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This two-processor algorithm still requires n � 1 additions, but the elapsed time can betheoretically cut to half of the time required by the primary solution (the actual elapsedtime for the two-processor algorithm will be slightly longer than half of the �rst method'srequired time because there is a communication cost for sending the local sums betweenprocessors for the �nal addition).Two conclusions can be derived from this example. First, using a parallel computer maybe advantageous for some problems. Second, both algorithms are classi�ed as polynomialtime since the leading term, which dominates the total count, has the form �nk , wherek is an integer and both � and k are nonnegative and independent of the problem sizen. A problem that can be solved by a polynomial-time algorithm is tractable for extantelectronic-based computers.However, not all problems are so readily addressed, including the class of problemsknown as NP-complete problems (the term \NP" is short for \nondeterministic polynomialtime" [3, p. 927]). No polynomial-time algorithm has been discovered for an NP-completeproblem. In our example, a parallel computer with a large number of processors may bea solution to get a polynomial elapsed time with respect to n even though there is nopolynomial-time algorithm. Unfortunately, for current electronic-based parallel computers,more processors cause a greater cost in communication channels and synchronization.Nevertheless, a totally di�erent system that employs biomolecules may revolutionizecomputational procedures. In 1994, Adleman [1] �rst introduced an algorithm and a prac-tical DNA computer to solve one type of NP-complete problem, the Hamiltonian path prob-lem. Later, Lipton [8] described the DNA-based solution of another type of NP-completeproblem, the SAT problem. These solutions demonstrated both the feasibility of solvingcomputational problems by manipulating biological molecules and the potential usefulnessof the massively parallel processing power derived from such an approach. In this article, wepropose new algorithms to solve two other NP-complete problems: the Hamiltonian cycleproblem and the traveling-salesman problem.2 Problems and AlgorithmsIn this section, we introduce some required background about graphs, describe the problems,and propose our algorithms.2.1 GraphsA graph consists of two sets: vertex and edge. The vertex set contains a �nite number ofpoints, called vertices, and the elements of an edge set, called edges, de�ning relations onsome pairs of vertices. There are two kinds of edges: directed and undirected. A directededge permits only one direction of transit between a pair of vertices, whereas an undirectededge allows two-way transit between two vertices. Consequently, we have both directed andundirected graphs. Figure 1A shows a directed graph, and Figure 1B gives an example ofan undirected graph. Both graphs have the same vertex set f1,2,3,4,5,6g.A path is a sequence of vertices such that every pair of consecutive vertices has an edge.In Figure 1A, those edges with shadow show a path < 5; 1; 4; 2 >. A path is said to be2
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5eFigure 1: (A) A directed graph with a path < 5; 1; 4; 2 > shown by shaded edges.(B) An undirected graph containing two Hamiltonian cycles, < 5; 1; 4; 6; 2; 3; 5 > and< 5; 1; 6; 4; 2; 3; 5 >. The former one is shown by shaded edges. (C) To execute the �rststep of the algorithm, one of the vertices (vertex 5) is chosen and divided to form two�ctitious vertices as starting (vertex 5s) and ending (vertex 5e) points.3



simple if all the vertices in the sequence are distinct. Furthermore, a path is called a cycleif the �rst and the last vertices in the sequence are identical and the path contains at leastone edge. Finally, a cycle is said to be simple if all the vertices in the sequence are distinctexcept the �rst and the last vertices.Now we can describe the Hamiltonian cycle and traveling-salesman problem formally.2.2 The Hamiltonian CycleA Hamiltonian cycle is a simple cycle of an undirected graph that contains all verticesof the graph [3, pp. 953{959]. In Figure 1B, the shadowed edges depict a Hamiltoniancycle of a graph. A graph that de�nes a Hamiltonian cycle is said to be Hamiltonian; notall graphs have a Hamiltonian cycle. The problem will be to decide if a given graph isHamiltonian. If the answer is yes, we present a cycle. Note that whether every undirectededge in an undirected graph is replaced by two directed edges with opposite directions, thensolution for the Hamiltonian