
Compiler Blockability of Dense Matrix Factorizations�Steve Carry R. B. LehoucqzAugust 29, 1996AbstractThe goal of the LAPACK project is to provide e�cient and portable software for densenumerical linear algebra computations. By recasting many of the fundamental dense matrixcomputations in terms of calls to an e�cient implementation of the BLAS (Basic Linear AlgebraSubprograms), the LAPACK project has, in large part, achieved its goal. Unfortunately, thee�cient implementation of the BLAS often results in machine-speci�c code that is not portableacross multiple architectures without a signi�cant loss in performance or a signi�cant e�ort tore-optimize them.This paper examines whether most of the hand optimizations performed on matrix factor-ization codes are unnecessary because they can (and should) be performed by the compiler.We believe that it is better for the programmer to express algorithms in a machine-independentform and allow the compiler to handle the machine-dependent details. This gives the algorithmsportability across architectures and removes the error-prone, expensive and tedious process ofhand optimization. Although there currently exist no production compiler that can perform allthe loop transformations discussed in this paper, a description of current research in compilertechnology is provided that will prove bene�cial to the numerical linear algebra community.We show that the Cholesky and LU factorizations may be optimized automatically by acompiler to be as e�cient as the same hand-optimized version found in LAPACK. We also showthat the QR factorization may be optimized by the compiler to perform comparably with thehand-optimized LAPACK version on modest matrix sizes. Our approach allows us to concludethat with the advent of the compiler optimizations discussed in this paper, matrix factorizationsmay be e�ciently implemented in a machine-independent form.1 IntroductionThe processing power of microprocessors and supercomputers has increased dramatically and con-tinues to do so. At the same time, the demand on the memory system of a computer is to increasedramatically in size. Due to �nancial costs, typical workstations and massively parallel machinescannot use memory chips that have the latency and bandwidth required by today's processors.Instead, main memory is constructed of cheaper and slower technology and the resulting delaysmay be up to hundreds of cycles for a single memory access.To alleviate the memory speed problem, machine architects construct a hierarchy of memorywhere the highest level (registers) is the smallest and fastest and each lower level is larger but�Research supported by NSF Grant CCR-9120008 and by NSF grant CCR-9409341. The second author was alsosupported by the U.S. Department of Energy Contracts DE-FG0f-91ER25103 and W-31-109-Eng-38.yDepartment of Computer Science, Michigan Technological University, Houghton MI 49931, carr@cs.mtu.edu.zMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439lehoucq@mcs.anl.gov. 1

slower. The bottom of the hierarchy for our purposes is main memory. Typically, one or two levelsof cache memory fall between registers and main memory. The cache memory is faster than mainmemory, but is often a fraction of the size. The cache memory serves as a bu�er for the mostrecently accessed data of a program (the working set). The cache becomes ine�ective when theworking set of a program is larger than its size.The three factorizations considered in this paper, the LU, Cholesky, and QR, are among themost frequently used by numerical linear algebra and its applications. The �rst two are used forsolving linear systems of equations while the last is typically used in linear least squares problems.For square matrices of order n, all three factorizations involve on the order of n3 oating pointoperations for data that needs n2 memory locations. With the advent of vector and parallelsupercomputers, the e�ciency of the factorizations were seen to depend dramatically upon thealgorithmic form chosen for the implementation [14, 16, 29]. These studies concluded that managingthe memory hierarchy is the single most important factor governing the e�ciency of the softwareimplementation computing the factorization.The motivation of the LAPACK [2] project was to recast the algorithms in the EISPACK [32]and LINPACK [15] software libraries with block ones. A block form of an algorithm restructuresthe algorithm in terms of matrix operations that attempt to minimize the amount of data movedwithin the memory hierarchy while keeping the arithmetic units of the machine occupied. LAPACKblocks many dense matrix algorithms by restructuring them to use the level 2 and 3 BLAS [11,12]. The motivation for the Basic Linear Algebra Subprograms, BLAS [26], was to provide a set ofcommonly used vector operations so that the programmer could invoke the subprograms instead ofwriting the code directly. The level 2 and 3 BLAS followed with matrix-vector and matrix-matrixoperations, respectivly, that are often necessary for high e�ciency across a broad range of highperformance computers. The higher level BLAS better utilize the underlying memory hierarchy. Aswith the level 1 BLAS, responsibility for optimizing the higher level BLAS was left to the machinevendor or another interested party.This study investigates whether a compiler has the ability to block matrix factorizations. Al-though the compiler transformation techniques may be applied directly to the BLAS, it is interestingto draw a comparison with applying them directly to the factorizations. The bene�t is the possibil-ity of a BLAS-less linear algebra package that is nearly as e�cient as LAPACK. For example, in [27],it was demonstrated that on some computers, the best LU factorization was an inlined approacheven when a highly optimized set of BLAS were available.We deem an algorithm blockable if a compiler can automatically derive the most e�cient blockalgorithm (for our study, the one found in LAPACK) from its corresponding machine-independentpoint algorithm. In particular, we show that LU and Cholesky factorizations are blockable algo-rithms. Unfortunately, QR factorization with Householder transformations is not blockable. How-ever, we show an alternative block algorithm for QR that can be derived using the same compilermethods as those used for LU and Cholesky factorizations.This study has yielded two major results. The �rst, which is detailed in another paper [8],reveals that the hand loop unrolling performed when optimizing the level 2 and 3 BLAS [11, 12]is often unnecessary. While the BLAS are useful, the hand optimization that is required to obtaingood performance on a particular architecture may be left to the compiler. Experiments showthat, in most cases, the compiler can automatically unroll loops as e�ectively as hand optimization.The second result, which we discuss in this paper, reveals that it is possible to block matrixfactorizations automatically. Our results show that the block algorithms derived by the compilerare competitive with those of LAPACK [2]. For modest sized matrices (on the order of 200 or less),the compiler-derived variants are often superior.We begin our presentation with a review of background material related to compiler optimiza-2

