian Walenz* Fred Stevens®

Abstract

Several recent technologies—genetic algorithms, parallel and distributed computing, vir-
tual reality, and high-speed networking—provide the foundation for a new approach to the
computational study of molecular interactions. Parallel genetic algorithms are an efficient
and effective means to explore the large search spaces typical of these problems, while virtual
reality provides an immersive environment for visualizing the interactions. In this paper we
discuss the STALK system, which uses high-speed networking to couple a parallel genetic
algorithm to a virtual reality environment. This combination allows a local or remote user
to interact in real-time with the simulation through the virtual reality environment. Molec-
ular docking experiments using an IBM SP parallel computer and a CAVE virtual reality
environment are discussed.

1 Introduction

A major challenge for computational biology is the development of efficient algorithms for de-
termining the sites of interactions between macromolecules and other macromolecules or small
ligands. These interactions include protein-drug interactions, protein-protein interactions such
as found in antibody-antigen complex formation, and interactions of nucleic acids with proteins
and other ligands.

The most important application is in the pharmaceutical industry, in which the ability to
computationally screen potential interactions between hypothetical ligands and receptors could
markedly speed the development of new drugs, reduce the cost of development, and improve
efficacy. As conformations of biomedically relevant proteins continue to accumulate at an ac-
celerated pace through crystallographic and nuclear magnetic resonance studies, the possible
contribution of computational screening grows in parallel.

Contemporary computational tools can provide substantial insight into the mechanisms of
interaction found in complexes observed crystallographically, as well as guidance into protein

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439.
TComputer Science Department, University of Tllinois, Champaign, Illinois 61801.

{Science and Engineering Research Semester Program, Argonne National Laboratory, Argonne, Illinois 60439.
$Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, Illinois 60439.

engineering approaches to optimize antibody-antigen interactions, or ligand modifications to
improve drug binding by a receptor molecule. However, given only the three-dimensional struc-
tures of two molecules that interact through unidentified interfaces, the success of computational
methods in predicting the existence of interaction and identifying the sites of interaction has
been limited.

In part, the limited success of computational methods is a consequence of a requirement faced
by all computational analyses of macromolecules: the necessity to use approximated force fields
and solvent representations to accommodate finite computational resources and manageable ex-
ecution times. Additionally, protein-protein interactions typically involve micro- to milli-second
timeframes. Computational studies of these interactions are not feasible using traditional molec-
ular dynamics approaches because of the overwhelming computational requirements associated
with the femtosecond time scale required.

Several recent technologies—genetic algorithms, parallel and distributed computing, virtual
reality, and high-speed networking—provide the foundation for a new approach to the compu-
tational study of molecular interactions. Using these techniques we have developed the STALK
system for studying molecular docking. In this paper we discuss preliminary experiences with

STALK.

2 Underlying Technologies

In this section we briefly discuss the key technologies upon which our molecular docking system
is built.

2.1 Parallel Computing

The most popular parallel computing architecture today is the distributed-memory multiple
instruction multiple data (MIMD) computer. These systems have multiple “nodes.” A node
consists of a processor and memory, a network interface, and usually a local disk. The nodes
are connected via a network that allows them to communicate with each other. Parallelism
is achieved when the processors compute simultaneously on the data in their memories. Both
large-scale massively parallel processors (MPPs) and workstation networks are members of this
architecture class.

Message passing is a natural programming model for distributed-memory MIMD computers.
In this model, software processes are mapped onto the computer’s nodes and communicate
by passing messages—transferring data from the address space of one process into the address
space of another process. The Message Passing Interface (MPI) is a recently defined standard for
message-passing [5, 8]. MPI defines a set of functions, parameters, and their behavior. MPI was
designed by a large group of parallel-computer vendors, computer researchers, and application

developers as a standard for message passing. Both vendor-specific and third-party versions of
MPI exist.

