Automatic Differentiation and
Numerical Software Design

Christian H. Bischof

Argonne National Laboratory

Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439, USA, bischof@mcs.anl.gov.

Abstract

Automatic differentiation (AD) tools can generate accurate and efficient derivative code
for computer programs of arbitrary length. In some cases, however, the developer of the
code to be differentiated may be required to provide additional information to an AD tool
to ensure the desired solution. We illustrate these issues with nondifferentiable language
intrinsics such as max() in the context of computing the Euclidean norm and numerical
integrators. In both cases, very little additional information is required to ensure that AD
computes the “do-what-I-mean” derivatives. In addition, the provision of such information
makes it easy to derive “derivative-enhanced” versions of these codes.

Keywords
Automatic Differentiation, Numerical Integrators, Intrinsics, ADIntrinsics, SparsLinC.

1 INTRODUCTION

Automatic differentiation (AD) tools automate the generation of derivatives of “func-
tions” defined by computer programs (see, for example, the book by Rall (1981) or the
article by Griewank (1989). Codes generated by AD tools (see http://www.mcs.anl.gov/
Projects/autodiff/AD Tools for an overview of currently available AD tools) compute
derivatives that are accurate up to machine precision and can be significantly faster than
divided-difference approximations. Thus, AD tools offer a convenient mechanism for pro-
viding the derivative codes that are needed in the context of numerical schemes for dif-
ferential equations, optimization, or inverse problems (see, for example, the proceedings
volumes edited by Griewank and Corliss (1991) or Berz et al. (1996).

Based on our experience with the ADIFOR (see Bischof et al. (1992,1994)) and ADIC
(see Bischof et al. (1996)) tools for automatic differentiation, this article explores some
of the subtler issues related to the use of AD and the implications for numerical software
design. In particular, we focus on the issues that arise from the fact that AD differentiates a
given computer program step by step, in a fashion that is oblivious of the overall semantics
of a program. This “myopic” view gives AD tools the power to deal with programs of

arbitrary length, but it also implies that users of AD tools may have to communicate
some of their knowledge to an AD tool to arrive at a desired solution.

Specifically, we illustrate the issues arising in the context of nondifferentiable language
intrinsics such as max() and numerical integrators. Lastly, we discuss benefits of using

AD tools.

2 DEALING WITH INTRINSICS

Automatic differentiation (AD) augments computer programs with statements for the
computation of derivatives by exploiting the fact that every program is composed of simple
operations such as additions, multiplications, or intrinsic functions, for which derivatives
are known (we call such derivatives “elementary derivatives”). For example, an AD tool
might transform the statement

y = sin(x)
into the derivative statement
Vy = cos(x) * V x

dsin(x
since A = cos(x). Here Vy denotes the derivatives of variable y with respect to
T

some chosen set of variables. In this case, there is no difficulty, since sin is everywhere
differentiable.

Most computer languages do, however, contain intrinsic functions that are not differ-
entiable in some points in their domain, as for example the Fortran 77 intrinsics abs(x)
and sqrt (x) when the value of the argument is zero. We call such a point an “exceptional
point.” We cannot simply claim that the function in question is not differentiable, since
a computer program executing such instructions may well represent a smooth function,
such as g(x,y) = a* 4+ y*. Moreover, intrinsics may be used to guard against unphysical
values of simulation parameters. For example, in a weather model one might see code such
as

rain = max(rain,0.0)

This statement reflects the fact that raintall cannot be negative and is intended to convert
a small negative number, which may have arisen from floating-point roundoff, to the
physically sensible number 0 (i.e., no rain).

The max(x,y) function is not differentiable for #+ == y. However, in the previously
described case, it makes sense to define partial derivatives for the exceptional cases as
amax(x,y)|x::y — 1.0 and dmax(x,y)

ox dy

Vrain when rain is set to zero in the induced AD statement

|z==y := 0.0. These definitions do not change

Vrain = amL(x,y) Vrain

0x

However, these definition would not lead to the desired result if the order of arguments
in the max () call was reversed, namely,

rain = max(0.0,rain)

In this case, the derivative of rain would be zeroed out when the value of the variable
Jmax

0

Jmax . Omax(x
P In other contexts, an argument could also be made for setting #h::y
y T

0.5 and |z==y = 0.5, since then automatic differentiation provides a so-called

was zero, and it would have been appropriate to exchange the definitions of and

dmax(x,y)
d

subgradient, which is useful in nonsmooth numerical optimization, as described, for ex-
ample, in the book by Clarke (1983).