tion. Then, we describe a study of the application of these transformations to derive the threeblock algorithms in LAPACK considered above from their corresponding point algorithms. Wepresent an experiment comparing the performance of hand-optimized LAPACK algorithms withthe compiler-derived algorithms attained using our techniques. We also breiy discuss a recentapproach of K�agstr�om, Ling and Van Loan [20] that aims to reduce the software costs associatedwith optimizing the level 3 BLAS. Finally, we summarize our results and provide and draw somegeneral conclusions.2 BackgroundThe transformations that we use to create the block versions of matrix factorizations from theircorresponding point versions are well known in the mathematical software community [13]. Thissection introduces the fundamental tools that the compiler needs to perform the same transfor-mations automatically. The compiler optimizes point versions of matrix factorizations throughanalysis of array access patterns rather than through linear algebra.2.1 DependenceThe most important tool available to the compiler is that of dependence|the same tool used invectorization and parallelization. Dependence is necessary for determining the legality of compilertransformations to create blocked versions of matrix factorizations.A dependence exists between two statements if there exists a control ow path from the �rststatement to the second, and both statements reference the same memory location [23].� If the �rst statement writes to the location and the second reads from it, there is a truedependence, also called a ow dependence.� If the �rst statement reads from the location and the second writes to it, there is an antide-pendence.� If both statements write to the location, there is an output dependence.� If both statements read from the location, there is an input dependence.A dependence is carried by a loop if the references at the source and sink (beginning and end) ofthe dependence are on di�erent iterations of the loop and the dependence is not carried by an outerloop [1]. In the loop below, there is a true dependence from A(I,J) to A(I-1,J) carried by theI-loop, a true dependence from A(I,J) to A(I,J-1) carried by the J-loop and an input dependencefrom A(I,J-1) to A(I-1,J) carried by the I-loop.DO 10 I = 1,NDO 10 J = 1, NA(I,J) = A(I-1,J) + A(I,J-1)10To enhance the dependence information, section analysis can be used to describe the portionof an array that is accessed by a particular reference or set of references [4, 19]. Sections describecommon substructures of arrays such as elements, rows, columns and diagonals. As an example ofsection analysis consider the following loop. 3

DO 10 I = 1,NDO 10 J = 1, 1010 A(J,I) = ...If A were declared to be 100� 100, the section of A accessed in the loop would be that shown in theshaded portion of Figure 1.Matrix factorization codes require us to enhance basic dependence information because only aportion of the matrix is involved in the block update. The compiler uses section analysis to revealthat portion of the matrix that can be block updated. Section 3.1.1 discusses this in detail.
1

10

100

100

Figure 1 Section of A3 Automatic Blocking of Dense Matrix FactorizationsIn this section, we show how to derive the block algorithms for the LU and the Cholesky factoriza-tions using current compiler technology and section analysis to enhance dependence information.We also show that the QR factorization with Householder transformations is not blockable. How-ever, we present a performance-competitive version of the QR factorization that is derivable by thecompiler.3.1 LU FactorizationThe LU decomposition factors a non-singular matrix A into the product of two matrices, L and U ,such that A = LU [17]. L is a unit lower triangular matrix and U is an upper triangular matrix.This factorization can be obtained by multiplying the matrix A by a series of elementary lowertriangular matrices, Mn�1 � � �M1 and pivot matrices Pn�1 � � �P1, where L�1 =Mn�1Pn�1 � � �M1P1and U = L�1A. The pivot matrices are used to make the LU factorization a numerically stableprocess.We �rst examine the blockablity of LU factorization. Since pivoting creates its own di�culties,we �rst show how to block LU factorization without pivoting. We then show how to handle pivoting.3.1.1 No PivotingConsider the following algorithm for LU factorization.4

DO 10 K = 1,N-1DO 20 I = K+1,N20 A(I,K) = A(I,K) / A(K,K)DO 10 J = K+1,NDO 10 I = K+1,N10 A(I,J) = A(I,J) - A(I,K) * A(K,J)This point algorithm is refered to as an unblocked right{looking [10] algorithm. It exhibits poorcache performance on large matrices. To transform the point algorithm to the block algorithm, thecompiler must perfom strip-mine-and-interchange on the K-loop [35, 30, 33]. This transformationis used to create the block update of A. To apply this transformation, we �rst strip the K-loop into�xed size sections (this size is dependent upon the target architectures cache characteristics and isbeyond the scope of this paper [25, 9]) as shown below.DO 10 K = 1,N-1,KSDO 10 KK = K,MIN(K+KS-1,N-1)DO 20 I = KK+1,N20 A(I,KK) = A(I,KK) / A(KK,KK)DO 10 J = KK+1,NDO 10 I = KK+1,N10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)Here KS is the machine-dependent strip size that is related to the cache size. To complete thetransformation, the KK-loop must be distributed around the loop that surrounds statement 20 andaround the loop nest that surrounds statement 10 before being interchanged to the innermostposition of the loop surrounding statement 10 [34]. This distribution yields:DO 10 K = 1,N-1,KSDO 20 KK = K,MIN(K+KS-1,N-1)DO 20 I = KK+1,N20 A(I,KK) = A(I,KK) / A(KK,KK)DO 10 KK = K,MIN(K+KS-1,N-1)DO 10 J = KK+1,NDO 10 I = KK+1,N10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)Unfortunately, the loop is no longer correct. This loop scales a number of values before it updatesthem. Dependence analysis allows the compiler to detect and avoid this change in semantics byrecoginizing the dependence cycle between A(I,KK) in statement 20 and A(I,J) in statement 10carried by the KK-loop.Using basic dependence analysis only, it appears that the compiler would be prevented fromblocking LU factorization due to the cycle. However, enhancing dependence analysis with sectioninformation reveals that the cycle only exists for a portion of the data accessed in both statements.Figure 2 shows the sections of the array A accessed for the entire execution of the KK-loop. Thesection accessed by A(I,KK) in statement 20 is a subset of the section accessed by A(I,J) instatement 10.Since the recurrence exists for only a portion of the iteration space of the loop surroundingstatement 10, we can split the J-loop into two loops { one loop iterating over the portion of Awhere the dependence cycle exists, and one loop iterating over the portion of A where the cycledoes not exist { using a transformation called index-set splitting [35]. J can be split at the pointJ = K+KS-1 to create the two loops as shown below.5