The master/slave model is a parallel programming model that can be naturally implemented
using message passing. In this model, a master process distributes work (computations to be

performed) to slave processes. The slaves perform the work and return the result to the master.
In many implementations, the master plays a bookkeeping role only and does not perform any
computation.

2.2 Wide-Area Distributed Computing

The goal in wide-area distributed computing is to integrate geographically-distributed, hetero-
geneous computing resources, such as parallel supercomputers, database servers, and graphics
environments, via high-speed networks into a unified, distance-independent environment. Many
people believe that in the current fiscal environment this is a more realistic scenario for increas-
ing computing power than is trying to situate all of these resources in one place. However, such
environments raise a number of issues.

Systems issues that arise include the need for a uniform authentication mechanism, distributed
process startup, and a single interface to schedule and initiate runs. Software issues include how
to identify the different computational resources, how to handle different data representations on
these resources, and how to develop and maintain applications across the resources. The main
performance issues are optimizing communication routines, for example, allowing communication
inside a resource to use resource specific communication, rather than a general resource to
resource method, and developing load balancing techniques, since resources will typically contain
different amounts of processing power.

2.3 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms. They were developed by Holland [10] and are
based on an analogy with natural selection and population genetics. One popular use of GAs is
for finding approximate solutions to difficult optimization problems. Unlike other optimization
methods, genetic algorithms work with a population of candidate solutions instead of just a
single solution. We use the term “string” to refer to an individual solution.

Genetic algorithms work by assigning a value to each string in the population according to
a problem-specific fitness function. A “survival-of-the fittest” step selects strings from the old
population, according to their fitness. These strings recombine using operators such as crossover
(swapping substrings) and mutation (random perturbations of a string’s value(s)) to produce
a new generation of strings that are (one hopes) more fit then the previous one. These new
strings are than evaluated by the problem-specific fitness function. A generic genetic algorithm
is shown in Figure 1.

Although most of the steps of a genetic algorithm can be executed in parallel, in many real-
life applications, including ours, the evaluation of a string is the dominant cost. In these cases,
a master/slave model where the master process distributes strings to the slave processes for
evaluation will usually be computationally efficient. The PGAPack [14, 15] parallel genetic
algorithm library provides a parallel master/slave implementation and was used in our work.

PGAPack is a general-purpose, data-structure-neutral, parallel genetic algorithm library. It
provides most genetic algorithm capabilities and features in an integrated, seamless, and portable

t—20
initialize P(t)
evaluate P(t)
foreach generation
t—t+1
select P(t+ 1) from P(t)
recombine P(f + 1)
evaluate P(t + 1)
endfor

Figure 1: Simple Genetic Algorithm

manner. Key features include C and Fortran interfaces, binary-, integer-, real-, and character-
valued native data types, object-oriented design, multiple choices for GA operators and parame-
ters, and easy extensibility. PGAPack makes MPI message-passing calls and so can run on most
parallel computers and workstation networks.

2.4 Virtual Reality

A virtual reality (VR) system uses visual and audio cues such as wide field of view, stereo dis-
play, viewer-centered perspective, and localized and synthesized sound to provide an immersive
environment for the user. Additionally, some VR systems, by tracking the user’s instantaneous
position and orientation and allowing the user to manipulate objects, provide an interactive
environment. In this way, virtual reality strives to be a more natural user interface. It allows
the scientist to focus on the data rather than the computer interface and to take advantage of
the human ability to process 3-D spatial information [1, 13].

The CAVE! (CAVE Automatic Virtual Environment) [4] is the virtual reality system we used.
The CAVE is a 10 x 10 x 9-foot cube in which the user is surrounded by stereoscopic computer
images rendered on the walls and floor. Left- and right-eye images are projected onto the walls
and floor in rapid alternating succession to create a 3D stereo effect. A person standing inside
the CAVE wears LCD shutter glasses that synchronize the left and right eye views, giving the
illusion of three-dimensional immersion. The user is tracked by an electromagnetic tracking
system, so that his or her instantaneous position and orientation are known. Figure 2 is a
picture of the CAVE environment.

