
Automatic Di�erentiation andNumerical Software DesignChristian H. BischofArgonne National LaboratoryMathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, IL 60439, USA, bischof@mcs.anl.gov.AbstractAutomatic di�erentiation (AD) tools can generate accurate and e�cient derivative codefor computer programs of arbitrary length. In some cases, however, the developer of thecode to be di�erentiated may be required to provide additional information to an AD toolto ensure the desired solution. We illustrate these issues with nondi�erentiable languageintrinsics such as max() in the context of computing the Euclidean norm and numericalintegrators. In both cases, very little additional information is required to ensure that ADcomputes the \do-what-I-mean" derivatives. In addition, the provision of such informationmakes it easy to derive \derivative-enhanced" versions of these codes.KeywordsAutomatic Di�erentiation, Numerical Integrators, Intrinsics, ADIntrinsics, SparsLinC.1 INTRODUCTIONAutomatic di�erentiation (AD) tools automate the generation of derivatives of \func-tions" de�ned by computer programs (see, for example, the book by Rall (1981) or thearticle by Griewank (1989). Codes generated by AD tools (see http://www.mcs.anl.gov/Projects/autodiff/AD Tools for an overview of currently available AD tools) computederivatives that are accurate up to machine precision and can be signi�cantly faster thandivided-di�erence approximations. Thus, AD tools o�er a convenient mechanism for pro-viding the derivative codes that are needed in the context of numerical schemes for dif-ferential equations, optimization, or inverse problems (see, for example, the proceedingsvolumes edited by Griewank and Corliss (1991) or Berz et al. (1996).Based on our experience with the ADIFOR (see Bischof et al. (1992,1994)) and ADIC(see Bischof et al. (1996)) tools for automatic di�erentiation, this article explores someof the subtler issues related to the use of AD and the implications for numerical softwaredesign. In particular, we focus on the issues that arise from the fact that AD di�erentiates agiven computer program step by step, in a fashion that is oblivious of the overall semanticsof a program. This \myopic" view gives AD tools the power to deal with programs of



arbitrary length, but it also implies that users of AD tools may have to communicatesome of their knowledge to an AD tool to arrive at a desired solution.Speci�cally, we illustrate the issues arising in the context of nondi�erentiable languageintrinsics such as max() and numerical integrators. Lastly, we discuss bene�ts of usingAD tools.2 DEALING WITH INTRINSICSAutomatic di�erentiation (AD) augments computer programs with statements for thecomputation of derivatives by exploiting the fact that every program is composed of simpleoperations such as additions, multiplications, or intrinsic functions, for which derivativesare known (we call such derivatives \elementary derivatives"). For example, an AD toolmight transform the statement y = sin(x)into the derivative statement ry = cos(x) * r xsince d sin(x)d x = cos(x). Here ry denotes the derivatives of variable y with respect tosome chosen set of variables. In this case, there is no di�culty, since sin is everywheredi�erentiable.Most computer languages do, however, contain intrinsic functions that are not di�er-entiable in some points in their domain, as for example the Fortran 77 intrinsics abs(x)and sqrt(x) when the value of the argument is zero. We call such a point an \exceptionalpoint." We cannot simply claim that the function in question is not di�erentiable, sincea computer program executing such instructions may well represent a smooth function,such as g(x; y) = px4 + y4. Moreover, intrinsics may be used to guard against unphysicalvalues of simulation parameters. For example, in a weather model one might see code suchas rain = max(rain,0.0)This statement re
ects the fact that rainfall cannot be negative and is intended to converta small negative number, which may have arisen from 
oating-point roundo�, to thephysically sensible number 0 (i.e., no rain).The max(x; y) function is not di�erentiable for x == y. However, in the previouslydescribed case, it makes sense to de�ne partial derivatives for the exceptional cases as@max(x; y)@ x jx==y := 1:0 and @max(x; y)@ y jx==y := 0:0. These de�nitions do not changerrain when rain is set to zero in the induced AD statementrrain = @max(x; y)@ x rrain