1020
N

K

1 NK+KS-1K

Figure 2 Sections of A in LU FactorizationDO 10 K = 1,N-1,KSDO 10 KK = K,MIN(K+KS-1,N-1)DO 20 I = KK+1,N20 A(I,KK) = A(I,KK) / A(KK,KK)DO 30 J = KK+1,MIN(K+KS-1,N)DO 30 I = KK+1,N30 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)DO 10 J = K+KS,NDO 10 I = KK+1,N10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)Now the dependence cycle exists between statements 20 and 30, and statement 10 is no longer inthe cycle. Strip-mine-and-interchange can be continued by distributing the KK-loop around the twonew loops as shown below.DO 10 K = 1,N-1,KSDO 30 KK = K,MIN(K+KS-1,N-1)DO 20 I = KK+1,N20 A(I,KK) = A(I,KK) / A(KK,KK)DO 30 J = KK+1,MIN(K+KS-1,N)DO 30 I = KK+1,N30 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)DO 10 KK = K,MIN(K+KS-1,N-1)DO 10 J = K+KS,NDO 10 I = KK+1,N10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)To �nish strip-mine-and-interchange, we need to move the KK-loop to the innermost position in thenest surrounding statement 10. However, the lower bound of the I-loop contains a reference to KK.This creates a triangular iteration space as shown in Figure 3. To interchange the KK and I loops,the intersection of the line I=KK+1 with the iteration space at the point (K,K+1) must be handled.Therefore, interchanging the loops requires the KK-loop to iterate over a trapezoidal region withan upper bound of I-1 until I-1 > K+KS-1 (see Wolfe, and Carr and Kennedy for more details ontransforming non-rectangular loop nests [35, 7]). This gives the following loop nest.6

DO 10 K = 1,N-1,KSDO 30 KK = K,MIN(K+KS-1,N-1)DO 20 I = KK+1,N20 A(I,KK) = A(I,KK) / A(KK,KK)DO 30 J = KK+1,MIN(K+KS-1,N)DO 30 I = KK+1,N30 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)DO 10 J = K+KS,NDO 10 I = K+1,NDO 10 KK = K,MIN(I-1,MIN(K+KS-1,N-1))10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)
I

N

1
1 K K+KS-1 N-1

KK

I = KK+1Figure 3 Iterations Space of LU FactorizationAt this point, a right{looking [10] block algorithm has been obtained. Therefore, LU factor-ization is blockable. The loop nest surrounding statement 10 is a matrix-matrix multiply thatcan be further optimized depending upon the architecture. For superscalar architectures whoseperformance is bound by cache, outer loop unrolling on non-rectangular loops can be applied tothe J- and I-loops to further improve performance [7, 8]. For vector architectures, a di�erent loopoptimization strategy may be more bene�cial [1].Many of the transformations that we have used to obtain the block version of LU factorizationare well known in the compiler community and exist in many commercial compilers (e.g., HP, DECand SGI). One of the contributions of this study to compiler research is to show how the use ofsection analysis is necessary for compilers to block matrix factorizations. Note that none of theaformentioned compilers uses section analysis for this purpose.3.1.2 Adding Partial PivotingAlthough the compiler can discover the potential for blocking in LU decomposition without pivotingusing index-set splitting, the same cannot be said when partial pivoting is added (see Figure 4 forLU decomposition with partial pivoting). In the partial pivoting algorithm, a new recurrence existsthat does not �t the form handled by index-set splitting. Consider the following sections of codeafter applying index-set splitting to the algorithm in Figure 4.DO 10 KK = K,K+KS-1DO 30 J = 1,N 7

