
An Alternative Method to Remove Duplicate Tuples Resultingfrom Operations in the Relational Algebra in aCube-Connected Multicomputer SystemNICHOLAS T. KARONIS�yPreprint ANL/MCS-P604-0796Abstract - The problem of performing database operations on parallel architectures has receivedmuch attention, both as applied and theoretical areas of research. Much of the attention has beenfocused on performing these operations on distributed-memory architectures, for example, a hyper-cube. Algorithms that perform, in particular, relational database operations on a hypercube typ-ically exploit the hypercube's unique interconnectivity to not only process the relational operatorse�ciently but also perform dynamic load balancing. Certain relational operators (e.g., projectionand union) can produce interim relations that contain duplicate tuples. As a result, an algorithm fora relational database system must address the issue of removing duplicate tuples from these interimrelations. The algorithms accomplish this by compacting the relation into hypercubes of smallerand smaller dimensions. We present an alternative method for removing duplicate tuples from arelation that is distributed over a hypercube by using the embedded ring found in every hypercube.Through theoretical analysis of the algorithm and empirical observation, we demonstrate that usingthe ring to remove the duplicate tuples is signi�cantly more e�cient than using the hypercube.Index Terms - Distributed algorithm, hypercube, relational algebra, relational database systems.1 IntroductionDatabase processing has long been an area of intense theoretical and applied research. Much, if notall, of the recent work has focused not on creating new database models, but rather on improving�Northern Illinois University, Computer Science Department, DeKalb, IL.yThis work was supported by the Mathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.1

performance by using existing models. In the early days, special-purpose hardware was built toimprove performance. These database machines were aimed at relieving I/O and other bottlenecksfound in conventional machines [4, 23]. More recent e�orts have focused on multiprocessor systems,for example, DIRECT [23], GAMMA [5], GRACE [13], MIRDM [17], NON-VON [10], SM3 [3], andTERADATA [24]. Many of these systems use parallel algorithms to enhance database processing.One parallel architecture in particular, the hypercube, has been an architecture of choice fordatabase processing. Several parallel computers based on a hypercube's connectivity currently exist,for example, Caltech's MARK III [16], the Floating Point Systems T-series machines [6], InteliPSC/II [19], and the NCUBE/10 [9].An algorithm was presented [1, 7, 2] to perform relational database operations in a distributedprocessing environment. It is described as a cube-connected multicomputer system whereby theprocesses are connected in a hypercube, they communicate via message passing, and the tuples ofthe relations are horizontally partitioned over the set of processes.Some of the relational operators (e.g., projection and union) produce interim relations thatpotentially contain duplicate tuples that must be removed during a clean-up phase at the end ofthese operations. Accordingly, the algorithm describes how to remove duplicate tuples from theserelations by using an operation called Relation Compaction (RC), which exploits the hypercube'sunique topology.We present an alternative algorithm for removing duplicate tuples. The algorithmwe present usesthe ring embedded in all hypercubes [14], thereby reducing the overall execution time. Additionally,the algorithm we present leaves the tuples more evenly distributed (balanced) over the processes. Abalanced set of tuples is an imperative for proper load balancing [1, 7].2 The Hypercube Remove-Duplicates AlgorithmHere we describe the algorithm presented in [1, 7, 2].Figures 1a-e show an example 2-D hypercube with relation R having 4n tuples. We assumethat this relation is the result of a recently performed projection and therefore might have duplicate2

tuples that must be removed. For this example, we assume that there are no duplicate tuples. Thetuples start evenly partitioned (balanced) over the set of processes.
Figure 1a: Remove local duplicates. Figure 1b: Send n tuples.
Figure 1c: Remove from received. Figure 1d: Send 2n tuples.