These examples demonstrate the following points:

(i) No choice of derivative values for exceptional points will always be correct.
(ii) There is no “automatic” way to decide what sensible choices are.
(iii) User insight into the problem is essential.

Thus, potential users of AD tools need to be aware of these facts and provide “hints”
for an AD tool in the code to be eventually differentiated. Such hints are particularly
important for numerical libraries, as these codes typically embody subtle numerics and
will be reused often. To this end, the ADIFOR and ADIC systems employ the completely
user-customizable ADIntrinsics system for dealing with Fortran and ANSI-C intrinsics.
For example, in translating a call to a max intrinsic, the ADIFOR preprocessor might
generate a “pseudocall” like

call AD_INTRINSIC FIRST MAX S(t, z, r3wv, rlp, r2p)

which is expected to return the partial derivative values of the result of a binary max () call
with respect to its first and second argument in the variables r1_p and r2_p, respectively.

The ADIntrinsics postprocessor is then called to instantiate this pseudocall based on
a translation blueprint. For the max () intrinsic, the default blueprint is provided in the
file max.T and is shown in Figure 1. Here x and y correspond to the first and second
arguments, z to the result, fx and fy to the first-order partials with respect to the first
and second argument, and fxx, fxy, and fyy to the second-order partials. In the so-
called performance mode, no error handler is called, whereas otherwise, the pseudocall
call EXCEPTION HANDLER is replaced by code setting the value of £x to a default value
and reporting the fact that max was invoked at a point where its arguments had the same
value.

The user either can change the default values embedded in such a blueprint, or can
define alternative blueprints. For example, the library call

call ehsups(7,1,my default value)

effectively defines fx = my_default value in the instantiation of the EXCEPTION HANDLER
call. In this fashion, the user can easily obtain all the three choices mentioned before. If

z = max (x,y)
#finish FVAL
if (x .gt. y) then
fx = TYPE(1.0)
fy = TYPE(0.0)
else if (x .1t. y) then
fx = TYPE(0.0)
fy = TYPE(1.0)
else
#ifdef PERFORMANCE
fx = TYPE(0.5)
fy = TYPE(0.5)

#else
call EXCEPTION_HANDLER
fy = TYPE(1.0) - fx
#endif
endif
fxx = TYPE(0.0)
fxy = TYPE(0.0)
fyy = TYPE(0.0)

Figure 1 ADIntrinsics Translation Blueprint for max () Intrinsic

a change of default values is not sufficient, the user can insert directives into the source
code to instruct the ADIntrinsics postprocessor to use a user-supplied translation template
instead of the default one. For example, the directive

c AD_EXCEPTION OVERRIDE INTRINSIC ONCE(MAX,MYMAX)

will instruct the postprocessor to consult a user-generated file called mymax.T instead
of the default file max.T for the next textual occurrence of a AD_INTRINSIC FIRST MAX
pseudocall. Thus, the ADIntrinics system is an open and complete system for dealing with
the intrinsics issue, and because of its standalone nature it can be used by any other AD
tool. In fact, our intention was to spare other developers of AD tools the considerable
effort that went into the development of this system. The use of the ADIntrinsics system
for Fortran 77 intrinsics is described in detail in the ADIFOR user guide (Bischof et al.,
(1995a)), the design philosophy the paper by Mauer et al. (1996).

To illustrate, let us consider the computation of the Euclidean norm z = /a2 + y2. A
numerically sensible way of doing this is shown in Figure 2. This function is differentiable
except for x = y = 0. However, automatically differentiating with respect to x and y, we
note that we might attempt to compute the derivatives of abs() when its argument is
zero, and of max () when both its arguments have the same value, even when = and y are
not both zero. By default, the ADIntrinsics system would invoke the error handler, which

xabs abs(x)

yabs abs(y)

w = max(xabs,yabs)
if (w .eq. 0.0) then

z =0.0
else
z = wksqrt((xabs/w)**2 + (yabs/w)**2)

endif

Figure 2 Computation of Euclidean Norm with Scaling

C AD_EXCEPTION BEGIN_IGNORE
xabs = abs(x)
yabs = abs(y)
w = max(xabs,yabs)
C AD_EXCEPTION_END_IGNORE
if (w .eq. 0.0) then
z = sqrt(w)
else
C AD_EXCEPTION_LEVEL (PERFORMANCE)
z = wksqrt((xabs/w)**2 + (yabs/w)**2)
C AD_EXCEPTION_LEVEL (DEFAULT)
endif