TAU = A(KK,J)25 A(KK,J) = A(IMAX,J)30 A(IMAX,J) = TAUDO 10 J = KK+KS,NDO 10 I = KK+1,N10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)The reference to A(IMAX,J) in statement 25 and the reference to A(I,J) in statement 10 access thesame sections. Distributing the KK-loop around both J-loops would convert the true dependencefrom A(I,J) to A(IMAX,J) into an antidependence in the reverse direction. The rules for thepreservation of data dependence prohibit the reversing of a dependence direction. This wouldseem to preclude the existence of a block analogue similar to the non-pivoting case. However,a block algorithm that ignores the preventing recurrence and distributes the KK-loop can still bemathematically derived [13].Consider the following. IfM1 = 1 0�m1 I ! ; P2 = 1 00 P̂2 !then P2M1 = 1 0�P̂2m1 I ! 1 00 P̂2 ! � M̂1P2: (1)This result shows that we can postpone the application of the eliminator M1 until after the ap-plication of the permutation matrix P2 if we also permute the rows of the eliminator. ExtendingEquation 1 to the entire formulation we haveU = Mn�1M̂n�2M̂n�3 � � �M̂1Pn�1Pn�2Pn�3 � � �P1A = MPA:In the implementation of the block algorithm, Pi cannot be computed until step i of the pointalgorithm. Pi only depends upon the �rst i columns of A, allowing the computation of k Pi's andM̂i's, where k is the blocking factor, and then the block application of the M̂i's [13].DO 10 K = 1,N-1CC ... pick pivot --- IMAXC DO 30 J = 1,NTAU = A(K,J)25 A(K,J) = A(IMAX,J)30 A(IMAX,J) = TAUDO 20 I = K+1,N20 A(I,K) = A(I,K) / A(K,K)DO 10 J = K+1,NDO 10 I = K+1,N10 A(I,J) = A(I,J) - A(I,K) * A(K,J)Figure 4 LU Decomposition with Partial Pivoting8

To install the above result into the compiler, we examine its implications from a data depen-dence viewpoint. In the point version, each row interchange is followed by a whole-column update inwhich each row element is updated independently. In the block version, multiple row interchangesmay occur before a particular column is updated. The same computations (column updates) areperformed in both the point and block versions, but these computations may occur in di�erent loca-tions (rows) of the array. The key concept for the compiler to understand is that row interchangesand whole-column updates are commutative operations. Data dependence alone is not su�cient tounderstand this. A data dependence relation maps values to memory locations. It reveals the se-quence of values that pass through a particular location. In the block version of LU decomposition,the sequence of values that pass through a location is di�erent from the point version, although the�nal values are identical. Without an understanding of commutative operations, LU decompositionwith partial pivoting is not blockable.Fortunately, a compiler can be equipped to understand that operations on whole columns arecommutable with row permutations. To upgrade the compiler, one would have to install patternmatching to recognize both the row permutations and whole-column updates to prove that therecurrence involving statements 10 and 25 of the index-set split code could be ignored. Formsof pattern matching are already done in commercially available compilers. Vectorizing compilerspattern match for specialized computations such as searching vectors for particular conditions[28]. Other preprocessors pattern match to recognize matrix multiplication and, in turn, outputa predetermined solution that is optimal for a particular machine. So, it is reasonable to believethat pivoting can be recognized and implemented in commercial compilers if its importance isemphasized.3.2 Cholesky FactorizationWhen the matrix A is symmetric and positive de�nite, the LU factorization may be written asA = LU = LD(D�1U) = LD1=2D1=2LT � L̂L̂T ;where L̂ = LD1=2 and D is the diagonal of U . The decomposition of A into the product of atriangular matrix and its transpose is called the Cholesky factorization. Thus we need only workwith the lower triangular half of A and essentially the same dependence analysis that applies tothe LU factorization without pivoting may be used.The strip mined version of the Cholesky factorization is shown below.DO 10 K = 1,N-1,KSDO 10 KK = K,MIN(K+KS-1,N-1)A(KK,KK) = SQRT(A(KK,KK))DO 20 I = KK+1,N20 A(I,KK) = A(I,KK) / A(KK,KK)DO 10 J = KK+1,NDO 10 I = J,N10 A(I,J) = A(I,J) - A(I,KK) * A(J,KK)As is the case with LU factorization, there is a recurrence between A(I,J) in statement 10 andA(I,KK) in statement 20 carried by the KK-loop. The data access patterns in Cholesky factorizationare identical to LU factorization (see Figure 2), index-set splitting can be applied to the J-loop atK+KS-1 to allow the KK-loop to be distributed, achieving the LAPACK block algorithm.9

3.3 QR FactorizationIn this section, we examine the blockability QR factorization. First, we show that the block algo-rithm from LAPACK is not blockable. Then, we give an alternate algorithm that is blockable.3.3.1 LAPACK VersionThe LAPACK point algorithm for computing the QR factorization consists of forming the sequenceAk+1 = VkAk for k = 1; : : : ; n� 1. The initial matrix A1 = A has m rows and n columns, where forthis study we assumem = n. The elementary reectors Vk = I��kvkvTk update Ak in order that the�rst k columns of Ak+1 form an upper triangular matrix. The update is accomplished by performingthe matrix vector multiplication wk = AT vk followed by the rank one update Ak+1 = Ak��kvkwTk .E�ciency of the implementation of the level 2 BLAS subroutines determines the rate at which thefactorization is computed. For a more detailed discussion of the QR factorization see Golub andVan Loan [18].The LAPACK block QR factorization is an attempt to recast the algorithm in terms of calls tolevel 3 BLAS [13]. If the level 3 BLAS are hand-tuned for a particular architecture, the block QRalgorithm may perform signi�cantly better than the point version on large matrix sizes (those thatcause the working set to be much larger than the cache size).Unfortunately, the block QR algorithm in LAPACK is not automatically derivable by a compiler.The block application of a number of elementary reectors involves both computation and storagethat does not exist in the original point algorithm [13]. To block a number of eliminators together,the following is computedQ = (I � �1v1vT1)(I � �2v2vT2) � � �(I � �n�1vn�1vTn�1)= I � V TV T :The compiler cannot derive I � V TV T from the original point algorithm using dependence infor-mation. To illustrate, consider a block of two elementary reectorsQ = (I � �1v1vT1)(I � �2v2vT2);= I � (v1v2) �1 �1�2(vT1 v2)0 �2 ! vT1vT2 ! :The computation of the matrix T = �1 �1�2(vT1 v2)0 �2 !is not part of the original algorithm. Hence, the LAPACK version of block QR factorization is adi�erent algorithm from the point version, rather than just a reshaping of the point algorithm forbetter performance. The compiler can reshape algorithms, but, it cannot derive new algorithmswith data dependence information. In this case, the compiler would need to understand linearalgebra to derive the block algorithm.In the next section, a compiler-derivable block algorithm for QR factorization is presented. Thisalgorithm gives comparable performance to the LAPACK version on small matrices while retainingmachine independence. 10