Figure 1e: Remove from received.Step 1 of the algorithm requires each process to remove all duplicate tuples from its local set(Figure 1a). Processes 1 (01) and 3 (11) then send their tuples to processes 0 (00) and 2 (10),respectively (Figure 1b). Processes 0 and 2 remove those tuples from the newly arrived set of tuplesthat already exist in their local copies (Figure 1c). Process 2 sends its set of 2n tuples to process3

0 (Figure 1d). Finally, process 0 removes those tuples from the newly arrived set of 2n tuples thatalready exist in its set of 2n tuples (Figure 1e). The entire relation R now resides entirely in process0 with all the duplicate tuples removed. R must now be redistributed over the set of processes forproper load balancing.In analyzing the hypercube remove-duplicates algorithm we estimate the computation time bycounting the number of comparisons the algorithm requires to remove duplicates from a relationR. For this analysis we assume that R is initially balanced over the set of processes and that noduplicate tuples exist in R. We express the number of comparisons as a binary function Ch(N; d)where N is the cardinality of the original relation R and d is the dimension of the hypercube.During the �rst computation step of the algorithm (Figure 1a) each process removes all duplicatetuples from its local set. Recall that relation R, having N tuples, is evenly partitioned (balanced)over the set of 2d processes, so each process has N2d tuples. Therefore, the number of comparisonsto perform this local check is (N2d � 1)(N2d)2= (N�2d2d)(N2d)2= N(N�2d)22d2= N (N � 2d)22d+1 : (1)During the next computation step (Figure 1c) a set containing N2d tuples is compared againstanother of equal size, requiring (N2d)2 comparisons. The �nal computation step (Figure 1e) comparesa set containing 2N2d tuples against another of equal size, requiring (2N2d)2 comparisons. In general,for hypercubes of arbitrary dimension, this process continues until process 0 compares half of therelation against the other half, or a set containing N2 tuples against another of equal size requiring(N2)2 comparisons. Thus, in general, the number of comparisons required after each process removesduplicates from their local relations is(N2d)2 + (2N2d)2 + (4N2d)2 + (8N2d)2 + :::+ (N2)2= (20N2d)2 + (21N2d)2 + (22N2d)2 + (23N2d)2 + :::+ (2d�1N2d)24

= d�1Xi=0(2iN2d)2= (N2d)2 d�1Xi=0 22i:Consider the general form of the summation term in the above formula:Sn = nXi=0 22iSn + 22(n+1) = 1 + nXi=0 22(i+1)= 1 + 22 nXi=0 22i= 1 + 4Sn:Thus, Sn = 22(n+1) � 13 :Solving this summation for a hypercube of dimension d, we have:Sd�1 = 22d � 13 :Therefore the number of comparisons after the initial local check is(N2d)2 d�1Xi=0 22i = (N2d)2Sd�1= (N2d)2(22d � 13): (2)This gives us the function Ch(N; d) as simply the sum of formulae (1) and (2). It is the number ofcomparisons needed for the hypercube remove-duplicates algorithm as a function of the cardinalityof the relation (N)and the dimension of the hypercube (d):Ch(N; d) = N (N � 2d)22d+1 + (N2d)2(22d � 13):3 The Ring Remove-Duplicates AlgorithmHere we present an alternative algorithm to remove duplicates that views the hypercube as a ring.Consider the same example with relation R having 4n tuples evenly partitioned over a 2-Dhypercube set of processes. Each process has n tuples. Again, for this example, we assume thatthere are no duplicate tuples in R. 5

Step 1 of the algorithm requires each process to remove duplicate tuples from its local set (Figure2a). Each process then sends a copy of its local set to its neighbor in the ring (Figure 2b). Thoseprocesses that receive a copy that originated in a process with an id greater than itself may removeduplicate tuples from the received copy (Figure 2c). In this example, processes 0 and 2 removeduplicate tuples from sets n2 and n3, respectively, while processes 1 and 3 are idle. Each processthen sends its mobile set of tuples to its neighbor in the ring (Figure 2d). Processes 0 and 1 removeduplicates from their sets n3 and n2, respectively (Figure 2e). Again, their id's are less than the id'sof the processes that originated their copy. Processes 2 and 3 are idle.
Figure 2a: Remove local duplicates. Figure 2b: Send n tuples.