cycle problem is similar to �nd a Hamiltonian path that startsfrom and ends at the same vertex of a directed graph. Therefore, the following algorithmbased on Adleman's algorithm [1] is proposed for DNA-based computation to search for aHamiltonian cycle:Given an undirected graph with n vertices,1. Pick one vertex, say v, as the starting and ending vertex.2. Form all possible paths.3. Collect paths that start from and end at the vertex v, and discard the rest.The resulting paths are cycles.4. Collect cycles that contain n edges, and discard the rest.5. Collect cycles that visit all vertices, and discard the rest.6. Examine the result from Step 5. If the result is empty, the graph does nothave Hamiltonian cycles, and the process stops here.7. If the result is not empty, reveal the Hamiltonian cycles.The graph shown in Figure 1B provides an example of the experimental design forimplementing such an algorithm. The vertex 5 is chosen as the starting and ending vertexat Step 1. Because of the cyclic nature, the choice of starting/ending vertex can be random.This vertex will be virtually treated as two vertices, the starting one and the ending one(Figure 1C).At the Step 2, for i = 1; : : : ; 4; and 6, oligonucleotide Oi of 20 bases is assigned torepresent vertex i and its complementary strand is denoted as Oi. As for vertex 5, twoadditional distinct oligonucleotides, O5s and O5e, as well as their complementary strands,are assigned to represent the practical starting and ending vertices respectively. For eachedge connecting vertices i and j, oligonucleotides Oi�j and Oj�i are designed to representthe two-way tra�c, wherein the tra�c direction is denoted by the polarity of DNA molecule(Figure 2A). For transit from vertex i to vertex j, the 5' end of Oi�j is identical to eitherall 20 bases of O5s for i = 5 or the 10 bases at the 3' end of Oi for all other values of4



O2 20-mer 5' GGAACCTTGACTGGAACCTT 3'||||||||||||||||||||O2 20-mer 3' CCTTGGAACTGACCTTGGAA 5'O3 20-mer 5' GATCGATCGATCGATCGATC 3'O6 20-mer 5' AGCTTAAGGCCGGAATTCGA 3'O6�2 20-mer 5' CGGAATTCGAGGAACCTTGA 3'O2�3 20-mer 5' CTGGAACCTTGATCGATCGA 3'(A)O6�2 # O2�3CGGAATTCGAGGAACCTTGACTGGAACCTTGATCGATCGA||||||||||||||||||||CCTTGGAACTGACCTTGGAAO2(B)Figure 2: Vertices and edges are encoded in oligonucleotides for searching the Hamiltoniancycle. (A) 20-mer oligonucleotides Oi are assigned to each vertex (O2, O3 and O6 areshown). Their complementary strands are Oi (shown is O2). For oligonucleotides Oi�j thatencode the edges, the direction of transit from vertex i to vertex j is determined by using10 bases from the 3'end of Oi (except when i = 5, in which case all 20 bases of O5s arecontained within) and 10 bases from the 5' end of Oj (unless j = 5, in which case it is thesame as O5e). Bases presented here are for descriptive purpose only. (B) Ligation event(arrow) between Oi�j can occur when oligonucleotides anneal properly.i. Similarly, the 3' end of Oi�j is identical to either all 20 bases of O5e for j = 5, orthe 10 bases at the 5' end of Oj for all other values of j. Oj�i is prepared by the sameprinciple as the counterpart of Oi�j . When the essential DNA molecules are ready, Oi andOi�j=Oj�i are mixed in solution and allowed to anneal. Oi serve as bridges to bring thevarious edge oligonucleotides together. A subsequent ligation reaction then generates longerDNA fragments from all the possible combinations of the edge oligonucleotides (Figure 2B).To implement Step 3, the products from the ligation reaction are ampli�ed by PCR withthe primer pair O5s and O5e. The signals encoded by DNA fragments starting from O5s andending at O5e are boosted and can be detected visually after agarose gel electrophoresis.Since the graph has only six vertices, seven 20 bp oligonucleotides (corresponding to �veoriginal vertices and the two virtual start and stop vertices) are expected to be included inthe desired DNA fragments. Thus, at Step 4, those ampli�ed products of 140 base pairs inlength will be excised and electroeluted. 5