3.3.2 Compiler-Derivable QR FactorizationConsider the application of j matrices Vk to Ak,Ak+j = (I � �k+j�1vk+j�1vTk+j�1) � � �(I � �k+1vk+1vTk+1)(I � �kvkvTk)Ak:The compiler derivable algorithm, henceforth called cd-QR, only forms columns k through k+ j� 1of Ak+j and then updates the remainder of matrix with the j elementary reectors. The �nalupdate of the trailing n � k � j columns is \rich" in oating point operations that the compilerorganizes to best suit the underlying hardware. Code optimization techniques such as strip-mine-and-interchange and unroll-and-jam are left to the compiler. The derived algorithm depends uponthe compiler for e�ciency in contrast to the LAPACK algorithm that depends on hand optimizationof the BLAS.Cd-QR can be obtained from the point algorithm for QR decomposition using array sectionanalysis [7]. For reference, segments of the code for the point algorithm after strip mining ofthe outer loop are shown in Figure 5. To complete the transformation of the code in Figure 5 toobtain cd-QR, the I-loop must be distributed around the loop that surrounds the computation of Viand around the update before being interchanged with the J-loop. However, there is a recurrencebetween the de�nition and use of A(K,J) within the update section and the de�nition and useof A(J,I) in computation of Vi: The recurrence is carried by the I-loop and appears to preventdistribution.Figure 6 shows the sections of the array A(:,:) accessed for the entire execution of the I-loop. If the sections accessed by A(J,I) and A(K,J) are examined, a legal partial distribution ofthe I-loop is revealed (note the similarity to LU and Cholesky factorization. The section accessedby A(J,I) (the black region) is a subset of the section accessed by A(K,J) (both the black andgray regions) and the index-set of J can be split at the point J = I+IB-1 to create a new loopthat executes over the iteration space where the memory locations accessed by A(K,J) are disjointfrom those accessed by A(J,I). The new loop that iterates over the disjoint region can be furtheroptimized by the compiler depending upon the target architecture.3.3.3 A Comparison of the Two QR FactorizationsThe algorithm cd-QR does not exhibit as much cache reuse as the LAPACK version on large matrices.The reason is that the LAPACK algorithm is able to take advantage of the level 3 BLAS routineDGEMM, which can be highly optimized. Cd-QR uses operations that are closer to level 2 BLAS andthat have worse cache reuse characteristics. Therefore, we would expect the LAPACK algorithmto perform better on larger matrices as it could possibly take advantage of a highly tuned matrix-matrix multiply kernel.3.4 Summary of TransformationsIn summary, Table 1 lists the analyses and transformations that must be used by a compilerto block matrix factorizations. Items 1 and 2 were discussed in Section 2. Items 3 through 7 werediscussed in Section 3.1. Item 8 was discussed in the compiler literature [25, 9]. Item 9 is discussedin Section 3.1.2. Finally, it should be noted that items 2 and 9 are not likely to be found in today'scommercial compilers.4 ExperimentWe measured the performance of each block factorization algorithm on four di�erent architectures:the IBM POWER2model 590, the HPmodel 712/80, the DEC Alpha 21164 and the SGImodel Indigo211

DO II = 1, N, IBDO I = II, MIN0(II+IB-1,N)** Generate elementary reflector V_i.* DO J = I+1, MA(J,I) = A(J,I)/(A(I,I)-BETA)ENDDO** Update A(i:m,i+1:n) with V_i.* DO J = I+1, NT1 = ZERODO K = I, MT1 = T1 + A(K,J)*A(K,I)ENDDODO K = I, MA(K,J) = A(K,J) - TAU(I)*T1*A(K,I)ENDDOENDDOENDDOENDDO Figure 5 Strip-Mined Point QR Decomposition
N

M

II

II+IB-1IIFigure 6 Regions of A Accessed by QR Decomposition12

Table 1 Summary of the compiler transformations necessary to block matrix factorizations.1 Dependence Analysis2 Array Section Analysis3 Strip-Mine-and-Interchange4 Unroll-and-Jam5 Index-Set Splitting6 Loop Distribution7 Handling of Non-rectangular Iteration Spaces8 Automatic Block-Size Selection9 Pattern Matching for Pivotingwith a MIPS R4400. Table 2 summarizes the characteristics of each machine. These architectureswere chosen because they are representative of the typical high-performance workstation.Machine Clock Speed Peak Mops Cache Size Associativity Line Size CompilerIBM POWER2 66.5MHz 264 256KB 4 256 bytes xlf AIX v1.3.0.24HP 712 80MHz 80 256KB 1 32 bytes f77 v9.16DEC Alpha 250MHz 500 8KB 1 32 bytes f77 v3.8SGI Indigo2 200MHz ?? 16KB 1 32 bytes f77 v5.3Table 2 Machine CharacteristicsOn all the machines, we used the vendor's optimized BLAS. For example, on the IBM POWER2and SGI Indigo2, we linked with the libraries -lessl and -lblas, respectively. Our compiler-optimized versions were obtained by hand using the algorithms in the literature. The reason thatthis process could not be fully automated is because of a current de�ciency in the dependenceanalyzer of our tool [3, 5].In each table below, performance is reported in double precision megaops Each factorizationroutine is run with block sizes of 1, 2, 4, 8, 16, 24, 32, 48, and 64.1 In each table, the columnsshould be interpreted as follows:LABlk: The best blocking factor for the LAPACK algorithm.LAMf: The best megaop rate for the LAPACK algorithm (corresponding to LABlk).CBlk: The best blocking factor for the compiler-derived algorithm.CMf: The best megaop rate for the compiler-derived algorithm (corresponding to CBlk).1Although the compiler can e�ectively choose blocking factors automatically, we do not have an implementation ofthe available algorithms [25, 9]. 13