The user is able to manipulate objects within the CAVE by using a wand, a three-dimensional
analog of a computer mouse. The wand has three buttons and provides a joystick interface
to the CAVE simulation. The position and orientation of the wand is also tracked by the
electromagnetic tracking system. The CAVE allows multiple users to share the virtual experience
by each wearing LCD shutter glasses.

The CAVE is driven by a Silicon Graphics (SGI) Onyx workstation. The SGI Onyx is a

!The Cave is a trademark of the Board of Trustees at the University of Illinois.

Figure 2: The CAVE virtual reality environment. Computer images sent to the projectors are
directed onto the CAVE walls and floor.

shared-memory multiprocessor. The graphics subsystem for the Onyx at Argonne National
Laboratory has 256 MB RAM, 10 GB disk, four R4400 processors, and three RealityEngine?
graphics coprocessors. Fach graphics coprocessor is connected to a high-resolution projector
that projects the image onto the walls of the CAVE.

All of the CAVE code is executed on the SGI Onyx. CAVE applications are typically written
in C or C++4 and make OpenGL or Openlnventor calls. Calls to the CAVE library manage
the computation of user-centered perspective, synchronization of frames across the walls, and
tracking and wand 1/0.

3 Molecular Docking Formulation

Computational methods for the evaluation of protein-ligand and protein-protein interactions
have received substantial attention in recent years (see, for instance, [9, 11, 16, 17, 18, 21]
and references cited therein). This attention is prompted both by the fundamental and applied
significance of these interactions, and by the improvements in computational resources that have
made such methods feasible.

As described by Kuntz and coworkers [16, 17, 18, 19], docking methods can be characterized
by three different strategies by which the interacting molecules are juxtapositioned. First, the
ligand may be positioned manually, guided by some experimental data that provides clues to
the identity of the interacting surface and to the complex evaluated by energy minimization. In

a second approach, the ligand is positioned in an approximate location, and molecular dynamics
used to bring the molecules together in an energetically favorable relationship. As in the first
strategy, substantial experimental guidance is required to make this practicable. Finally, in
other cases, little a priori information about the geometry of the interaction is necessary, and
exhaustive searches and evaluations of potential complex formations are made. Success is highly
dependent on the thoroughness of the search strategy [16]. The effectiveness of genetic algorithms
as search optimization techniques has prompted recent interest in its application to docking issues
(2,7, 12, 22].

Our goal is to study protein-ligand docking. Numerically, this is formulated as an optimization
problem where the goal is to minimize the free energy of the molecular system by maximizing
the intermolecular interaction energy between the two molecules. In our formulation the protein
molecule is fixed and the degrees of freedom are the translation and rotation of the center
of mass of the ligand molecule. This yields six variables: three translation values and three
rotation values. In this “rigid body” formulation, it is assumed that no modification of the
protein backbone or side chain positions occurs.? The goal of the optimization procedure is to
search the space of possible conformations for the lowest energy configuration between the two
molecules.

The energy, F, is computed by using a Lennard-Jones potential energy function for Van der
Waals energy terms and Coulombic term for electrostatic contributions [16]. We define the
following terms. Let P; be the set of atoms in molecule 7 (the protein or the ligand), with
|P;| = n;. Let a;; be the jth atom of P;. Let ¢;; be the charge of atom j in molecule 7. Let
d(a;;, ay;) be the Euclidean distance between the two atoms. Let D be the dielectric constant
and A;; and B;; be Van der Waals constants dependent on the type of atom. Then the energy
is given by

ny N2

E= Z Z Alj AQJ' / d(aljv a2j’)6 - Blj sz/ /d(alj, azj/)lz +
j=14'=1
nq no
Y0322 qu quir [(D d(ayj, azy)). (1)
J=13'=1

This formula implies an O(ning) time algorithm for computing £, which can be computa-
tionally expensive for large macromolecules. To reduce the computation time, we approximate
FE. We do this by using a three-dimensional subdivision of the space, with the size of a cell of the
subdivision specified by a parameter. The cell containing an atom is computed for each atom.
When F is computed, only pairs of atoms that lie in the same cell or immediately adjacent cells,
contribute to the energy sum. For the results presented later in this paper, a cell size of 10 A
was used.

