
Christian Bischof and Andreas GriewankTools for the Automatic Di�erentiation of Computer ProgramsAutomatic di�erentiation (AD) is a methodology for developing sensitivity-enhanced versions of arbitrary computerprograms. In this paper, we provide some background information on AD and basic implementation issues for thedesign of general purpose tools that can deal with codes from the Fortran and C family, address some frequently askedquestions, and provide pointers for further study.1. IntroductionLet f be a computer model, and denote by f(x) the output produced for a particular input x. Derivatives @ fj@ xi areubiquitous in numerical computing; examples are methods for minimization, the solution of nonlinear systems ofequations, or the solution of sti� ordinary di�erential equations, partial di�erential equations, or di�erential-algebraicequations. Derivatives also play a central role in the sensitivity analysis of computer models, where one tries to assessthe sensitivity of a computational model to perturbations in its parameters or initial conditions. inverse problems,where one tries to calibrate the initial state of a computer model such that its behavior best matches a series ofexperimentally acquired data, or (multidisciplinary) design optimization, where one tries to �nd the optimal settingof input parameters of a computer model with respect to a cost function that quanti�es the quality of the overalldesign.Assume that we have a code for the computation of a function f and f : x 2 Rn 7! y 2 Rm, and we wish tocompute the derivatives of y with respect to x. We call x the vector of independent variables and y the vector ofdependent variables. In computing derivatives, we should keep the following issues in mind:Reliability: The computed derivatives should ideally be accurate to machine precision. If the functional relationbetween x and y is not necessarily smooth the user should get a warning that something might be amiss.Computational Cost: In many applications, the computation of derivatives is the dominant computational bur-den. Hence, the amount of memory and runtime required for the derivative code should be minimized as muchas possible and in any case a priori bounded.Scalability: Whatever tool we choose should give correct results for a 1-line formula as well as a 50,000-line code.Human E�ort: Derivatives are a means to an end. Hence a user should not spend much time in preparing a codefor di�erentiation, in particular in situations where computer models are bound to change frequently.Handcoding, divided-di�erence approximations, and symbolic manipulators traditionally have been used for thecomputation of derivatives. However, these methods fall short with respect to the previously mentioned criteria. Themain drawbacks of divided-di�erence approximations are their numerical unpredictability and their computationalcost. In contrast, both the handcoding and symbolic approaches su�er from a lack of scalability and requireconsiderable human e�ort.In this paper, we discuss another approach for computing derivatives, based on automatic di�erentiation(AD). AD techniques rely on the fact that every function, no matter how complicated, is executed on a computeras a (potentially very long) sequence of elementary operations such as additions, multiplications, and elementaryfunctions such as sin and cos (see, for example, [5,10]. By applying the chain rule of derivative calculus e.g.,@@tf(g(t))���t=t0 = � @@sf(s)���s=g(t0)�� @@tg(t)���t=t0� (1)over and over again to the composition of those elementary operations, one can compute, in a completely mechanicalfashion, derivatives of f that are correct up to machine precision [8].



In the next section, we give a brief overview of automatic di�erentiation. Section discusses the major imple-mentation issues that arise in the design of automatic di�erentiation tools. Section answers some commonly askedquestions. Lastly, we discuss remaining challenges and prospects.2. Automatic Di�erentiation ModesTraditionally, two basic approaches to automatic di�erentiation have been employed: the so-called forward andreverse mode, which date back to the early sixties and seventies, respectively. These modes are distinguished byhow the chain rule is used to propagate derivatives through the computation. We brie
y summarize the main pointsabout these two approaches; a more detailed description can be found in [2,5,10] and the references therein.The forward mode propagates derivatives of intermediate variables with respect to the independent variablesand follows the control 
ow of the original program. By exploiting the linearity of di�erentiation, the forward modeallows us to compute arbitrary linear combinations J � S of columns of the JacobianJ = 0BBBBB@ @ y(1)@ x(1) � � � @ y(1)@ x(n)... ...@ y(m)@ x(1) � � � @ y(m)@ x(n) 1CCCCCA : (2)For an n � p matrix S, the e�ort required is roughly p times the runtime and memory of the original program. Inparticular, when S is a vector s, we compute the directional derivative J � s = limh!0 f(x+h�s)�f(x)h .In contrast, the reverse mode of automatic di�erentiation propagates derivatives of the �nal result with respectto an intermediate quantity, so-called adjoint quantities. To propagate adjoints, one must be able to reverse the
ow of the program, and remember or recompute any intermediate value that nonlinearly a�ects the �nal result. Inparticular, one must store the intermediate values that have been involved in nonlinear operations before they areoverwritten or go out of scope. Sometimes some of these intermediates can be recomputed during the reverse sweepbut in any case one has to keep a log of the branch directions taken.For a q � m matrix W , the reverse mode allows us to compute the row linear combination W � J with O(q)times as many 
oating-point operations as required for the evaluation of f . In a straightforward implementation,however, the storage requirements may be proportional to the number of 
