
The Computation of Elementary Unitary MatricesR.B. LEHOUCQArgonne National LaboratoryThe construction of elementary unitary matrices that transform a complex vector to a multiple ofe1 , the �rst column of the identitymatrix, are studied. We present four variants and their softwareimplementation, including a discussion on the LAPACK subroutineCLARFG. Comparisons arealso given.Categories and Subject Descriptors: G.4 [MATHEMATICAL SOFTWARE]: Algorithm anal-ysis; F.2.1 [ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY]: Nu-merical Algorithms and Problems|Computations on matrices; G.1.3 [NUMERICAL ANAL-YSIS]: Numerical Linear AlgebraAdditional Key Words and Phrases: elementarymatrices, unitary, Hermitian, Householder reec-tors1. INTRODUCTIONThe goal of this paper is to survey the software implementation of elementaryunitary matrices. We present four variants and their software implementation. Weend by drawing some comparisons.We begin by �rst discussing elementary unitary matrices that are Hermitian.Let w be a complex vector. De�ne the elementary Hermitian matrix U = I �2wwH ; where wHw = 1. It is easily veri�ed that U is both Hermitian and unitary.In particular, if w is a real vector, then U is orthogonal and symmetric, and iscommonly referred to as a Householder reector. Since U is unitary, its inverse isreadily available.Two important applications of elementary Hermitians include the computationof the QR factorization of a matrix, and the orthogonal reduction of a square ma-trix A into upper Hessenberg form. The former application is often used for thestable computation of a solution for the linear least squares problem. The latterapplication is needed for many eigenvalue computations. The literature on elemen-tary Hermitians is vast. For information on applications concerning Householdermatrices see Golub and Van Loan [4]. Parlett [7] examines the algorithmic andstability issues of computing Householder matrices. A detailed error analysis byWilkinson [10] shows the stability of numerical techniques using elementary Hermi-tians. Besides these excellent numerical properties, their application demonstratestheir e�ciency. If A is a matrix, then UA = A�2w(AHw)H , and hence explicit for-mation and storage of U is not required. Only the ability to form the matrix-vectorproduct AHw and a rank one update to A is required.Fundamental to the use of elementary Hermitians in the above applications istheir ability to transform a vector x to a multiple of e1, the �rst column of theidentity matrix. As we will show, an elementary Hermitian is not always de�nedwhen x is to be transformed to a real multiple of e1. However, the crucial propertyof unitariness may be preserved. The purpose of this paper is to review and examineACM Transactions on Mathematical Software



2 �the details of constructing an elementary unitary matrix so that a complex vectorx is transformed to a multiple of e1:The paper is organized as follows. In x 2 the mathematical problem is stated andgeneral conditions for constructing elementary unitary matrices are derived. Thefour approaches for construction are then introduced in x 2.1{x 2.4. The �rst oneis implemented in EISPACK [8] and is based upon a development by Wilkinson [9,pages 48{50]. The LINPACK [2] approach is the second one studied. The thirdapproach is due to Hammarling and Du Croz. It is implemented in the NAGFortran Library subroutine F06HRF [6]. The �nal variation is implemented by theLAPACK [1] subroutine CLARFG. The details of this software implementation arealso discussed. Section three is a comparison and summary of our �ndings. In fact,our attempt to understand the di�erences between the Wilkinson approach and thealternate formulation implemented by LAPACK led to this study.We employ Householder notational conventions. Capital and lower case lettersdenote matrices and vectors, respectively, while lower case Greek letters denotescalars. In