However, these de�nition would not lead to the desired result if the order of argumentsin the max() call was reversed, namely,rain = max(0.0,rain)In this case, the derivative of rain would be zeroed out when the value of the variablewas zero, and it would have been appropriate to exchange the de�nitions of @max@ x and@max@ y . In other contexts, an argument could also be made for setting @max(x; y)@ x jx==y =0:5 and @max(x; y)@ y jx==y = 0:5, since then automatic di�erentiation provides a so-calledsubgradient, which is useful in nonsmooth numerical optimization, as described, for ex-ample, in the book by Clarke (1983).These examples demonstrate the following points:(i) No choice of derivative values for exceptional points will always be correct.(ii) There is no \automatic" way to decide what sensible choices are.(iii) User insight into the problem is essential.Thus, potential users of AD tools need to be aware of these facts and provide \hints"for an AD tool in the code to be eventually di�erentiated. Such hints are particularlyimportant for numerical libraries, as these codes typically embody subtle numerics andwill be reused often. To this end, the ADIFOR and ADIC systems employ the completelyuser-customizable ADIntrinsics system for dealing with Fortran and ANSI-C intrinsics.For example, in translating a call to a max intrinsic, the ADIFOR preprocessor mightgenerate a \pseudocall" likecall AD INTRINSIC FIRST MAX S(t, z, r3 v, r1 p, r2 p)which is expected to return the partial derivative values of the result of a binary max() callwith respect to its �rst and second argument in the variables r1 p and r2 p, respectively.The ADIntrinsics postprocessor is then called to instantiate this pseudocall based ona translation blueprint. For the max() intrinsic, the default blueprint is provided in the�le max.T and is shown in Figure 1. Here x and y correspond to the �rst and secondarguments, z to the result, fx and fy to the �rst-order partials with respect to the �rstand second argument, and fxx, fxy, and fyy to the second-order partials. In the so-called performance mode, no error handler is called, whereas otherwise, the pseudocallcall EXCEPTION HANDLER is replaced by code setting the value of fx to a default valueand reporting the fact that max was invoked at a point where its arguments had the samevalue.The user either can change the default values embedded in such a blueprint, or cande�ne alternative blueprints. For example, the library callcall ehsups(7,1,my default value)e�ectively de�nes fx = my default value in the instantiation of the EXCEPTION HANDLERcall. In this fashion, the user can easily obtain all the three choices mentioned before. If



z = max (x,y)#finish FVALif (x .gt. y) thenfx = TYPE(1.0)fy = TYPE(0.0)else if (x .lt. y) thenfx = TYPE(0.0)fy = TYPE(1.0)else#ifdef PERFORMANCEfx = TYPE(0.5)fy = TYPE(0.5)#else call EXCEPTION HANDLERfy = TYPE(1.0) - fx#endifendiffxx = TYPE(0.0)fxy = TYPE(0.0)fyy = TYPE(0.0)Figure 1 ADIntrinsics Translation Blueprint for max() Intrinsica change of default values is not su�cient, the user can insert directives into the sourcecode to instruct the ADIntrinsics postprocessor to use a user-supplied translation templateinstead of the default one. For example, the directivec AD EXCEPTION OVERRIDE INTRINSIC ONCE(MAX,MYMAX)will instruct the postprocessor to consult a user-generated �le called mymax.T insteadof the default �le max.T for the next textual occurrence of a AD INTRINSIC FIRST MAXpseudocall. Thus, the ADIntrinics system is an open and complete system for dealing withthe intrinsics issue, and because of its standalone nature it can be used by any other ADtool. In fact, our intention was to spare other developers of AD tools the considerablee�ort that went into the development of this system. The use of the ADIntrinsics systemfor Fortran 77 intrinsics is described in detail in the ADIFOR user guide (Bischof et al.,(1995a)), the design philosophy the paper by Mauer et al. (1996).To illustrate, let us consider the computation of the Euclidean norm z = px2 + y2. Anumerically sensible way of doing this is shown in Figure 2. This function is di�erentiableexcept for x = y = 0. However, automatically di�erentiating with respect to x and y, wenote that we might attempt to compute the derivatives of abs() when its argument iszero, and of max() when both its arguments have the same value, even when x and y arenot both zero. By default, the ADIntrinsics system would invoke the error handler, which