Figure 2c: Selected remove from received. Figure 2d: Send n tuples.
Figure 2e: Selected remove from received.6

This process is repeated until all the mobile sets simultaneously arrive at the node that is one shortof their origins, and then the mobile sets are checked (by the appropriate nodes) for duplicates one�nal time. These mobile (possibly modi�ed) sets are kept, and the original sets are discarded. Theretained sets of tuples represent the original relation R with all duplicate tuples removed virtuallybalanced over the set of processes.In analyzing the ring remove-duplicates algorithm we again estimate the computation time bycounting the number of comparisons the algorithm requires to remove duplicates from a relation R.For this analysis we again assume that R is initially balanced over the set of processes and that noduplicate tuples exist in R. We express the number of comparisons as a binary function Cr(N; d),where N is the cardinality of the original relation R and d is the dimension of the hypercube.The �rst step of this algorithm also requires each process to remove duplicate tuples from itslocal set of N2d tuples. As we demonstrated earlier in formula (1), the number of comparisons isN (N � 2d)22d+1 :During the remaining steps of the algorithm, selected processes compare sets containing N2d tuplesagainst other sets of equal size, requiring (N2d)2 comparisons each time. This procedure is done 2d�1times. The number of comparisons required for this portion of the algorithm is therefore(2d � 1)(N2d)2: (3)This gives us the function Cr(N; d), which is simply the sum of formulae (1) and (3). It isthe number of comparisons needed for the ring remove-duplicates algorithm as a function of thecardinality of the relation (N) and the dimension of the hypercube (d):Cr(N; d) = N (N � 2d)22d+1 + (2d � 1)(N2d)2:4 Comparing the Two AlgorithmsHaving described the algorithms, we are now prepared to compare them. We choose to compare�rst their computations and then their communications.7

4.1 Analysis of ComputationAs a method to compare the two algorithms we consider the ratio of the two functionsg(N; d) = Ch(N; d)Cr(N; d)= N(N�2d)22d+1 + (N2d)2(22d�13)N(N�2d)22d+1 + (2d � 1)(N2d)2= N(N�2d)22d+1 + (N2d)2(22d�13)N(N�2d)22d+1 + (2d � 1)(N2d)2 (22d622d6)= 3N (N � 2d) + 2N2(22d � 1)3N (N � 2d) + 6N2(2d � 1)= (3 + 22d+1 � 2)N + (�3)2d(3 + 2d6� 6)N + (�3)2d= (22d+1 + 1)N � 2d3(2d+13� 3)N � 2d3 :We inspect g's behavior as N and d get large. First N ,limN!1 g(N; d) = limN!1 (22d+1 + 1)N � 2d3(2d+13� 3)N � 2d3= 22d+1 + 12d+13� 3 :Now d, limd!1 22d+1 + 12d+13� 3 = 2d3 :Figure 3 depicts g's behavior.
Figure 3: Plot of g(N; d) = Ch(N;d)Cr(N;d) .8

As we increase N , the cardinality of the R, we observe that the ratio remains largely unchanged.However, we do note g's acute sensitivity (2d3) to increases in d, the dimension of the hypercube. Weobserve that the ring remove-duplicates algorithm performs signi�cantly better (with respect to thenumber of comparisons) than the hypercube remove-duplicates algorithm. As our analysis showsand Figure 3 illustrates, the hypercube remove-duplicates algorithm requires roughly 300 times asmany comparisons as the ring remove-duplicates algorithm on a 10-D hypercube.The price the ring remove-duplicates algorithm must pay is in communication time. As wediscover in the following sections, the bene�t in the reduction of computation time far outweighsthe increased cost of communication.4.2 Analysis of CommunicationsIn each step of both algorithms there is a computation part and a communication part. For eachalgorithm we derive a binary linear functionM (N; d) = at0 + btthat estimates the time it takes for all the algorithm's communications. In this function, N is thecardinality of the original relation R, d is the dimension of the hypercube, t0 is the time it takesto initiate the transfer of a message, and t is the time it takes to transmit or receive a tuple. Forsimplicity we assume that all the data that must be transferred in any given step will always �t ina single message bu�er. Again, for simplicity, we assume that there are no duplicate tuples in R.4.2.1 Messages in the Hypercube Remove-Duplicates AlgorithmIn the �rst communication of the hypercube algorithm, N2d tuples are transferred; in the second, 2N2dtuples are transferred; and in the last N2 tuples are transferred. Thus, for a hypercube of dimensiond, we see N2d + 2N2d + :::+ N2= N2d + 2N2d + :::+ 2d�1N2d9