Fach string in the GA population represents a potential minimizer of Eq. (1). Each string has
six parameters. The first three parameters represent the z-, y- and z-translations of the ligand.
The second three parameters represent the z-, y-, and z-rotations about the center of mass of
the protein. Each parameter is represented by using a floating-point number.

When a run is made, the center of mass of the protein is translated to the origin of the system
and remains stationary throughout the run. The GA strings are generated randomly. The initial

2 Allowing sidechain angles as additional degrees of freedom is under development.

translation values are selected uniformly randomly from a parameterized box about the protein
center of mass. The rotation values are selected uniformly randomly from the range [—-m, 7].
From the six parameters and the initial coordinates of the ligand atoms, one can compute a
new set of atom centers using linear transformations of the atom coordinates by using matrix
operations.

The formulation used allows for the possibility the molecules may overlap. The traditional
approach in these situations is to define a penalty term to add to Eq. (1) to degrade the fitness
of the string when an overlap occurs. Although we experimented with explicit penalty terms,
we found that since the Van der Waals component of the energy is very high when atoms are
close together, this provides a natural overlap penalty, and therefore we do not need an explicit
penalty.

4 STALK Architecture and Features

The system we developed for studying protein-ligand docking is named STALK. STALK consists
of two parts: a numerical simulation program and a visualization program. The numerical simu-
lation program runs the genetic algorithm on a parallel computer using the master/slave model
to execute the function evaluations in parallel. It is written in Fortran and makes PGAPack and
MPI library calls. The program’s main components are routines to run the genetic algorithm,
evaluate Eq. (1), and communicate with the visualization program.

The visualization program communicates with the numerical simulation program allowing
both observation of the genetic algorithm’s progress and an interactive interface. The visual-
ization program is written in C and makes OpenGL and CAVE library calls. The visualization
program is a shared-memory program with one process for wand navigation, one process for
computation, and three processes for display. These processes communicate with each other
through a set of shared variables. The navigate process polls the wand and manipulates the
program based on the program states. The computation process handles all communication
with the numerical simulation program. Fach display process updates the view on one wall of

the CAVE.

Each iteration of the genetic algorithm, the string corresponding to the lowest energy con-
formation found so far is transmitted to the CAVE. From the string’s parameter values the
visualization program computes and displays the low-energy conformation in the CAVE. The
molecules are drawn as a collection of spheres that represent the different atoms, connected by
lines representing molecular bonds. The current GA generation, the string’s parameter values,
and the energy are displayed on the front wall of the CAVE. This capability allows the user to
monitor the progress of the GA and to examine the best conformation found. Figure 3 is a view
from the CAVE simulator showing the output of the visualization program.

Several features allow the user to modify the CAVE display. Using the wand, the user can
translate or rotate the conformation displayed. A menu displayed on one of the CAVE walls
supports additional display features. One is a toggle that allows the ligand atoms to be displayed
in cyan in order to differentiate them from the protein atoms. A second menu feature is a surface
representation display of the protein molecule. A third menu feature removes the sidechain atoms
from the display and displays only the backbone atoms. Finally, the atoms in each sidechain

Generation: 4 Drug Position:

|
Running ¥- 27.235837

Y: —-9.187832
Z: 18B.062257¢
Energy: -0.930545

Figure 3: Output of the Visualization Program Displayed in the CAVE Simulator.

can be highlighted by displaying them in orange.