The DNA fragments thus collected meet the requirements at Steps 3 and 4: speci�cally,they all begin with and end at vertex 5 and contain six edges. Any of the fragments thatcontain all Oi for i = 1; : : : ; 4; and 6 will represent one Hamiltonian cycle. Such DNAfragments are extracted by a�nity puri�cation. Single-stranded DNA fragments generatedfrom the electroeluted fragments are annealed to biotinylated Oi. Those fragments thathybridize to biotinylated Oi reveal the presence of Oi and are recovered by streptavidinparamagnetic particles. The extraction procedure is re-employed by using the newly isolatedOi-containing DNA with the next biotinylated Oj . Puri�cation Steps with O5s and O5eare not required because the prior PCR ampli�cation included them, by de�nition. The�nal extract can be ampli�ed again by using the primer pair O5s and O5e to create enoughmolecules for further analysis.At Step 6, �nal ampli�ed products are electrophoresed on an agarose gel. If no DNAband is detected, the graph is not Hamiltonian. If a 140 bp DNA band is found, at leastone Hamiltonian cycle exists, and the following procedure is implemented.Multiple graduated PCRs are employed at Step 7 to reveal the cycle. For the �rstgraduated PCR, O5s serves as forward primer and Oi for i = 1; : : : ; 4; and 6, are used asreverse primers. Note that the ampli�ed DNA fragments with a length of 40 bp denote thosevertices that are adjacent to vertex 5. Furthermore, for each Hamiltonian cycle, there willbe a pair of a�nity puri�ed DNA fragments with opposite orders (e.g., < 5s; 1; 4; 6; 2; 3; 5e >and < 5s; 3; 2; 6; 4; 1; 5e > in Figure 1B). Therefore, at least two distinct fragments withlength 40 bp will be formed after the �rst graduated PCR (vertices 1 and 3 in our example).Users can select either order through choice of the next adjacent vertex.Suppose that vertex 1 is selected, O5s�1 will serve as the forward primer in the sec-ond round of graduated PCR, with reverse primers O2; O3; O4; andO6. Ampli�ed DNAfragments with a length of 60 bp will denote those vertices that are adjacent to vertex 1(vertices 4 and 6 in our example, see Figure 1B). Again, we can pick either O1�4 or O1�6as the forward primer for the third round of graduated PCR. If there is only one fragmenttype with a length of 50 bp, it implies that the adjacent vertex is unique. The search thenprogresses to those ampli�ed DNA fragments with a length of 70 bp. Eventually, the sizeswill reveal the order of a Hamiltonian cycle starting from vertex 5.2.3 The Traveling-Salesman ProblemNow let us move to the traveling-salesman problem. This problem is a variant of theHamiltonian cycle problem with more sophisticated conditions. We start with an undirectedcomplete graph in which each pair of vertices are connected each other. The edges of thisgraph are weighed; that is, an integer is assigned to each edge to represent the cost of travelbetween the vertices connected by the edge. The total cost of a cycle is the sum of thoseindividual weights of the edges in the cycle. The problem is to �nd a Hamiltonian cycle ofa given graph with the minimum cost [3, pp. 959{960]. An algorithm similar to the oneabove but with several modi�cations is proposed to solve the traveling-salesman problem.Imagine a complete, weighted, and undirected graph with n vertices.1. Pick one vertex, v, as the starting and ending vertex.6
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(A)Figure 3: (A) An undirected graph showing the traveling-salesman problem. The digitsindicate the relative costs of individual edges between vertices. (B) To facilitate the compu-tation, vertex W is denoted twice, Ws and We, for starting and ending point respectively.2. Form all possible paths.3. Collect those paths that start from and end at the vertex v, and discardall other paths. The resultant paths are cycles.4. Collect cycles that visit all vertices, and discard all others.5. Collect those cycles with the minimum cost to reveal a traveling-salesmancycle.The graph shown in Figure 3A is used as an example. At the �rst step, vertex W israndomly chosen and practically treated as two vertices, Ws and We, to accommodate thedual roles as a starting and ending point (see Figure 3B).At Step 2, distinct oligonucleotides (Oi) of 18 bases are assigned to represent each vertex,and their complementary strands are denoted as Oi. However, a more complicated design ofthe oligonucleotides Oi�j=Oj�i is required to represent the weighted edges. Basically, theyall composed of three segments. The 5' end of Oi�j consists of 9 bases, which are identicalto the 3' end 9 bases of Oi (except when i = W , all 18 bases of OWs are contained within),while the 3' end contains another 9 bases exactly as same as the 5' end 9 bases of Oj (unlessj = W , in which case it is all of OWe). The third segment of DNA is of variable length andis positioned in the middle of the oligonucleotide. Consider the cost or length ratio depictedin Figure 3A. If the minimum length of the edge is 18 bases (the cost is 3), the other twocosts can be represented by oligonucleotides of 24 (cost = 4) and 30 (cost = 5) bases. Hence,for the shortest edges like OX�Y , the third DNA segment contains no extra nucleotides.But, 6 or 12 bases are included for longer edges. Since this additional DNA segment merelyrepresents part of the weighted cost of each individual edge, the sequences can be random(Figure 4A). As described above, Oi�j designates one-way tra�c from vertex i to vertex j.Both Oi�j and Oj�i are prepared for each undirected edge.7