xabs = abs(x)yabs = abs(y)w = max(xabs,yabs)if (w .eq. 0.0) thenz = 0.0elsez = w*sqrt( (xabs/w)**2 + (yabs/w)**2 )endifFigure 2 Computation of Euclidean Norm with ScalingC AD EXCEPTION BEGIN IGNORExabs = abs(x)yabs = abs(y)w = max(xabs,yabs)C AD EXCEPTION END IGNOREif (w .eq. 0.0) thenz = sqrt(w)elseC AD EXCEPTION LEVEL(PERFORMANCE)z = w*sqrt( (xabs/w)**2 + (yabs/w)**2 )C AD EXCEPTION LEVEL(DEFAULT)endifFigure 3 Computation of Euclidean Norm Annotated for Subsequent Automatic Di�er-entiationwould report these exceptions to the user. However, we know that, unless x = y = 0,this computation represents a di�erentiable function and that, independent of the valueof w, we will obtain the same result. Thus, as shown in Figure 3, we turn o� exceptionreporting via directives, and we trigger an invocation of the ADintrinsics error handlerat the point of nondi�erentiability by replacing z = 0 with z = sqrt(w). We also knowthat no point of nondi�erentiability can be encountered in the computation of z in the\else" branch, so we use the so-called performance mode in this part of the code. Lastly,we reset the exception-handling mechanism to its default state. When translated by anADIntrinsics-aware AD tool, the generated derivative code will report an exception onlyat x = y = 0.These examples illustrates that, in general, very little e�ort is required to deal with theintrinsics issue when the code is developed, while subsequent users will in all likelihoodnot have the knowledge to deal with these subtle issues in a suitable fashion.



Given: parameter p, current time t, current solution xc � x(t; p),suggested time step �t.1) Compute x1 � x(t+�t; p) using Method 1.2) Compute x2 � x(t+�t; p) using Method 2.3) Compute � = kx1 � x2k for some norm k � k.4) If � < some given thresholdaccept the higher-order of x1 and x2and update t t+�telse�t = g(�t; �);goto 1)endifFigure 4 Simpli�ed Description of a Numerical Integrator3 NUMERICAL PARADIGMSAnother problem arises from the fact that an AD tool, when applied to a code embodyinga numerical method, will not only di�erentiate the solution produced by this method, butalso take into account the way by which one arrived at the solution. As an illustration,Figure 4 shows a simpli�ed version of the time-stepping loop of a typical explicit numericalintegrator with stepsize control for a parameter-dependent initial value problem_x(p) = f(x; p; t); x(t = 0) = xo: (1)Here p is a parameter, and g is some function that adjusts the time step. Methods (1)and (2) are two integration methods of di�erent order. For simplicity, we ignored the factthat the time step will be adjusted upwards if there is a good �t.If, for a a given p, we are interested in @ x@ p jt=T , where T is the �nal time, we can employan AD tool to di�erentiate this code with respect to p. If we di�erentiate with respect top, and use r to denote dd p , the chain rule of di�erential calculus now implies thatr(�t) = @ g@ (�t)r(�t) + @ g@ �r�: (2)Clearly, r� 6= 0 in general, as � depends on x, which in turn depends on p. Thus wehave the interesting situation that, when @ g@ � 6= 0, the computational equivalent of timewill have a nonzero derivative with respect to the parameter p. Viewed from an analyticalperspective, this is nonsense | the values of time and the parameter are not related. Froma computational perspective however, it does make sense | depending on the value of the