particular, �i = eTi x denotes the i-th element of the vector x. Unlessotherwise stated, all quantities are assumed to be complex and i � p�1. Thereal and imaginary part of a complex number � are denoted by Re(�) and Im(�),respectively. The vector norm used is the Euclidean one: kxk = pxHx. The readeris also reminded that j�j2 = ��� where �� is the complex conjugate of �:2. ELEMENTARY UNITARY MATRICESLet us clearly state the problem at hand. Find an elementary unitary matrix thatsatis�es the following three conditions:U = I � �wwH ; UHx = kxke1; jj = 1; (1)where x is a vector with n components. The third condition is a consequence ofthe second one since kUHxk=kxk = jj: The second condition gives that xHUHx =kxkxHe1 implying that U is an elementary Hermitian matrix if and only if � andxHe1 are real.The matrix U as de�ned by (1) is a special member of the more general class ofelementary matrices de�ned byE(w; v;�) = I � �wvH : (2)See Householder [5] and Wilkinson [11] for introductions. Dubrulle [3] presentsa comprehensive study for the case of real w,v and �, that includes a discussionleading to block implementations.Let us determine general conditions for an elementary matrix to be unitary. SinceE(w; v;�) must be unitary,I = (I � �wvH )H (I � �wvH ) = I � ��vwH � �wvH + ���(wHw)vvH :Cancelling terms results in���(wHw)vvH = ��vwH + �wvH : (3)Rearranging terms gives (���(wHw)v��w)vH = ��vwH ; and a row space argumentimplies that w and v are linearly dependent. Substituting v = w into (3) givesj�j2kwk2 = � + �� = 2Re(�) (4)



� 3as the required relationship between � and w. Note that the above relationshipcontains some redundancy. If w is multiplied by a complex number � and � isdivided by j�j2, the relationship in equation (4) is still satis�ed. This scaling alsosatis�es the second condition of (1) since (��j�j�2)(w�)(w�)H = �wwH : Finally, thesecond condition of (1) gives that w is a linear combination of x and e1:Four sets of choices for w, � and  are the subject of the x 2.1{2.2. A standardmodi�cation for w = �x + �e1 is that ��1 and � share the same sign. In oatingpoint arithmetic, this choice of sign leads to a small relative error when computingw. For example, if � = 1 the sign of e1 is that of Re(�1): Parlett [7] presents athorough discussion on the choice of sign when computing Householder reectors.For the remainder of the paper, � � Sign(Re(�1))kxk:Note that an elementary Hermitian (and Householder) matrix chooses w = (x+�e1)=kx+ �e1k so that wHw = 1,  = �1. Conditions (1) and (4) are satis�ed.2.1 The EISPACK ApproachWilkinson [9, pages 49{50] suggested the following modi�cation. Let �1 = ei�1 j�1jwhere 0 � �1 < 2� andx = ei�1y = ei�1 [ j�1j e�i�1�2 � � � e�i�1�n ]T :Then even if �1 has a non-zero imaginary part, eT1 y is a real number, an elemen-tary Hermitian P may be constructed so that Py is a real multiple of e1. Thus,condition (4) is satis�ed as already discussed. Set U = ei�1P andUHx = (e�i�1P )(ei�1y) = Py = kxke1;where  = �1. The matrix U is a multiple of an elementary unitary matrix. Sincethe �rst component of y is a non-negative number, �1 is zero.Although EISPACK [8] does not have a subroutine that computes an elementaryunitary matrix, the subroutines CORTH and HTRIDI implement a slight variationof the Wilkinson approach. CORTH [8, pages 300{305] and HTRIDI [8, pages 357{363] orthogonally reduce a general and Hermitian matrix to upper Hessenberg andtridiagonal form, respectively. They set U = P directly and thus transform yto �ei�1kxke1. The software sets w = x + ei�1kxke1(= ei�1(y + kxke1)) and � =2(wHw)�1. Hence wHw = 2kxk(kxk+j�1j) and � = 1=kxk(kxk+j�1j) thus satisfyingcondition (4). A simple calculation shows thatUHx = x� ��(wHx)x = x� �kxk(kxk+ j�1j)x = kxke1;where  = �ei�1 . In order to prevent possible overow when computing �, thevector x is is initially normalized by � = jRe(�1)j+jIm(�1)j+� � �+jRe(�n)j+jIm(�n)j:2.2 The LINPACK ApproachAs in EISPACK, LINPACK does not have a general purpose subroutine implement-ing the solution of problem (1). However, subroutines CQRDC [2, chapter 9] andCSVDC [2, chapter 11] employ elementary unitary matrices. Subroutines CQRDCand CSVDC compute the QR factorization and singular value decomposition of acomplex matrix, respectively.The LINPACK form for an elementary unitary matrix is easily derived by scalingthe w used by EISPACK with � = e�i�1=kxk. From the remarks regarding the