OX 18-mer 5' GGAACCTTTGGGAACCTT 3'||||||||||||||||||OX 18-mer 3' CCTTGGAAACCCTTGGAA 5'OY 18-mer 3' GATCGATCGATCGATCGA 5'OZ 18-mer 3' TAGCTTAAGCTAGAGCTG 5'OX�Y 18-mer 5' GGGAACCTTCTAGCTAGC 3'OY�Z 24-mer 5' TAGCTAGCTNNNNNNATCGAATTC 3'OZ�X 30-mer 5' GATCTCGACNNNNNNNNNNNNGGAACCTTT 3'(A)OX�Y # OY�ZGGGAACCTTCTAGCTAGCTAGCTAGCTNNNNNNATCGAATTC||||||||||||||||||||||||||| |||||||||CCTTGGAAACCCTTGGAAGATCGATCGATCGATCGA TAGCTTAAGCTAGAGCTGOX " OY OZ(B)Figure 4: Vertices and edges are encoded in oligonucleotides for searching the traveling-salesman cycle. (A) 18-mer oligonucleotides Oi are assigned to each vertex (OX is shown).Their complementary strands are Oi (shown are OX ; OY and OZ). For oligonucleotidesOi�j that encode the edges, the direction of transit from vertex i to vertex j is determinedby using 9 bases from the 3' end of Oi (except when i = W , in which case all 18 basesof OWs are contained within) and 9 bases from the 5' end of Oj (unless j = W , in whichcase it is the same as OWe). The cost of edges is adjusted by additional bases wedgedbetween both ends (shown are OX�Y ; OY�Z , and OZ�X). Bases presented here are fordescriptive purpose only. (B) Ligation events (arrows) between Oi�j or Oi can occur whenoligonucleotides anneal properly. A gap between OY and OZ caused by additional basesremains open.
8



Once again, all essential DNA molecules (Oi�j=Oj�i and Oi ) are mixed and allowed toanneal. A ligation reaction generates longer DNA fragments from all possible combinationsof edges oligonucleotides, though not all Oi are ligated together because of the gaps createdby the additional DNA segments in some Oi�j (Figure 4B). Those DNA fragments thatstart from and end at vertex W are then ampli�ed by PCR with primer pair OWs and OWe(Step 3).In the Hamiltonian cycle problem, ampli�ed DNA fragments resulting from Step 3 arescreened on an agarose gel to isolate those sizes corresponding to the sum of vertices.However, because of the variant lengths of Oi�j , the size of desired DNA fragment here isnot predictable, and therefore a�nity puri�cation is conducted directly at Step 4. DNAfragments puri�ed in this step are ampli�ed again by using primer pair OWs and OWe toproduce a large enough quantity for further analysis.In the case presented here, six DNA fragments encoding three Hamiltonian cycles arecontained in the a�nity puri�ed DNA pool (Figure 5). The sizes are 102 bp, 114 bp and 126bp. At Step 5, agarose gel electrophoresis separates them, and the 102 bp DNA fragmentsthat carry the desired information (the least cost) can be isolated. Of course, many DNAfragments encoding paths other than these six will also exist in the a�nity puri�ed DNApool. However, these fragments are not a concern. They encode multiple visits to somevertices so that they have larger sizes, and thus can be eliminated by the electrophoresisstep.To consummate the �nal step, multiple graduated PCRs are again employed. In the�rst round of graduated PCR, the smallest DNA fragment whose size is 36 bp is ampli�edwith primers OWs and OZ . This process provides the information that one of the twovertices adjacent to vertex W in the traveling-salesman cycle is vertex Z. This informationis su�cient for conducting the second round of graduated PCR, and the other vertex nextto W (vertex X in this case) is irrelevant. In the second round of graduated PCR, DNAfragments with sizes of 60 and 78 bp are ampli�ed using OWs�Z as the forward primer andOY ; OX as the reverse primers, respectively. Ampli�ed DNA fragments are then run on anagarose gel, and the traveling-salesman cycle is revealed.3 DiscussionAdvantages of molecular computation include energy e�ciency and high information storagedensity [1]. The true power of the DNA computation, however, resides in its massiveparallel capabilities and unique screening strategies. One Weiss unit of T4 DNA ligase yieldsapproximately 4:8�1013 concatenating events in 30 minutes, or 2:7�1010 events per second.Thus an immense amount of combination results can be generated in parallel within a shorttime when scaled up properly. In addition, PCR ampli�cation and a�nity puri�cationallow identi�cation of the answer to be straightforward. A conventional electronic-basedsingle-processor computer must employ try-and-error tactics for these nonpolynomial-timealgorithms, attempting �rst one path and then another in a labyrinth of possibilities, �nallydeciding the answer. In contrast, a DNA-based computer constructs all path combinationssimultaneously and picks out the answer directly.9