The visualization program allows the user to interact through the CAVE environment with
the numerical simulation program in real time. To do this, the user first selects a menu item
to suspend the genetic algorithm. Using the wand, the user may translate or rotate the ligand
relative to the position of the protein. The visualization program communicates the ligand’s
new position and orientation to the numerical simulation program. The user may either request
an energy evaluation or restart the GA. If an energy evaluation is requested, it is performed
and the new energy value returned. If the GA is restarted, the new ligand position may either
be ignored or be incorporated into the numerical simulation in one of two ways: the new ligand
parameters can be used to replace the worst population member, or, alternatively, the current
GA population can be replaced with strings that are random perturbations of the new ligand
parameters.

This interactive capability allows scientists to use their intuition to assist the algorithm in
finding a low-energy conformation, or to specify alternative starting positions from which to
study the docking process. A recent effort, similar in spirit to STALK, is VIBE [3]. VIBE
couples a CAVE and IBM SP together in the context of a molecular dynamics algorithm.

5 Results

In this section we discuss our early experiences with STALK. We performed the experiments
in Section 5.1 to measure the efficiency and accuracy of the numerical simulation program.
Section 5.2 is more qualitative and discusses our experiences using the interactive capabilities

of STALK.

5.1 Numerical Results

The test case we used is the protein Ribonuclease S. Ribonuclease S is formed by the cleavage
of the peptide bond between positions 20 and 21 of Ribonuclease A. We used the helix-forming
S-peptide as a model ligand, and the S-protein as a model receptor. The S-peptide has 297
atoms, and the S-protein has 1,564 atoms. The coordinates for Ribonuclease S are taken from
the Brookhaven Database entry, IRBH [20].

Applying the potential of Eq. (1) to the coordinates from [20], an energy of —37.8 kcal/mol
was calculated. To test the GA we randomly translated and rotated the S-peptide away from the
S-protein and then used the numerical simulation program to attempt a redocking to the crys-
tallographically determined position. Qur experiments were performed on an IBM SP parallel
computer with 128 nodes, each of which consisted of an IBM RS/6000 Model 370 workstation
processor, 128 MB of memory, and a 1 GB local disk.

Each test run used a unique random number seed. The following GA parameters were used.
The population size was 1,000 and 100 strings were replaced each GA iteration. New strings
were created either via uniform crossover (with probability 0.9) or mutation (with probability
0.1). Mutation was performed by randomly adding or subtracting a quantity generated from a
Gaussian distribution with mean 0.0 and standard deviation 0.1. The mutation rate was 1/6.

Two sets of runs were made. In the first, the translation values were randomly initialized by
using a 2 A box, and the rotation values were in the range [-7, 7]. Foreach of 1,2, 4,7, 14, 26,
51, and 101 processors, six runs of 4,000 iterations each were made. In the second set of runs,
the translation values were randomly initialized by using a 100 A box, and the rotation values
were in the range [—m, «]. The same number of total runs were made.

The results of the runs are summarized in Table 1. The first column is the box size used for
generating translation values. The second and third columns are the mean energy and associated
standard deviation from all runs. The fourth and fifth columns are the minimum and maximum
energy values found. Although the means are approximately equal, the standard deviation is
significantly higher in the case of the 100 A box. The wider variability results in significantly
better, and significantly worse, solutions being found.

Table 1: Docking Statistics

Box Mean o Min. Max.
Size | Energy | Energy | Energy | Energy
2 A -41.8 2.2 -44.2 -36.9
100 A | -42.0 55| -582 | -32.7

Performance results are given in Table 2 for the 2 A case. The Total Proc. column is the
number of SP processors used. The Compute Proc. column is the number of processors that
execute function evaluations. For the special case of exactly two processors, both the master
and slave processes perform function evaluations. When more than two processors are used,
one processor runs the master process, and the other processors perform function evaluations.
The Time column is the average over six runs of the total time spent by the master process
(executing the GA, packing and sending data to the slave processes, and waiting for results).
The Speedup column is the ratio of the time to execute the one-processor case to the time to
execute with that number of processors. The speedup achieved is fairly constant, although not

ideal.