4 �scaling of equation (4), � = kxk=(kxk + j�1j) and the LINPACK U is such thatUHx = kxke1 where  = �ei�1 : Note that for non-zero x, :5 � � � 1 thusavoiding the risk of overow possible in the (unscaled) EISPACK variant.2.3 The NAG ApproachThe second form for an elementary unitary matrix is due to Hammarling and DuCroz [6], (Introduction { F06). Unlike the previous two versions, this one computesan elementary unitary matrix U so that UHx is a real multiple of e1. As explainedat the beginning of x 2, the resulting � cannot be real unless �1 is also.Choosing � = (xHw)�1 where w = x + �e1 results in UHx = (I � ��wwH)x =x � (��wHx)w = �e1 where  = �1. This choice of � will satisfy (4) as we nowdemonstrate. FirstwHx = (xH + �eT1 )x = xHx+ ��1 = �(� + �1);which determines � and kwk2 = (xH + �eT1 )(x+ �e1) = 2�(� +Re(�1)): Finally(wHx)(xHw)(� + ��) = (wHx)(xHw)(1=wHx+ 1=xHw);= xHw +wHx;= �(� + ��1) + �(� + �1);= 2�(� +Re(�1));shows that (�+��) = j�j2kwk2 as claimed. Note that when �1 is real, U is Hermitian.This version does not appear to be as widely known as the Wilkinson one.The NAG subroutine F06HRF computes an elementary unitary matrix so thatRe(j�j�2�) = 1 and 1 � eT1 �w � p2; (5)for some scale factor �. First note that eT1 w=(�1+�) = 1: Then, from the manner inwhich � was chosen, it follows that Re(�j�1 + �j�2) = (kxk+ jRe(�1)j)=kxk. Hencethe choice of � =p(kxk+ jRe(�1)j)=kxk=(�1 + �) is such thateT1 �w =skxk+ jRe(�1)jkxk and j�j�2� = kxk+ Sign(Re(�1))�1kxk+ jRe(�1)j ;and the two conditions (5) on � are satis�ed. Note that 1 � j�j�2j�j � 2:2.4 The LAPACK approachThe LAPACK subroutine CLARFG is a slight variant of the one used by the NAGsubroutine F06HRF.Using the notation of the previous section for w and �, let ��1 = �1 + � andhence eT1 �w = 1 and j�j�2� = (�1 + �)=�: Conditions (1) and (4) are satis�ed sincew and � are scaled here by � and j�j�2; respectively. Note that 1 � j�j�2j�j � 2: Ifx is a real multiple of e1 then �  0 and U  I:Representing U for use in further computation only requires storage for the com-plex �: The storage for x may be re-used to write both � and the essential part ofw, that is x [ � �2=(�1 + �) � � � �n=(�1 + �) ]T :The resulting code is an excellent example of the art of developing software froma numerical algorithm. A review of subroutine CLARFG indicates the care taken



� 5Problem Statement:Compute U = I � �wwH where UHx = kxke1, UHU = I, and jj = 1:Notation:�i = eTi x for i = 1:n; � = Sign(Re(�1))kxk;�1 = ei�1 j�1j where 0 � �1 < 2�; � = (jRe(�1)j+ kxk)=kxkMethod w � EISPACK x+ ei�1kxke1 1=kxk(j�1j+ kxk) �ei�1LINPACK xe�i�1=kxk+ e1 kxk=(j�1j+ kxk) �ei�1NAG (x+ �e1)p�=(�1 + �) (�1 + �)=�� �1LAPACK (x+ �e1)=(�1 + �) (�1 + �)=� �1Table I. Comparisons for the four variants used to compute an elementary unitary matrix.not to reciprocate the number kxk that may fall below a certain machine depen-dent tolerance, SAFMIN. The value SAFMIN, computed by the LAPACK auxiliarysubroutine SLAMCH is a machine dependent lower bound for numbers that may besafely reciprocated and not cause an overow condition. If kxk is less than the lowerbound, then the vector x is scaled by a multiple of the reciprocal of SAFMIN untilit is at least as large as SAFMIN. De�ning the integer k to represent the number ofscalings required, let � = k=SAFMIN: The number � may now be safely computedas �  (� + ��1)=� where �  Sign(Re(��1))(k�xk): The essential part of u iscomputed as (��1 + ��)�1[ ��2 � � � ��n ]T : This same scaling technique is also usedby the real precision version of CLARFG|SLARFG.3. COMPARISONS AND CONCLUSIONSFour di�erent forms of elementary unitary matrices were presented to solve theelimination problem de�ned by (1). Table I presents a summary of the four ap-proaches. The value of � (the scaling factor of x 2.3) is used so that the table entriesfor the NAG approach remain uncluttered. We now briey analyze the informationin the table.