= d�1Xi=0 2iN2d= (N2d) d�1Xi=0 2i= (N2d)(2(d�1)+1 � 1)= (N2d)(2d � 1)= N � N2dtuples being transferred over d messages. This gives us the communications time function for thehypercube algorithm Mh(N; d) = dt0 + (N � N2d)t:4.2.2 Messages in the Ring Remove-Duplicates AlgorithmThe analysis for the ring is not as straightforward as for the hypercube. Message passing, in a worstcase scenario, prohibits a single process from transmitting and receiving a message at the same time.In the hypercube remove-duplicates algorithm, a communicating process in a single communicationstep is called upon either to transmit or to receive a message, not both. That is not the case in ringalgorithm. In each communication step each process must transmit and receive a set of tuples. Forthis reason each communication step has two phases.In each of the phases N2d tuples are transferred. Since there are two phases in each communicationstep, each step transfers 2N2d tuples over two messages. There are 2d � 1 such communication steps(recall that the mobile set ends up one node short of its origin). Thus, the total number of tuplestransferred in this algorithm is (2d � 1)(2N2d) = 2N � 2N2dover 2(2d � 1) = 2d+1 � 2 messages. This gives us the communications time function for the ringalgorithm Mr(N; d) = (2d+1 � 2)t0 + (2N � 2N2d)t:10

4.2.3 Comparison of CommunicationsAs we inspect Mh and Mr, we observe that the ring algorithm transmits roughly twice the numberof tuples over an exponentially greater number of messages than does the hypercube algorithm. At�rst glance, this might appear to be troublesome. In practice, it is not.Much of the increased communication time for the ring method can be attributed to the expo-nentially increasing, with respect to d, number of messages that must be sent, in other words, notan increase in the amount of data, but rather, an increase in the number of messages.We believe that total increase in communication found in the ring method, both in its increasein the number of messages and its increase in the amount of data, is more than compensated for byits reduction in computation. We view the increase in the amount of data being sent/received asinsigni�cant when compared with the reduction of computation, and although the increase in thenumber of messages being sent is signi�cant, we do not believe it to be problematic because the timeit takes to compare two tuples is much larger than the time it takes to initiate a communication.These assertions are empirically con�rmed in the next section.5 ExperimentationWe implemented both algorithms and compared their execution times. This section �rst describesthe environment in which we performed our experiments and then presents our results along withour analysis.5.1 Description of EnvironmentIn each experiement we constructed a relation with no duplicate tuples and measured the perfor-mance of each method as they attempted to remove duplicates. The relations were characterized bythree parameters: their cardinality (number of tuples) N > 0, their key degree (number of attributesparticipating in the primary key) p > 0, and their non-key degree (number of attributes that do notparticipate in the primary key) p0 � 0.The attributes, all with integer domains, were named A1; A2; : : : ; Ap; Ap+1; : : : ; Ap+p0 . The �rstp attributes composed the primary key while the remaining p0 attributes composed the rest of the11

tuple. The entire relation was initialized with 0's. Then, to assure that there were no duplicatetuples, each tuple ti (1 � i � N) was assigned the value i to attribute Ap. For example, Figure 4 isthe relation characterized by N = 4, p = 3, and p0 = 2.RA1 A2 A3 A4 A50 0 1 0 00 0 2 0 00 0 3 0 00 0 4 0 0Figure 4: Example relation N = 4, p = 3, p0 = 2.Two tuples are identical i� they have the same primary key values. We compare two tuples forequality by comparing each of the values in their primary keys, �rst in A1, then A2, and so on up toand including Ap. If, along the way, even one of the values of these attributes di�ers, the comparisonis stopped and the two tuples are declared distinct.Characterizing the relation in conjunction with testing for equality in this way provides us withan experimental environment where we can compare the two methods while tuning these threeparameters. If we wish to increase the amount of time to compare two tuples, we simply increase p.If we wish to increase the amount of data being communicated without increasing the comparisontime, we simply increase p0 and/or N .Both methods were implemented by using Argonne National Laboratory's implementation ofMPI [8, 20, 21, 22]. They were executed on the 128-processor IBM POWERparallel System atArgonne National Laboratory running AIX version 3.2.4 and the AIX Parallel Environment [11],which includes IBM's message-passing library MPL. Argonne's implementation of MPI on theirPOWERparallel System calls MPL directly.The machine was con�gured with 8 SP1 16-node frames where each node was capable of 125MFlops and was equipped with 128 MBytes of memory and 1 GByte of disk space. The nodescommunicated over a four-stage Omega switch rendering all nodes equidistant from each other.The timing data was collected by using a timing library called UTP, which was written by DaveKohr at Argonne National Laboratory's Mathematics and Computer Science Division. The version12