Figure 3 Computation of Euclidean Norm Annotated for Subsequent Automatic Differ-
entiation

would report these exceptions to the user. However, we know that, unless = y = 0,
this computation represents a differentiable function and that, independent of the value
of w, we will obtain the same result. Thus, as shown in Figure 3, we turn off exception
reporting via directives, and we trigger an invocation of the ADintrinsics error handler
at the point of nondifferentiability by replacing z = 0 with z = sqrt(w). We also know
that no point of nondifferentiability can be encountered in the computation of z in the
“else” branch, so we use the so-called performance mode in this part of the code. Lastly,
we reset the exception-handling mechanism to its default state. When translated by an
ADIntrinsics-aware AD tool, the generated derivative code will report an exception only
at x =y =0.

These examples illustrates that, in general, very little effort is required to deal with the
intrinsics issue when the code is developed, while subsequent users will in all likelihood
not have the knowledge to deal with these subtle issues in a suitable fashion.

Given: parameter p, current time ¢, current solution x. & x(t, p),
suggested time step At.
1) Compute 1 = x(t + At, p) using Method 1.
2) Compute x9 & x(t + At, p) using Method 2.
3) Compute 6 = ||x1 — x3]| for some norm || - ||.
4) If 6 < some given threshold
accept the higher-order of z; and z,
and update t «+— t + At

else
At = g(At,0);
goto 1)

endif

Figure 4 Simplified Description of a Numerical Integrator

3 NUMERICAL PARADIGMS

Another problem arises from the fact that an AD tool, when applied to a code embodying
a numerical method, will not only differentiate the solution produced by this method, but
also take into account the way by which one arrived at the solution. As an illustration,
Figure 4 shows a simplified version of the time-stepping loop of a typical explicit numerical
integrator with stepsize control for a parameter-dependent initial value problem

&(p) = fla,p,t),2(t =0) = z,. (1)

Here p is a parameter, and ¢ is some function that adjusts the time step. Methods (1)
and (2) are two integration methods of different order. For simplicity, we ignored the fact
that the time step will be adjusted upwards if there is a good fit.

dx
dp
an AD tool to differentiate this code with respect to p. If we differentiate with respect to

If, for a a given p, we are interested in li=7, where T'is the final time, we can employ

d
p, and use V to denote T the chain rule of differential calculus now implies that

V(AL + %v&. (2)

dyg
9 (At)

V(At) =

Clearly, V6 # 0 in general, as ¢ depends on z, which in turn depends on p. Thus we

have the interesting situation that, when —g # 0, the computational equivalent of time

will have a nonzero derivative with respect to the parameter p. Viewed from an analytical
perspective, this is nonsense — the values of time and the parameter are not related. From
a computational perspective however, it does make sense — depending on the value of the

parameter, we may choose a different time discretization. Thus, what we really compute
as the final value x7(p) is

zr(p) = 2(H(p), p)li(p)=T (3)

(note the dependence of ¢ on p). Thus, we obtain

0 0x
vxt:T - mh:Tvtt:T + a_p7 (4)
and with (1)
0
Var = f(ar,p, T)Vie—r + a—p|t:T- (5)

Note that Vx and Vt will have been computed by the AD-generated derivative code. We
observe the following:

(i) Depending on how the time discretization was chosen, we will obtain different values
: : . Oz .
for Vit,—r and thus for Va,—r. Most certainly, we will not obtain a—|t:T which is the
p

result desired by most users.
(ii) If At would have been zero at every step, we would have Vi,—r = 0 and thus Va,—r =

0
a—x|t:T, as desired by the user. By default, this happens in methods using a fixed step
p
size. This case is also discussed in the paper by Sandu at al. (1995).
(iii) Independent of how the time discretization was chosen, we can recover the desired
solution as

0
a—f?|t:T = th:T — f(l’T,p, T)Vtt:T. (6)

These issues are discussed in more detail in the forthcoming paper by Eberhard and
Bischof (1996).