Table 3 LU Performance on IBM, HP, DEC and SGIIBM POWER2 HP 712Size LABlk LAMf CBlk CMf Speedup LABk LAMf CBlk CMf Speedup25x25 1,16,32,64 21 8,16 44 1 21 8 21 1.0050x50 32 48 8,16 74 1 33 8 28 0.8375x75 16 81 16 95 1 26 8 31 1.17100x100 16 106 16 112 1 25 8 31 1.23150x150 16 132 16 132 64 21 16 31 1.49200x200 32 143 16 138 64 20 16 33 1.63300x300 32 157 32 147 32 18 32 36 2.03500x500 64 166 32 161 32 17 32 40 2.28DEC Alpha SGI Indigo2Size LABlk LAMf CBlk CMf Speedup LABk LAMf CBlk CMf Speedup25x25 1 43 8 53 1.25 8 20 8 2150x50 8 74 8 78 1.05 8 34 8 2875x75 16 96 8 96 1.00 8 34 8 29100x100 16 116 8 110 0.95 8 37 8 29150x150 32 138 8 113 0.82 8 39 8 28200x200 32 156 8 124 0.79 8 40 16 29300x300 32 181 16 132 0.73 8 41 16 30500x500 32 212 8 148 0.70 32 38 32 294.1 LU FactorizationTable 3 show the performance of the compiler-derived version of LU factorization versus the LAPACKversion.For the HP 712, Table 3 indicates an unexpected trend. The compiler-derived version performsbetter on all matrix sizes except 50x50, with dramatic improvements as the matrix size increases.This indicates that the hand-optimized dgemm is not optimized well for cache performance. Wehave optimized for cache performance in our algorithm and when cache becomes a problem, we domuch better than the hand-optimized version.The signi�cant performance degradation for the 50x50 case is interesting. For a matrix thissmall, cache performance is not a factor. We believe the performance di�erence comes from theway code is generated. For superscalar architectures like the HP, a code generation scheme calledsoftware pipelining is used to generate highly parallel code [24, 31]. However, software pipeliningrequires a lot of registers to be successful. In our code, we performed unroll-and-jam to improvecache performance. However, unroll-and-jam can signi�cantly increase register pressure and causesoftware pipelining to fail [6]. On our version of LU decomposition, the HP compiler diagnosticsreveal that software pipelining failed on the main computational loop due to high register pressure.Given that the hand-optimized version is highly software pipelined, the result would be a highlyparallel hand-optimized loop and a not-as-parallel compiler-derived loop. At matrix size 25x25,there are not enough loop iterations to expose the di�erence. At matrix size 50x50, the di�erenceis prevelant. At matrix sizes 75x75 and greater, cache performance becomes a factor. At this time,there are no known compiler algorithms that deal with the trade-o�s between unroll-and-jam andsoftware pipelining. This is an important area of future research.For the DEC Alpha, Table 3 shows that our algorithm performs as well as or better than theLAPACK version on matrices of order 100 or less. After size 100x100, the second-level cache on the14

Alpha, which is 96K, begins to overow. Our compiler-derived version is not blocked for multiplelevels of cache, while the hand-optimized version is blocked for 2 levels of cache [22]. Thus, thecompiler-derived algorithm su�ers many more cache misses in the level-2 cache than the LAPACKversion. It is possible for the compiler to perform the extra blocking for multiple levels of cache,but we know of no compiler that currently does this. Additionally, the hand-optimized algorithmutilized the following architectural features that we do not [22]:� The use of temporary arrays to eliminate conicts in the level-1 direct-mapped cache and thetranslation lookaside bu�er [25, 9].� The use of the memory-prefetch feature on the Alpha to hide latency between cache andmemory.Although each of these optimizations could be done in the DEC product compiler, they are not.Each optimization would give additional performance to our algorithm.4.2 Cholesky FactorizationTable 4 shows the performance of the compiler-derived version of Cholesky factorization versus theLAPACK version.On the HP, we observe the same pattern on the as we did for LU factorization. When cacheperformance is critical, we outperform the hand-optimized version. When cache performance isnot critical, the hand-optimized version give better results, except when the matrix is small. Ouralgorithm performed much better at 25x25 size most likely due to the high overhead associatedwith sofware pipelining on short loops. Since Cholesky factorization has fewer operations than LUfactorization in the update portion of the code, we would expect a high overhead associated withTable 4 Cholesky Performance on IBM, HP, DEC and SGIIBM POWER2 HP 712Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup25x25 32,64 30 8 52 1 10 8 21 2.0050x50 64 60 8 84 1 42 8 28 0.6775x75 1 81 4 97 1 37 8 31 0.83100x100 8 101 4 108 1 33 8 33 1.00150x150 8 127 2 116 1 32 16 34 1.05200x200 8 144 8,16 118 1 33 16 36 1.11300x300 16 164 16 121 1 23 16 39 1.72500x500 16,32 183 32 123 32 17 16 43 2.56DEC Alpha SGI Indigo2Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup25x25 1 36 4 53 1.50 1 19 4 2350x50 1 71 4 107 1.50 1 31 4 3275x75 1 94 4 117 1.25 1 33 4 34100x100 1 104 4 131 1.27 8 33 4 34150x150 1 113 4 141 1.24 16 36 4 34200x200 1 116 4 145 1.25 16 38 4 34300x300 64 134 4 146 1.09 16 40 4 34500x500 64 162 4 149 0.92 16 40 4 3215