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Figure 5: Three Hamiltonian cycles and their encoding DNA fragments. (A) Two DNAfragments with 102 bp encode the cycle < W;X; Y;Z;W >. (B) Two DNA fragmentswith 114 bp encode the cycle < W; Y;X; Z;W >. (C) Two DNA fragments with 126 bpencode the cycle < W; Y; Z;X;W >. Those two encoding the traveling-salesman cycle (theshortest in length) can be separated from others by size-dependent gel electrophoresis. Theanswer is revealed by multiple graduated PCRs.10



The schematic design of algorithms introduced in this article is based directly on Adle-man's model. All techniques involved have been proven and are considered feasible. How-ever, two major di�erences occur in the problems presented here and the speci�c propo-sitions are made. First of all, the starting and the ending vertices are the same in thecycle-searching problem. Dividing one of the vertices in the graph into two �ctitious ver-tices (vstart and vend) converts every cycle-searching problem into a path-searching problem,although this approach requires the use of extra oligonucleotides during data input. More-over, the edges are undirected, and this distinction causes the desired answer to be encodedby two diverse DNA fragments concurrently. To unveil the answer, we introduced multiplegraduated PCRs to decipher the cycle order. This procedure should also prove useful forsolving other path searching problems, such as two Hamiltonian paths within a single graph.The second innovation in our model is that the edges are weighted in the traveling-salesman problem. This weighting makes the length of desired DNA fragment unpredictable,and a�nity puri�cation must be executed prior to size-dependent gel isolation. Althoughthe tripartite design of the oligonucleotides allows the encoding of weight information, thecoupling e�ciency during oligonucleotide synthesis may cause a potential problem duringthe synthesis of the the longer oligonucleotides. Assuming an average coupling e�ciencyof 99.5%, the overall yield would be 90.92% (0:99519 = 0:9092) for a 20-mer, but only60.88% for a 100-mer and 36.88% for a 200-mer. Without proper post synthesis puri�cation,the truncated products will certainly interfere with computational reactions. One possiblee�ect is that shorter oligonucleotides will compete with full-length oligonucleotides duringthe annealing step, decreasing the parallel operation power. A possible solution for thisconcern may lie in the use of PCR procedures to generate the necessary oligonucleotides,rather than the use of a DNA synthesizer. Thus, a large molecule need be synthesized onlyonce; thereafter, DNA fragments of the desired lengths can be obtained by ampli�cation ofvarious portions of a large DNA molecules. Single-stranded DNA isolation may be requiredfor this alternative method.The feasibility of using biological molecules for computation has been the subject ofcontroversy and argument since its inception [6, 9]. Even though models have been pro-posed and DNA computers have been constructed, several fundamental issues remain to beresolved. First, biological reactions usually take minutes or hours to complete. Thus, al-though the ligation reaction and the polymerase chain reaction provide strong combinationand screening power, the overall time consumed may ultimately be impractical (especiallyif an a�nity puri�cation step must be performed sequentially in these cases). Second, thefeasibility and accuracy of DNA-based computation when the problem size is very largeremains untested. Moreover, the DNA computation models addressed to date solve onlyvery speci�c types of problems and do not address universal applications. However, recentlyGuarnieri et al. [7] reported the use of DNA molecules to achieve addition, a very welcomebroadening of this new �eld of molecular computation.The applications of biocomputation remain to be explored. The prospect of biocom-putation should not be restricted to DNA molecules only. Other biological properties andbiochemical reactions, such as the signal perception and transduction by a neural network,could perhaps be the basis for a more versatile and intelligent biocomputer. More stud-ies are de�nitely required to reveal the full capacity of biocomputation, and such studies11
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