|The EISPACK approach. Bene�t: Real �. Cost: An initial scaling of x to preventpossible overow when computing � and storing a possibly complex .|The LINPACK approach. Bene�t: Real �; :5 � j�j � 1. Cost: Storing a possiblycomplex .|The NAG approach. Bene�t: Directly obtains a real . Cost: Storing a possiblycomplex � and forming a square root; 1 � j�j � 2:|The LAPACK approach. Bene�t: Directly obtains a real . Cost: Storing apossibly complex �; 1 � j�j � 2.Examining the application of U to a matrix A allows the following analysis:|The EISPACK and LINPACK approaches require computing A��w(AHw)H withreal �:



6 �|The LAPACK and NAG approaches compute A��w(AHw)H with possibly com-plex �:Since computing the QR factorization of a matrix,the bidiagonal, Hessenberg,and tridiagonal reductions, involve applications of elementary unitary matrices toA, the computation is always cheaper with real �.The bene�t of directly computing a real  is that it allows reuse of software.For example, when reducing a Hermitian matrix to tridiagonal form, the resultingtridiagonal matrix is real, and the symmetric tridiagonalQR algorithmmay then beemployed [1]. The same may be said about the preliminary reduction of a matrixto bidiagonal form needed by the singular value decomposition: see [1, page 42]and [2, chapter 9]. A third example is when computing a QR factorization of amatrix A. For stable computation of a solution to a linear least squares problem,a triangular system of equations involving R is often required. Directly computinga real  results in real numbers on the diagonal of R. Thus, the careful scalingalgorithms used by LAPACK when solving triangular systems of equations may beemployed.On the other hand, when using either the EISPACK and LINPACK forms of ele-mentary unitary matrices, a diagonal unitary matrix D may always be computedto allow reuse of software or the use of careful scaling algorithms. For example,when computing a QR factorization of a matrix A with m rows and n columns, letD = Diag(�1; : : : ; �m) be the diagonal matrix where �j = eTj Rej=jeTj Rejj for j =1:min(m;n) and �j = 1 otherwise. It then follows that A = QR = (QD)(DHR);QD is unitary and the diagonal elements of DHR are real numbers. Similar pro-cedures may be employed when further reducing a Hermitian tridiagonal matrixto real symmetric tridiagonal form and when reducing a matrix to real bidiago-nal form. Further computation and storage is required. The elementary unitarymatrices based on the Hammarling and Du Croz approach implicitly perform thispost-processing step.ACKNOWLEDGMENTSThe author would like to thank Jeremy Du Croz and Dan Sorensen for backgroundinformation on the Hammarling{Du Croz approach and for encouragement. Ananonymous referee, the handling editor W. Van Snyder and Leslea Davison mademany helpful remarks that improved the initial submission of the manuscript. Theclever scaling in x 2.4 is due to James Demmel.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide.SIAM, Philadelphia, PA, second edition, 1995.[2] J.J. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart. LINPACK Users' Guide. SIAM,Philadelphia, PA., 1979.[3] A. A. Dubrulle. Work notes on elementary matrices. Technical Report HPL-93-69, Hewlett{Packard Laboratories, 1993.[4] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins, Baltimore, secondedition, 1989.[5] A. S. Householder. The Theory of Matrices in Numerical Analysis. Dover, 1974.
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