small matrices. Also, the e�ects of cache are not seen until larger matrix sizes (compared to LUfactorization). This is again due to the smaller update portion of the factorization.On the DEC, we outperform the hand-optimized version up until the 500x500 matrix. This isthe same pattern as seen in LU factorization except that it takes longer to appear. This is due tothe smaller size of the update portion of the factorization.4.3 QR FactorizationTable 5 shows the performance of the compiler-derived version of QR factorization versus theLAPACK version. Since the compiler-derived algorithm for block QR factorization has worse cacheperformance than the LAPACK algorithm, but O(n2) less computation, we would expect worseperformance when the cache performance becomes critical.On the HP, we see the same pattern as before. However, since the cache performance of ouralgorithm is not as good as the the LAPACK version, we see a much smaller improvement whenour algorithm has superior performance. Again, we also see that when the cache performance ofthe hand-optimized algorithm is good, it outperforms our algorithm.On the DEC, we see the same pattern as on the previous factorizations except that our degra-dations are much larger for large matrices. This is due to the inferior cache performance of cd-QR.4.4 Performance SummaryNEED TO WRITE THIS WHEN ALL DATA IS PRESENT.Table 5 QR Performance on IBM and HPIBM POWER2 HP 712Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup25x25 32,64 30 8 52 1 21 1 21 1.0050x50 32 53 16 81 1 37 2 28 0.7575x75 32 81 8 114 1 38 4 29 0.76100x100 32 105 8 132 1 38 4 30 0.80150x150 32 136 16 151 1 28 8 29 1.07200x200 32 154 8 158 64 25 16 31 1.23300x300 32 185 32 170 32 25 32 31 1.25500x500 64 205 32 191 32 23 32 31 1.38DEC Alpha SGI Indigo2Size LABlk LAMf CBlk CMf Speedup LABlk LAMf CBlk CMf Speedup25x25 1 50 4 66 1.31 1 15 8 2350x50 1 85 2 98 1.15 4 26 8 3075x75 1 100 2 107 1.07 8 29 8 29100x100 16 114 4 111 0.98 8 34 8 29150x150 16 138 8 110 0.79 8 38 8 28200x200 16 158 16 115 0.72 8 39 8 27300x300 16 180 16 114 0.64 8 40 8 25500x500 32 213 16 115 0.54 8 39 8 2516

5 Blocking with a GEMM based ApproachSince LAPACK depends upon a set of highly tuned set of BLAS for e�ciency, there remains thepractical question of how they should be optimized. As discussed in the introduction, an e�cientset of BLAS requires a non-trivial e�ort in software engineering. See [20] for a discussion on softwaree�orts to provide optimal implementations of the level 3 BLAS.An approach that is both e�cient and practical is the GEMM-based one proposed by K�agstr�om,Ling and Van Loan [20] in a recent study. Their approach advocates optimizing the general matrix-matrix multiply and add kernel GEMM and then rewriting the remainder of the level 3 BLAS interms of calls to this kernel. Their thorough analysis highlights the many issues that must beconsidered when attempting to construct a set of highly tuned BLAS. Most importantly, theyprovide high quality implementations of the BLAS for general use as well as a performance evaluationbenchmark [21].We emphasize that our study examines only whether the necessary optimizations may be left tothe compiler, and, also whether they should be applied directly to the matrix factorizations. Whatis beyond the ability of the compiler is that of recasting the level 3 BLAS in terms of calls to GEMM.6 SummaryWe have set out to determine whether a compiler can automatically restructure matrix factor-izations well enough to avoid the need for hand optimization. To that end, we have examined acollection of implementations from LAPACK. For each of these programs, we determined whether aplausible compiler technology could succeed in obtaining the block version from the point algorithm.The results of this study are encouraging: we have demonstrated that there exist implementablecompiler methods that can automatically block matrix factorization codes to achieve algorithmsthat are competitive with those of LAPACK. Our results show that for modest-sized matrices onadvanced microprocessors with a memory hierarchy, the compiler-derived variants are often supe-rior. These matrix sizes are typical on workstations. We remark that a di�erent set of optimizationsis required to optimize the codes for vector machines [1]. However, our use of section analysis isstill required to enable these transformations.Given that future machine designs are certain to have increasingly complex memory hierarchies,compilers will need to adopt increasingly sophisticated memory-management strategies so thatprogrammers can remain free to concentrate on program logic. Given the potential for performanceattainable with automatic techniques, we believe that it is possible for the user to express machine-independent point matrix factorization algorithms without the BLAS and still get good performanceif compilers adopt our enhancement to already existing methods.AcknowledgmentsKen Kennedy and Richard Hanson provided the original motivation for this work. Ken Kennedy,Keith Cooper and Danny Sorensen provided �nancial support for this research when it was begunat Rice University. We also wish to thank Tomas Lofgren and John Pieper of DEC for their helpwith obtaining the DXML libraries and diagnosing the compiler's performance, respectively.17