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

T
i
m
e

(
s
e
c
s
)

Hypercube Dimension (d)

Cardinality 6400 KeyDegree 1 NonKeyDegree 1

Hypercube Total
Hypercube Compare

Ring Total
Ring Compare

Figure 5: First experiment.of UTP that runs on Argonne's POWERparallel System is written in IBM's RS/6000 assembler andaccesses a continuously running hardware clock with microsecond resolution. Running programs onArgonne's POWERparallel System provides exclusive access to the nodes, so accumulating wall-clocktime is not entirely inappropriate.In both algorithms node 0 does as much or more work than all the other nodes. Therefore, inall our experiments the timing data was collected on node 0 only.5.2 Experimental DataFor our �rst experiment we constructed a relation where N = 6400, p = 1, and p0 = 1. We measuredthe performance of both methods on this relation on hypercubes of di�erent dimensions ranging from0 through 6. In measuring the performance we accumulated two di�erent times for each method:total execution time and time for comparing tuples only. Figure 5 is a plot of all four times as afunction of hypercube dimension (d). Again, all timing data was accumulated on node 0 only.5.2.1 AnalysisThe �rst thing we note about the graph is that the lines for execution time and comparison time foreach method are virtually indistinguishable. This illustrates that the execution time is completely13

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6

#

o
f

B
y
t
e
s

Hypercube Dimension (d)

Communication - Number of Bytes Sent/Received

Ring
Hypercube

Figure 6: Communication - number of bytes sent/received.dominated by the comparison time while the time for communication is relatively neglible.We then note that the execution times for both methods are identical on 0-D and 1-D hypercubes.This result is not surprising, since there is no di�erence between the algorithms on hypercubes ofthese sizes. However, on 2-D hypercubes and above we see little to no improvement using thehypercube method while the ring method enjoys near-exponential improvement. That is, as weincrease the number of processors in the hypercube, the hypercube method realizes virtually nospeedup while the ring method realizes near-linear speedup.5.2.2 Further AnalysisIn an attempt to develop a better understanding of the data, we performed some further analysis.In addition to accumulating execution times on node 0, we also counted number of messages itsent/received, the number of bytes it sent/received, and the number of comparisons it made.Figures 6 is a graph of number of bytes sent/received by node 0 vs. hypercube dimension. Bothmethods are plotted on the graph. Each grows at approximately the same rate; however, we observethat the ring method communicates approximately twice as much data as the hypercube method.Figure 7 is a graph of the number of messages sent/received by node 0 vs. hypercube dimension.14

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

#

o
f

M
e
s
s
a
g
e
s

Hypercube Dimension (d)

Communication - Number of Messages Sent/Received

Ring
Hypercube

Figure 7: Communication - number of messages sent/received.Both methods are plotted on the graph. Here we see a dramatic di�erence between the two methods.The number of messages sent by the hypercube method increases linearly as a function of d whilethe ring method increases exponentially.Figure 8 is a graph of the number of comparisons made by node 0 vs. hypercube dimension.Both methods are plotted on the graph. The two methods are identical for 0-D and 1-D hypercubes.Again, this is expected, since there is no di�erence between the two methods (with respect to thenumber of comparisons) on 0-D and 1-D hypercubes, i.e., Ch(N; 0) = Cr(N; 0) and Ch(N; 1) =Cr(N; 1). However, for 2-D hypercubes and higher we observe a dramatic di�erence in the numberof comparisons node 0 makes in each of the methods. The hypercube method experienced virtuallyno reductions in the number of comparisons while the ring method experienced a near-exponentialreduction.How do these numbers a�ect the overall execution time? We see that the dramatic increasein the number of messages and the not-so-dramatic increase in the amount of data, both servingto increase the communication time for the ring method, are more than compensated for by thedramatic reduction in the number of comparisons. This will always be the case in systems where theoverhead associated with sending/receiving a message (t0) is much smaller than the time it takes to15