oating-point operations required for theevaluation of f , as a result of the tracing required to make the program \reversible." When W is a row vectorw, we compute the derivative @ (wT � J)@ x . The reverse mode is particularly attractive for the computation of longgradients, as its operations count does not depend on the number of independent variables.The forward mode can be very naturally extended to second third and even higher derivatives, but thecomplexity grows like the square or cube p, respectively. Especially for Hessian-vector products a combined forwardand reverse sweep is attractive, as it still has essentially the same complexity as a single evaluation of the underlyingscalar function. In any case, automatic di�erentiation produces code that computes derivatives accurate to machineprecision [8] The techniques of automatic di�erentiation are directly applicable to computer programs of arbitrarylength containing branches, loops, and subroutines.The weighting and combining of derivatives through the matricesW and S is very natural and useful for manyapplications, especially if sparsity in J can be exploited. Unfortunately, many existing AD tools are (like computeralgebra packages) still exclusively oriented towards the evaluation of Cartesian derivatives, i.e. the partials of certaindependent variables with respect to certain independent variables.3. Design Issues for Automatic Di�erentiation ToolsAutomatic di�erentiation can be viewed as a particular semantic transformation problem: Given a code for com-puting a function, we would like to generate a code that computes the derivatives of that function. To a�ect thistransformation, two approaches have been employed:Operator Overloading: Modern computer languages like C++ or Fortran 90 make it possible to rede�ne themeaning of elementary operators. That is, we can for example de�ne a type for 
oating point numbers thathave gradient objects associated with them (let's call them adouble, say), and for each elementary operationsuch as a multiplication, we can de�ne the meaning of the operator '*' for variables of type adouble. If we



de�ne the usual product rule (z = x � y ! rz = xry+ yrx), then each occurrence of a multiplication of twoadoubles in the code will also e�ect the update of the associated derivatives in a transparent fashion.Source Transformation: Another way of changing the semantics of the code is to rewrite it explicitly. That is,for example, the assignment z = x � y is rewritten into a piece of code that not only contains the computationof z, but also an implementation of the vector linear combination z = xry + yrx, implemented either as ado-loop, or as a subroutine call.Each of these approaches has its advantages and disadvantages. The advantages of operator overloading areTerseness: All that is required for a new data type, such as adoubles, is a new class de�nition. While such a classde�nition can be substantial, comprising several thousand lines of code, it hides this complexity from the userof an AD tool.Flexibility: If we want to change an implementation strategy associated with a particular class, the source coderemains una�ected. All that changes is the class de�nition itself. So for example, whether we compute �rst orsecond order derivatives is re
ected in the class de�nition, but not in the code being di�erentiated.Full Access to Runtime Information: As mentioned previously, the reverse mode of AD requires the ability toreverse the partial 
ow of program execution. One way to do this is to use operator overloading to generatea tape that logs all the operations actually performed, and use this tape as the input for a derivative inter-preter, which then can compute any derivatives desired using either the forward or reverse mode of automaticdi�erentiation. This approach is, for example, chosen in the ADOL-C [7]The drawbacks of operator overloading areLack of Transparency: While it is aesthetically pleasing that the source code does not change, even though itsmeaning does, it does not aid in debugging, as one has to deduce the meaning of the operations implied bythe source code and the associated class de�nitions.Implementation Overhead: The actions associated with a class de�nition can be viewed as an implied subroutinecall, and although much progress has been made recently in the compilation of operator overloading, theruntime overhead of this technique can be substantial.Dusty Deck Assimilation: Many existing computer codes are written in languages such as Fortran 77 or ANSI-Cwhich do not support operator overloading. In particular for large codes, assimilating such codes into thesupposedly backwards compatible Fortran 90 or C++ languages turns out to be a thorny task.On the other hand, the advantages of the source transformation approach areSimplicity of Generated Code: Since the derivative code is spelled out exactly, usually in the same language asthe input code, it is easier to follow the actions of the derivative code. This simplicity also facilitates compileroptimizations and hence faster execution of the generated code.Dusty Deck Assimilation: The source transformation approach requires traditional compiler infrastructure suchas parsers, generators and manipulators of intermediate languages, and unparsers. These kind of tools arereadily available for languages such as Fortran 77 or ANSI-C, at least in the commercial world.Variable Scope: Operator overloading inherently sees one elementary operation at a time. Source transformationapproaches, on the other hand, have access to the context of a particular computation, and hence have more
exibility in applying derivative rules. For example, the ADIFOR [1,2] and ADIC [3] tools view a program asa sequence of assignment statements, applying the reverse mode at this level, and the forward mode overall.The disadvantages of the source transformation approach areImplementation Complexity: Source transformation approaches, at least at the moment, require considerabletool infrastructure, in particular for the processing of language-dependent features. Also, the lack of a stan-dardized language description makes changing the semantics of a particular automatic di�erentiation tool apotentially rather involved task.