References[1] J.R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACMTransactions on Programming Languages and Systems, 9(4):491{542, October 1987.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM,Philadelphia, PA, second edition, 1995.[3] D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Torczon. ParaScope: A parallelprogramming environment. In Proceedings of the First International Conference on Supercom-puting, Athens, Greece, June 1987.[4] D. Callahan and K. Kennedy. Analysis of interprocedural side e�ects in a parallel program-ming environment. In Proceedings of the First International Conference on Supercomputing.Springer-Verlag, Athens, Greece, 1987.[5] S. Carr. Memory-Hierarchy Management. PhD thesis, Rice University, Department of Com-puter Science, September 1992.[6] S. Carr, C. Ding, and P. Sweany. Improving software pipelining with unroll-and-jam. InProceedings of the 29th Annual Hawaii International Conference on System Sciences, Maui,HI, January 1996.[7] S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In Proceedings ofSupercomputing '92, pages 114{124, Minneapolis, MN, November 1992.[8] Steve Carr and Ken Kennedy. Improving the ratio of memory operations to oating-pointoperations in loops. ACM Transactions on Programming Languages and Systems, 16(6):1768{1810, 1994.[9] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache organization.SIGPLAN Notices, 30(6):279{280, June 1995. Proceedings of the ACM SIGPLAN '95 Confer-ence on Programming Language Design and Implementation.[10] J. J. Dongarra, I. S. Du�, D. C. Sorensen, and H. A. Van der Vorst. Solving Linear systemson Vector and shared memory computers. SIAM, Philadelphia, PA., 1991.[11] J.J. Dongarra, J. DuCroz, I. S. Du�, and S. Hammarling. A set of level 3 basic linear algebrasubprograms. ACM Transactions on Mathematical Software, 16(1):1{17, 1990.[12] J.J. Dongarra, J. DuCroz, S. Hammarling, and R. J. Hanson. An extended set of Fortranbasic linear algebra subprograms. ACM Trans. on Math. Software, 14(1):1{17, 1988.[13] J.J. Dongarra, I.S. Du�, D.C. Sorensen, and H.A. van der Vorst. Solving Linear Systems onVector and Shared-Memory Computers. SIAM, Philadelphia, 1991.[14] J.J. Dongarra, F.G. Gustavson, and A. Karp. Implementing linear algebra algorithms fordense matrices on a vector pipeline machine. SIAM Review, 26(1):91{112, January 1984.[15] J.J. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart. LINPACK Users' Guide. SIAM,Philadelphia, PA., 1979. 18

[16] K.A. Gallivan, R.J. Plemmons, and A.H. Sameh. Parllel algorithms for dense linear algebracomputations. SIAM Review, 32:54{135, 1990.[17] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins, Baltimore, secondedition, 1989.[18] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press,Baltimore, 1989.[19] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular sectionanalysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350{360, July 1991.[20] B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-performance modelimplementations and performance evaluation benchmark. Technical Report UMINF-95.18,Department of Computing Science, University of Ume�a, S-901 87 Ume�a, Sweden, October1995. Submitted to ACM Transactions on Mathematical Software. Also available as LAPACKWorking Note 107.[21] B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: Installation, tuning,and use of the model implementations and the performance evaluation benchmark. TechnicalReport UMINF-95.19, Department of Computing Science, University of Ume�a, S-901 87 Ume�a,Sweden, October 1995. Submitted to ACM Transactions on Mathematical Software. Alsoavailable as LAPACK Working Note 108.[22] C. Kamath, R. Ho, and D.P. Manley. DXML: A high-performance scienti�c subroutine library.Digital Technical Journal, 6(3):44{56, 1994.[23] D. Kuck. The Structure of Computers and Computations Volume 1. John Wiley and Sons,New York, 1978.[24] Monica Lam. Software pipelining: An e�ective scheduling technique for vliw machines. SIG-PLAN Notices, 23(7):318{328, July 1988. Proceedings of the ACM SIGPLAN '88 Conferenceon Programming Language Design and Implementation.[25] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance andoptimizations of blocked algorithms. In Proceedings of the Fourth International Conferenceon Architectural Support for Programming Languages and Operating Systems, pages 63{74,Santa Clara, California, 1991.[26] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for fortranusage. ACM Transactions on Mathematical Software, 5:308{329, 1979.[27] Richard Lehoucq. Implementing e�cient and portable dense matrix factorizations. In Pro-ceedings of the Fifth SIAM Conference on Parallel Processing for Scienti�c Computing, 1992.[28] David Levine, David Callahan, and Jack Dongarra. A comparative study of automatic vector-izing compilers. Parallel Computing, 17:1223{1244, 1991.[29] James M. Ortega. Introduction to Parallel and Vector Solutions of Linear Systems. PlenumPress, New York, New York, 1988.[30] A.K. Porter�eld. Software Methods for Improvement of Cache Performance on SupercomputerApplications. PhD thesis, Rice University, May 1989.19

[31] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register allocation for softwarepipelined loops. SIGPLAN Notices, 27(7):283{299, July 1992. Proceedings of the ACM SIG-PLAN '92 Conference on Programming Language Design and Implementation.[32] B. T. Smith, J. M. Boyle, J. J. Dongarra B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.Moler. EISPACK Guide. Springer{Verlag, Berlin, second edition, 1976. Volume 6 of LectureNotes in Computer Science.[33] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceedings of the SIG-PLAN '91 Conference on Programming Language Design and Implementation, June 1991.[34] M. Wolfe. Advanced loop interchange. In Proceedings of the 1986 International Conferenceon Parallel Processing, August 1986.[35] M. Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third SIAMConference on Parallel Processing for Scienti�c Computing, December 1987.

20