Table 2: Solution Time vs. Number of Processors

Total | Compute | Time

Proc. Proc. (sec.) | Speedup

1 1| 263581 1.0

2 2 | 148666 1.8

4 3| 87208 3.0

7 6 | 46950 5.6

14 13 | 22150 11.9

26 25 | 12831 20.5

51 50 7193 36.6

101 100 4181 63.0

5.2 Interactive Usage

We developed STALK using the environment shown in Figure 4. This figure shows the 128-node
IBM SP that ran the numerical simulation program, the SGI Onyx that ran the visualization
program, and the CAVE system. The network can be configured to use Ethernet, ATM, or
HIPPI. During our development we used the HIPPI connection which runs at 800 Mbps. One
problem we faced was that the IBM SP was part of a production environment, whereas the
SGI/CAVE was part of an experimental environment. In particular, issues pertaining to security,
program startup, and filesystems had not been previously addressed and required significant
effort on our part.

To test the computational steering capabilities, we let the GA run for an arbitrary, but small
(usually less than 100), number of iterations, suspended the numerical simulation program, and
attempted to dock the ligand using the wand. The mechanics of “hand-docking” consisted of
stepping into the CAVE and using the wand to translate and rotate the ligand to try to fit it
into the cleft in the protein. Once this was completed to the user’s satisfaction, the new ligand
coordinates were sent to the numerical simulation program which returned an energy evaluation.
Figure 5 shows a user inside the CAVE environment wearing LCD shutter glasses and holding
the wand.

In general, we found the hand-docked solutions were not as good as those the GA had already
found. One limitation was a significant lag from when the user moved the wand until the updated
position was shown in the CAVE. This was due to the large number of spheres that needed to
be redrawn, and the slow sampling rate of the wand tracker. The result was that the user would

10

128 node IBM SP-2

i
\ R ATMOC-3c |
RSEK [E |nsm<]
i g Switch HIPF1
IBM HSE (TB2)

' Silicon Graphics ONYX

............ 5G| Seral

E
g
B

O
I/ HeT

i

Figure 4: STALK Development Environment.

move the wand based on the rendered position of the ligand, not on the position last read by
the tracker. This led to jerky motion that made an accurate hand-docking difficult to achieve.

A second limitation was one of context. When immersed in a conformation, the large number
of atoms made it difficult to determine which part of the molecule one was viewing. We found it
necessary to view the visualization from the front, rather than immersively, in order to maintain
a sense of perspective. The disadvantage of this, however, is that we did not take advantage
of the immersive capabilities, but instead tried to hand-dock the ligand from “afar.” Using
the option to remove sidechain atoms from the display helped alleviate the context problem.
However, since the sidechain atoms were not visible it introduced another problem—an inability
to determine if there were overlapping atoms in the new conformations.

Since the hand-docked solutions were invariably worse than those already in the population,
replacing the worse population member with the hand-docked solution had no effect. Regen-
erating the entire population by perturbing the hand-docked solution invariably made the best
solution found so far worse. However, the robustness of the GA usually found a “good” solution
again quickly, although not any better, it appeared, than if the GA had run uninterrupted.

We tested wide-area usage of STALK at the Supercomputing ’95 conference as part of the
Information Wide Area Year (I-WAY) project. The I-WAY was an experimental high-speed net-
work that linked together a number of high-performance computers and advanced visualization
environments around the country. Two important components of the I-WAY project were the
backbone network and the software environment.

The backbone I-WAY network was based on Asynchronous Transfer Mode (ATM) technology.
ATM is an emerging standard for advanced telecommunications networks. It is capable of
simultaneously carrying voice, data, and video significantly faster than conventional wide-area

11

in the CAVE.

Figure 5: A User

12

networks. Much of the [-WAY consisted of existing fiber-optic lines that commercial long-
distance carriers already had in place. The I-WAY network supported the Internet protocol
(IP) over ATM.