Code Expansion or Subroutine Interface Swell: A \pure" source transformation approach is infeasible whenthe action associated with a particular statement exceeds a certain level of complexity. In this case, eitherthe length of the generated code grows too large for a compiler to digest, or alternatively, rather extensivesubroutine library interfaces need to be maintained to encapsulate the basic computational kernels. The latterapproach, in many ways, is similar to operator overloading, albeit considerably less elegant.It depends to a great extent on the particular application to what extent the above-mentioned advantages and dis-advantages are relevant. Hence, we encourage the reader to have a look at the collection of automatic di�erentiationtools at http://www.mcs.anl.gov/Projects/autodi�/AD ToolsThis collection gives a short description of some available automatic di�erentiation tools and provides pointers howto obtain access to these tools.4. Frequently Asked QuestionsGiven the mathematical underpinnings of the concept of derivatives, the \ignorance" with which one can apply anAD tool usually provokes some of the questions that we try brie
y to address here.Question: How do you know that the code represents a globally di�erentiable function?Answer: We don't. AD computes the derivative de�ned by the sequence of assignment statements executed in thecourse of a function evaluation. Hence, for a branch (if-statement), which potentially introduces a nondi�er-entiability, AD will compute a one-sided directional derivative. This problem is further discussed in [4].Question: How do you deal with intrinsics?Answer: Some intrinsics functions, such as abs() and sqrt(), are not di�erentiable in all points of their domain.Some tools invoke an extension handler 
agging such occurrences, others ignore such occurrences.Question: What happens when you di�erentiate through iterative processes?Answer: It depends. AD generates a new iteration, and it is not clear a priori whether the new iteration willconverge and what it will converge to, although empirically, AD leads to the desired result. However, derivativeconvergence may lag, or derivatives may diverge. For some commonly used approaches for solving nonlinearsystems of equations, this issue is discussed in [6]. This problem clearly requires more research, but theemergence of robust AD tools has made it possible to tackle this problem for sophisticated numerical methods.5. ConclusionsThis paper gave a brief introduction into automatic di�erentiation. We reviewed the forward and reverse mode ofautomatic di�erentiation, gave some background on implementation issues, and answered some commonly askedquestions.Automatic di�erentiation is a technology in its infancy. The emergence of robust AD tools for general purposecomputer languages such as Fortran 77, Fortran 90, C, and C++ is putting these tools within the reach of manycomputational practitioners. At the same time, mathematicalmodeling and design techniques for nonlinear processesusually require derivatives, and the computational horse power typically available today makes such schemes feasiblefor most computational practitioners.Much remains to be done in the development of better AD tools. Currently, all AD tools choose one or theother of the two basic implementation approaches mentioned previously. However, the mostly complementary listsof advantages and disadvantages of operator overloading and source transformation suggests that implementationscombining both approaches will be the promising approach in the long term. Lastly, the associativity of the chainrule of di�erential calculus leaves great leeway in how derivatives are actually computed. New approaches are slowlyemerging (see, for example, [9]), but much remains to be explored.



6. References1 Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR: Generatingderivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.2 Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. The ADIFOR 2.0 system for the automaticdi�erentiation of Fortran 77 programs, 1994. Preprint MCS-P481-1194, Mathematics and Computer Science Division,Argonne National Laboratory, and CRPC-TR94491, Center for Research on Parallel Computation, Rice University.3 Christian Bischof, Lucas Roh, and Andrew Mauer. ADIC { An Extensible Automatic Di�erentiation Tool for ANSI-C, Preprint ANL/MCS-P626-1196, Mathematics and Computer Science Division, Argonne National Laboratory, 1996.4 Herbert Fischer. Special problems in automatic di�erentiation. In Andreas Griewank and George F. Corliss, editors,Automatic Di�erentiation of Algorithms: Theory, Implementation, and Application, pages 43 { 50. SIAM, Philadelphia,Penn., 1991.5 Andreas Griewank. On automatic di�erentiation. In Mathematical Programming: Recent Developments and Applica-tions, pages 83{108, Amsterdam, 1989. Kluwer Academic Publishers.6 Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen Williamson. Derivativeconvergence of iterative equation solvers. Optimization Methods and Software, 2:321{355, 1993.7 Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package for the automatic di�erentiation ofalgorithms written in C/C++. Preprint MCS-P180-1190, Mathematics and Computer Science Division, Argonne NationalLaboratory, 1990.8 Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the Markowitz rule. In AndreasGriewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation, and Applica-tion, pages 126{135. SIAM, Philadelphia, 1991.9 Paul Hovland, Christian Bischof, Donna Spiegelman, and Mario Casella. E�cient derivative codes throughautomatic di�erentiation and interface contraction: An application in biostatistics. Preprint MCS-P491-0195, Mathematicsand Computer Science Division, Argonne National Laboratory, 1995.10 Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of Lecture Notes in ComputerScience. Springer Verlag, Berlin, 1981.Addresses: Christian H. Bischof, Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, IL 60439, bischof@mcs.anl.gov. The work of this author was supported by the Mathemat-ical, Information, and Computational Science Division subprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38; by the NationalAerospace Agency under Purchase Order L25935D; and by the National Science Foundation, throughthe Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.Andreas Griewank, Institut f�ur Wissenschaftliches Rechnen, Technische Universit�at Dresden, Momm-senstr. 13, D-01062 Dresden, griewank@math.tu-dresden.de.