Note that approaches (ii) and (iii) are really geared toward the library developer and
the sophisticated AD user, respectively. When an integrator code is written, it is probably
feasible to indicate the places where the next time step is assigned and to indicate that an
AD tool should treat this statement as constant with respect to differentiation, resulting
in the assignment of a zero gradient. Current AD tools do not have such facilities built-in
yet, but will so soon. At any rate, unless the developer of the integrator provides this
information, the considerable sophistication of these codes makes it difficult for others to
extract this information from the code.

While one might take the attitude that this was not really an issue given the “fix” (iii),

x
this is not really the case. Even when — is well behaved, Vt and Vz can become very

large and can overflow. Furthermore, the user of an AD tool may well be unaware of these
issues, or may not be able to localize the problem since the integrator may be buried
under other layers of software. However, as shown in the forthcoming paper by Eberhard

and Bischof (1996), if the final time is prescribed, we are likely to obtain Vt,—p = 0 and
everything works out; we suspect that this situation has happened in quite a few AD
applications.

5,
We note that while (ii) and (iii) will result in the right derivatives a—x, there is no

guarantee that the derivatives will be obtained at the same accuracy as the solution x,
since the guard of the if-statement governing acceptance or rejection of a step will not be
augmented by AD, and thus still will be only governed by the behavior of . Thus, the
derivatives obtained by (2) or (3) will be consistent, but they may not be as accurate as

those obtained by solving the sensitivity equations (x, = Z_x)
p
af af
l’p = a—xl'p —|— %

alongside the original ODE (1). It is easy to add the norm of Vé to the guard for stepsize
control, but an AD tool cannot be expected to do so without user guidance. Similar issues
also arise in the context of automatic differentiation of iterative solvers for nonlinear
equations and are discussed in the paper by Griewank et al. (1993).

4 CONCLUDING REMARKS

The preceding sections may suggest that AD tools are mainly an additional burden for
numerical software developers. However, AD tools can greatly simplify software interfaces
that require derivatives. While many numerical codes currently provide an option for
the user to provide his own routine for differentiation, the integration of an AD tool can
facilitate the process (see, for example, the user’s guide by Liu and Tits (1996)). In addition
to accurate derivatives, AD tools can also provide, in a fashion that is transparent to the
user, information about the zero/nonzero structure of derivative matrices (see Bischof
et al. (1995b)). That is, for a vector-valued function F' : & — y, we can compute both

dF
the value and the nonzero structure of of —/|,—,, for arbitrarily chosen values z,. This

dzx

information is required to solve linear systems involving the Jacobian, and the automatic
detection of the sparsity pattern avoids the error-prone task of having the user specity the
sparsity pattern. This feature is provided in ADIFOR and ADIC through the SparsLinC
library and is used, for example, in the NEOS (Network-enabled Optimization Server)
problem-solving environment, which is described by Mesnier (1995) and accessible at
URL http://www.mcs.anl.gov/home/otc/index.html.

AD is intended to save work (for handcoding of derivatives) and avoid hassle (caused
by numerical difficulties due to inaccurate derivatives). Even though AD tools are still
in their infancy, they already can compute derivatives faster than divided difference ap-
proximations (see the references in the ADIFOR 2.0 paper (Bischof et al., (1994)), and
there are examples where the availability of fully accurate derivatives was essential for
numerical robustness and convergence (see, for example, the papers by Hovland et al.
(1995), Eberhard (1996), and Ibsais and Ajjarapu (1996)). By taking AD considerations
into account in the development of their software, library developers can easily develop
“sensitivity-enhanced” versions of their codes using AD tools. Some needed features (such

as intrinsics handling) are already supported; others (such as selective disabling of differ-
entiation or the automatic insertion of code that uses derivatives) are still being discussed.
The AD tool developers community is dependent on feedback by potential users to provide
the right extensions.

It AD is kept in mind when writing software, numerical software developers can easily
enhance the functionality of their software by providing derivative-enhanced versions of
their codes as well. We believe this to be a considerable bonus, since this feature may
greatly enhance the potential usability of this software, for example when a program
requiring an integrator solver is ultimately to be embedded in an inverse problem or
optimization context. However, AD needs to be kept in mind when developing codes,
and interaction with developers of AD tools is needed to arrive at mutually satisfactory
solutions.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Computational and Technology Research, U.S.
Department of Energy, under contract W-31-109-Eng-38. This work was partially com-
pleted while the author was visiting the Institute of Scientific Computing, ETH Zirich,
Switzerland.