One role of the I-Soft [6] I-WAY software environment was to schedule the I-WAY compu-
tational resources. In our case, these resources consisted of nodes on the IBM SP at Argonne
National Laboratory (Illinois), nodes on the IBM SP in the Cornell Theory Center (New York),
and the SGI Onyx/CAVE VR environment at Supercomputing 95 (San Diego). A second role
was process creation and communication. For us, this required starting the numerical simulation
program on the IBM SP(s) and the visualization program on the SGI Onyx. A third role was to
handle and support different communication protocols for the MPI message-passing calls. For
STALK, this meant that MPI calls within the IBM SP used a more efflicient communication
mechanism than the socket-based communication used to support MPI calls between the IBM

SP and the SGI Onyx.

We performed two experiments in the [-WAY environment. In the first, we ran the numerical
simulation program on 16 nodes of the IBM SP at Argonne National Laboratory and 16 nodes
of the IBM SP at the Cornell Theory Center. Qualitatively, watching the GA iteration log
being written at our workstation we did not observe any noticeable degradation in performance
compared to similar runs that had been made on 32 nodes of a single IBM SP in a local
environment. It is possible, however, that the computationally expensive function evaluations
masked the network latency.

In our second experiment, we ran the numerical simulation program on 32 nodes of the IBM
SP at Argonne National Laboratory, and the visualization program on the SGI Onyx in San
Diego. The actual experiment consisted of running the Ribonuclease test case for groups of
visitors, stopping the simulation, “docking” the ligand by hand, returning an energy evaluation,
and resuming the simulation. This experiment ran continuously for approximately forty-five
minutes and did not experience any hardware, software, or network failures.

6 Conclusions

Distributed computing systems that couple virtual reality front-ends to (possibly remote) MPP
supercomputers over high-speed networks hold a great deal of potential for molecular scientists.
The advantages of a virtual reality front-end are twofold. First, it allows a scientist to gain a
deeper understanding of molecular docking by allowing immersive visualization of the confor-
mations in three dimensions. Second, a scientist can use personal intuition to steer a simulation
towards a lower-energy conformation or to specify an alternative starting position from which
to study the docking process. The goal of such a system is to enable the discovery of solutions
that are more effective than could be obtained by either the computer or the researcher alone.

Our experiences with STALK, however, show that several limitations must be overcome before
such a system is useful in practice. One limitation was the lag from when the user moved the
wand in the CAVE until the updated position was displayed. The lag led to situations where the
user would “oversteer” because the rendered position of the ligand was not the position last read
by the wand tracker. A second limitation was that the large number of atoms in the molecules
made it difficult to determine which part of the molecule one was viewing. We found it necessary

13

to view the visualization from a distance, rather than immersively, in order to maintain a sense
of perspective. In almost all cases we found that the hand-docked solutions were worse than

those found by the GA.

Within the limitations faced by any docking method, the parallel genetic algorithm approach
shows considerable promise. Many of the solutions found by the GA had energy values less than
the crystallographically determined position. We found that initializing the GA in a region close
to the crystallographically determined position led to more consistent results than initialization
within a wider region, but that the overall best (and worst) solutions found were from those
runs where the initialized region was not restricted.

We found that due to the complexity of Eq. (1), and the large number of strings that must
evaluate this equation, the GA approach is very computationally expensive. Further, the compu-
tational expense can be expected to increase significantly when more realistic models (sidechain
rotations, solvent representation) are used to model larger macromolecules. We found a parallel
implementation was a necessity to solve our test problem in a reasonable amount of time.

Several avenues for future work exist. First, we are currently working on allowing sidechain
rotations as additional degrees of freedom and would also like to include a solvent model. Al-
gorithmically, we would like to combine the GA with a traditional energy minimization system
to obtain more rapid convergence to a proposed docking solution, while avoiding premature
identification of local minima solutions. Finally, additional development and refinement of the
virtual reality interface are needed to make this a robust tool for the study of real molecular
systems.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Computational and Technology Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38 and the Office of Health and Environmental Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

References

[1] S. Bryson. Virtual reality in scientific visualization. Communications of the ACM, 39(5):62—
71, 1996.