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

2.2e+07

0 1 2 3 4 5 6

#

o
f

C
o
m
p
a
r
i
s
o
n
s

Hypercube Dimension (d)

Computation - Number of Comparisons

Hypercube
Ring

Figure 8: Computation - number of comparisons.compare two tuples. Under these conditions, the total execution time is completely dominated bythe comparison time, and hence, the time for communication becomes insigni�cant.5.3 Further ExperimentationWe conducted more experiments using di�erent relations. In each case we kept the cardinality (N)the same as in the original experiment (6400 tuples) but varied both the degree of the primarykey (p) and the degree of the non-key attributes (p0). We did so in order to study the e�ects ofincreasing both the time for comparing two tuples (increasing p) and increasing the volume of datasent/received (increasing p and/or p0).We conducted these experiments changing the values of both p and p0 to 1, 5, and 10, indepen-dently. The graph for the relation characterized by N = 6400, p = 1, and p0=1 has already beenpresented in Figure 5. The graphs for the other 8 cases all have the same shape as the graph inFigure 5.Figure 9 are graphs of the two extreme cases, (p = 10, p0 = 1) and (p = 1, p0 = 10). Each is aplot of time vs. hypercube dimension, and each plots the same four lines: the total execution andcomparison time for both methods. 16

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

T
i
m
e

(
s
e
c
s
)

Hypercube Dimension (d)

Cardinality 6400 KeyDegree 10 NonKeyDegree 1

Hypercube Total
Hypercube Compare

Ring Total
Ring Compare

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6

T
i
m
e

(
s
e
c
s
)

Hypercube Dimension (d)

Cardinality 6400 KeyDegree 1 NonKeyDegree 10

Hypercube Total
Hypercube Compare

Ring Total
Ring Compare

Figure 9: Further experimentation.Conducting these experiments using relations of the same cardinality over the same range ofhypercube dimensions results in the same number of comparisons and the same number of messagessent/received for all experiments. Changing p and p0 in each experiment a�ects only the time tocompare two tuples and the variable cost in time (t) spent sending/receiving data.We �rst observe the same phenomenon that we did in Figure 5; that is, the total execution timeand the comparison time for each method are virtually indistinguishable. We further observe thatthe general shape of the curves in both graphs are the same, which are, in turn, identical to thosein Figure 5. This is true even in experiment p = 1 and p0 = 10 where we deliberately attackedthe ring method at its weakest point, communication time. In that experiment we attempted tochange the relative positions of the lines by increasing communication time only, that is, increasingthe amount of data communicated by an order of magnitude while keeping the comparison time thesame. This empirically con�rms the fact that the comparison time so overwhelmingly dominates thetotal execution time that changes in the characteristics of the relation that a�ects the communicationtime are lost.6 ConclusionAlgorithms that perform relational database operations in a distributed processing environment,like a hypercube, must address the issue of e�ciently removing the duplicate tuples that can resultfrom certain relational operations (e.g., projection and union). One solution to this problem was17

presented in [1, 7, 2], which compacts the relation into hypercubes of smaller and smaller dimensions.We presented an alternate algorithm for removing duplicate tuples that used the embedded ringfound in every hypercube. In comparing the two algorithms, we estimated their computation timesby counting the number of comparisons required by each. We concluded that the ring removeduplicate algorithm was signi�cantly better in that the computation time of the hypercube methodrequired (2d3) times more comparisons than the ring method. We then asserted that, although thering method required more communication time than the hypercube method, the overall executiontime for the ring method would be less because the computation component of the methods wouldquickly dominate the communication component.Finally, we performed experiments that empirically con�rmed our theoretical analysis of thecomputation times as well as con�rming our assertions regarding the computation component of theexecution time dominating the communication time.We have demonstrated, both in theory and in practice, that using the ring embedded withinthe hypercube is a superior technique in removing duplicate tuples from a relation in that (1) itrequires fewer comparisons and hence signi�cantly reduces the total execution time, and (2) oncethe duplicates are removed, the tuples are more likely to be evenly distributed, thus aiding in properload balancing.7 AcknowledgmentsWe thank Ophir Frieder for introducing us to his distributed relational database algorithm. Wethank Gideon Frieder and Ophir for our many discussions that aided in this work. We thankStephen Wright, Gail Pieper, and Linda Cirillo for their help in the preparation of this paper. Wethank Dave Kohr for his superb job in implementing UTP and his patience with all our questions.We thank Bill Gropp and Ewing Lusk for their patience with our questions regarding MPI. We alsothank the referees whose suggestions, particularly regarding the experimentation section, made thisa better paper. 18