REFERENCES

Berz, M., Bischof, C., Corliss, G., and Griewank, A. (1996). Computational Differentia-
tion: Techniques, Applications, and Tools. STAM, Philadelphia. To appear.

Bischof, C., Carle, A., Corliss, G., Griewank, A., and Hovland, P. (1992). ADIFOR:
Generating derivative codes from Fortran programs. Scientific Programming, 1(1):11-
29.

Bischof, C., Carle, A., Khademi, P., and Mauer, A. (1994). The ADIFOR 2.0 system for
the automatic differentiation of Fortran 77 programs. Preprint MCS-P481-1194, Math-
ematics and Computer Science Division, Argonne National Laboratory. Also Technical
Report CRPC-TR94491, Center for Research on Parallel Computation, Rice University.

Bischof, C., Carle, A., Khademi, P., Mauer, A., and Hovland, P. (1995a). ADIFOR 2.0
user’s guide (Revision C). Technical Memorandum ANL/MCS-TM-192, Mathematics
and Computer Science Division, Argonne National Laboratory. Also Technical Report
CRPC-95516-S, Center for Research on Parallel Computation, Rice University.

Bischof, C., Khademi, P., Bouaricha, A., and Carle, A. (1995b). Efficient computation of
gradients and Jacobians by transparent exploitation of sparsity in automatic differentia-
tion. Preprint MCS-P519-0595, Mathematics and Computer Science Division, Argonne
National Laboratory. Also Technical Report CRPC-TR95583, Center for Research on
Parallel Computation, Rice University. Accepted for publication in Optimization Meth-
ods and Software.

Bischof, C., Roh, L., and Mauer, A. (1996). ADIC — A tool for the automatic differen-
tiation of C programs. Private Information.

Clark, F. (1983). Optimization and Nonsmooth Analysis. John Wiley and Sons, New
York.

Eberhard, P. (1996). Analysis and optimization of complex multibody systems using
advanced sensitivity analysis methods. ICTAM/GAMM 95: Issue 3: Applied Stochastics
and Optimization, pages 40-43. Special Issue of Zeitschrift fiir Angewandte Mathematik
und Mechanik (ZAMM).

Eberhard, P., and Bischof, C. (1996). Automatic differentiation of numerical integration
algorithms. Private Information.

Griewank, A. (1989). On automatic differentiation. In Mathematical Programming: Recent
Developments and Applications, pages 83-108, Amsterdam. Kluwer Academic Publish-
ers.

Griewank, A., Bischof, C., Corliss, G., Carle, A., and Williamson, K. (1993). Derivative
convergence of iterative equation solvers. Optimization Methods and Software, 2:321—
355.

Griewank, A., and Corliss, G. (1991). Automatic Differentiation of Algorithms. SIAM,
Philadelphia.

Hovland, P., Bischof, C., Spiegelman, D., and Casella, M. (1995). Efficient derivative
codes through automatic differentiation and interface contraction: An application in
biostatistics. Preprint MCS-P491-0195, Mathematics and Computer Science Division,
Argonne National Laboratory. To appear in STAM J. Scientific Computing.

Ibsais, A., and Ajjarapu, V. (1996). The role of automatic differentiation in power sys-
tem analysis. In IEFEE PES Winter Power Meeting, Paper No. 96 WM 328-5 PWRS,
Baltimore, Maryland, January 21-25.

Liu, M. D., and Tits, A. L. (1996). User’s guide for ADIFFSQR version 1.0.

Mauer, A., Bischof, C., and Carle, A. (1996). The ADIntrinsics system for handling
automatic differentiation exceptions. Private Information.

Mesnier, M. P. (1995). The network-enabled optimization system server. Technical Mem-
orandum ANL/MCS-TM-210, Mathematics and Computer Science Division, Argonne
National Laboratory.

Rall, L. B. (1981). Automatic Differentiation: Techniques and Applications, volume 120
of Lecture Notes in Computer Science. Springer Verlag, Berlin.

Sandu, A., Carmichael, G. R., and Potra, F. A. (1995). Sensitivity analysis for atmo-
spheric chemistry models via automatic differentiation. Technical Report 73, Dept. of
Mathematics, University of lowa.