[2] K. Clark and Ajay. Flexible ligand docking without parameter adjustment across four
ligand-receptor complexes. J. Comp. Chem., 16:1210-1226, 1995.

[3] C. Cruz-Neira, R. Langley, and P. Bash. VIBE: A virtual biomolecular environment for
interactive molecular modeling, 1996. To appear in Computers & Chemistry.

[4] C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-screen projection-based virtual reality:
The design and implementation of the CAVE. In ACM SIGGRAPH °93 Proceedings, pages
135-142. Lawrence Erlbaum Associates, 1993.

14

[5]

[6]

[10]

[11]

[12]

Message Passing Interface Forum. MPI: A message-passing interface standard. International
J. Supercomp. Appls., 8(3/4), 1994.

I. Foster, J. Geisler, B. Nickless, W. Smith, and S. Tuecke. Software Infrastructure for the
I-WAY High-Performance Distributed Computing Experiment. In Proceeeding of the Fifth
IEFEE Symposium on High Performance Distributed Computing. IEEE, Computer Society
Press, 1996.

D. Gehlhaar, G. Verkhivker, P. Rejto, C. Sherman, D. Fogel, L. Fogel, and S. Freer. Molec-
ular recognition of the inhibitor AG-1343 by HIV-1 protease: Conformationally flexible
docking by evolutionary programming. Chemistry & Biology, 2:317-324, 1995.

W. Gropp, E. Lusk, and A. Skjellum. USING MPI Portable Parallel Programming with the
Message-Passing Interface. MIT Press, Cambridge, 1994.

M. Helmer-Citterich and A. Tramontano. PUZZLE: A new method for automated protein
docking based on surface shape complementarity. J. Mol. Biol., 235:1021-1031, 1994.

J. Holland. Adaption in Natural and Artificial Systems. MIT Press, Cambridge, 1992.

R. Jackson and M. Sternberg. A continuum model for protein-protein interactions: Appli-
cation to the docking problem. J. Mol. Biol., 250:258-275, 1995.

R. Judson, E. Jaeger, and A. Treasurywala. A genetic algorithm based method for docking
flexible molecules. Computers & Chemistry, 308:191-206, 1994.

R. Kalawsky. The Science of Virtual Reality and Virtual Fnvironments. Addison-Wesley,
New York, 1993.

D. Levine. PGAPack, 1995. A public-domain parallel genetic algorithm library. Available by
anonymous ftp from ftp.mcs.anl.gov in the directory pub/pgapack, file pgapack.tar.Z.

D. Levine. User’s Guide to the PGAPack Parallel Genetic Algorithm Library. Technical
Report ANL-95/18, Argonne National Laboratory, Mathematics and Computer Science
Division, June 23, 1995.

E. Meng, D. Gschwend, J. Blaney, and 1. Kuntz. Orientational sampling and rigid-body
minimization in molecular docking. Proteins: Struct., Funct., Gen, 17:266-278, 1993.

E. Meng, B. Shoichet, and I. Kuntz. Automated docking with grid-based energy evaluation.
J. Comp. Chem., 13:505-524, 1992.

B. Shoichet, D. Bodian, and I. Kuntz. Molecular docking using shape descriptors. J. Comp.
Chem., 13:380-397, 1992.

B. Shoichet and I. Kuntz. Matching chemistry and shape in molecular docking. Protein
Eng., 6:723-732, 1993.

R. Varadarajan and F. Richards. Crystallographic structures of Ribonuclease S variants
with nonpolar substitution at position 13: Packing and cavities. Biochemistry, 31:12315,
1992.

15

[21] P. Walls and M. Sternberg. New algorithm to model protein-protein recognition based on
surface complementarity: Applications to antibody-antigen docking. J. Mol. Biol., 228:277—
297, 1992.

[22] Y. Xiao and D. Williams. Genetic algorithms for docking of Actinomycin D and De-
oxyguanosine molecules with comparison to the crystal structure of Actinomycin D-
Deoxyguanosine complex. J. Phys. Chem, 98:7191-7200, 1994.

16