References[1] C. K. Baru and O. Frieder, \Database operations in a Cube-connected multicomputer system,"IEEE Trans. on Computers, vol. 38, no. 6, pp. 920{927, 1989.[2] C. K. Baru and O. Frieder, \Implementing relational database operations in a cube-connectedmulticomputer," in Proc. IEEE COMPDEC 3rd Int. Conf. Data Eng., Feb. 1987, Los Angeles,CA.[3] C.K. Baru and S.Y.W. Su, \The architecture of SM3: A dynamically/partionable multicom-puter with switchable memory," IEEE Trans. Comput., vol. C-35, Sept. 1986.[4] P. B. Berra and E. Oliver, \The role of associative array processors in data base machinearchitecture," IEEE Computer, vol. 12, Mar. 1979.[5] D. J. DeWitt et al., \GAMMA - A high performance dataow database machine," in Proc. Int.Conf. Very Large Data Bases, Aug. 1986, Kyoto, Japan.[6] K. A. Frenkel, \Evaluating two massively parallel machines," Commmun. ACM, vol. 29, pp.752{758, Aug. 1986.[7] O. Frieder, \Database processing on a cube-connected multicomputer," Ph.D. Dissertation,Dep. EECS, University of Michigan, Ann Arbor, MI, 41809, Dec. 1987.[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, MIT Press, Cambridge, MA., 1994.[9] J. P. Hayes et al., \Architecture of a hypercube supercomputer," IEEE Micro, Aug. 1986.[10] B. Hillyer, D. E. Shaw, and A. Nigam, \NON-VON's performance on certain database bench-marks," IEEE Trans. Software Eng., vol. SE-12, Apr. 1986.[11] \IBM AIX Parallel Environment{Parallel Programming Subroutine Reference (2.0)", Interna-tional Business Machines Corporation, Kingston, NY., June, 1994.[12] C. Jard, J. -F. Monin, and R. Groz, \Development of Veda, a prototyping tool for distributedalgorithms," IEEE Trans. on Software Eng., vol. 14, no. 3, pp. 339{352, Mar. 1988.19

[13] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, \Architecture and performance of relationalalgebra machine GRACE," in Proc. Int. Conf. Parallel Processing, Aug. 1984.[14] N. T. Karonis, \On the veri�cation of complex protocols," Ph.D. Dissertation, Syracuse Uni-versity, 1992.[15] N. T. Karonis, \Timing parallel programs that use message passing," J. Parallel Distribut.Comput., vol. 14, no. 1, pp. 29{36, Jan. 1992.[16] J. C. Peterson, J. O. Tuazon, D. Lieberman, and M. Pniel, \The MARK III hypercube-ensembleconcurrent computer," in Proc. Int. Conf. Parallel Processing, Aug. 1985.[17] G. Z. Oadah and K. B. Irani, \A database machine for very large relational databases," IEEETrans. Comput., vol. C-34, Nov. 1985.[18] S. Y. W. Su and C. K. Baru, \Dynamically partitionable multicomputers with switchablememory," J. Parallel Distribut. Comput., vol. 1, no. 2, 1984.[19] Intel iPSC Data Sheet, Order No. 280101-001, 1985.[20] Message Passing Interface Forum, \MPI: A Message Passing Interface Forum," Int. J. Super-computer Apps., vol. 8, no. 3/4, pp. 165{414, 1994.[21] Message Passing Interface Forum, \The MPI Message Passing Interface Standard",http://www.mcs.anl.gov/mpi/standard.html, May 1995.[22] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI: The CompleteReference, MIT Press, Cambridge, MA, 1995.[23] Special issue on Database Machines, IEEE Trans. Comput., vol. C-28, June 1979.[24] TERADATA, DBC/1012 Data Base Computer Concepts and Facilities, Release 1.3, June 1985.20