parameter, we may choose a di�erent time discretization. Thus, what we really computeas the �nal value xT (p) isxT (p) = x(t(p); p)jt(p)=T (3)(note the dependence of t on p). Thus, we obtainrxt=T = @ x@ t jt=Trtt=T + @ x@ p ; (4)and with (1)rxt=T = f(xT ; p; T )rtt=T + @ x@ p jt=T : (5)Note that rx and rt will have been computed by the AD-generated derivative code. Weobserve the following:(i) Depending on how the time discretization was chosen, we will obtain di�erent valuesfor rtt=T and thus for rxt=T . Most certainly, we will not obtain @ x@ p jt=T which is theresult desired by most users.(ii) If �t would have been zero at every step, we would have rtt=T = 0 and thus rxt=T =@ x@ p jt=T , as desired by the user. By default, this happens in methods using a �xed stepsize. This case is also discussed in the paper by Sandu at al. (1995).(iii) Independent of how the time discretization was chosen, we can recover the desiredsolution as@ x@ p jt=T = rxt=T � f(xT ; p; T )rtt=T : (6)These issues are discussed in more detail in the forthcoming paper by Eberhard andBischof (1996).Note that approaches (ii) and (iii) are really geared toward the library developer andthe sophisticated AD user, respectively.When an integrator code is written, it is probablyfeasible to indicate the places where the next time step is assigned and to indicate that anAD tool should treat this statement as constant with respect to di�erentiation, resultingin the assignment of a zero gradient. Current AD tools do not have such facilities built-inyet, but will so soon. At any rate, unless the developer of the integrator provides thisinformation, the considerable sophistication of these codes makes it di�cult for others toextract this information from the code.While one might take the attitude that this was not really an issue given the \�x" (iii),this is not really the case. Even when @ x@ p is well behaved, rt and rx can become verylarge and can over
ow. Furthermore, the user of an AD tool may well be unaware of theseissues, or may not be able to localize the problem since the integrator may be buriedunder other layers of software. However, as shown in the forthcoming paper by Eberhard



and Bischof (1996), if the �nal time is prescribed, we are likely to obtain rtt=T = 0 andeverything works out; we suspect that this situation has happened in quite a few ADapplications.We note that while (ii) and (iii) will result in the right derivatives @ x@ p , there is noguarantee that the derivatives will be obtained at the same accuracy as the solution x,since the guard of the if-statement governing acceptance or rejection of a step will not beaugmented by AD, and thus still will be only governed by the behavior of x. Thus, thederivatives obtained by (2) or (3) will be consistent, but they may not be as accurate asthose obtained by solving the sensitivity equations (xp = @ x@ p )_xp = @ f@ xxp + @ f@ p :alongside the original ODE (1). It is easy to add the norm of r� to the guard for stepsizecontrol, but an AD tool cannot be expected to do so without user guidance. Similar issuesalso arise in the context of automatic di�erentiation of iterative solvers for nonlinearequations and are discussed in the paper by Griewank et al. (1993).4 CONCLUDING REMARKSThe preceding sections may suggest that AD tools are mainly an additional burden fornumerical software developers. However, AD tools can greatly simplify software interfacesthat require derivatives. While many numerical codes currently provide an option forthe user to provide his own routine for di�erentiation, the integration of an AD tool canfacilitate the process (see, for example, the user's guide by Liu and Tits (1996)). In additionto accurate derivatives, AD tools can also provide, in a fashion that is transparent to theuser, information about the zero/nonzero structure of derivative matrices (see Bischofet al. (1995b)). That is, for a vector-valued function F : x 7! y, we can compute boththe value and the nonzero structure of of dFdx jx=xo, for arbitrarily chosen values xo. Thisinformation is required to solve linear systems involving the Jacobian, and the automaticdetection of the sparsity pattern avoids the error-prone task of having the user specify thesparsity pattern. This feature is provided in ADIFOR and ADIC through the SparsLinClibrary and is used, for example, in the NEOS (Network-enabled Optimization Server)problem-solving environment, which is described by Mesnier (1995) and accessible atURL http://www.mcs.anl.gov/home/otc/index.html.AD is intended to save work (for handcoding of derivatives) and avoid hassle ( causedby numerical di�culties due to inaccurate derivatives). Even though AD tools are stillin their infancy, they already can compute derivatives faster than divided di�erence ap-proximations (see the references in the ADIFOR 2.0 paper (Bischof et al., (1994)), andthere are examples where the availability of fully accurate derivatives was essential fornumerical robustness and convergence (see, for example, the papers by Hovland et al.(1995), Eberhard (1996), and Ibsais and Ajjarapu (1996)). By taking AD considerationsinto account in the development of their software, library developers can easily develop\sensitivity-enhanced" versions of their codes using AD tools. Some needed features (such
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