THE INEXACT RATIONAL KRYLOV SEQUENCE METHOD*

R. B. LEHOUCQ! AND KARL MEERBERGEN!

Abstract. The rational Krylov sequence (RKS) method is a generalization of Arnoldi’s method.
It constructs an orthogonal reduction of a matrix pencil into an upper Hessenberg pencil. The RKS
method is useful when the matrix pencil may be efficiently factored. However, it requires the solution
of a linear system at every step. This article considers solving the resulting linear systems in an
inexact manner by using an iterative method. We show that a Cayley transformation used within
the RKS method is more efficient and robust than the usual shift-and-invert transformation. A
relationship with the recently introduced Jacobi—Davidson method of Sleijpen and van der Vorst is
also established.

1. Introduction. Suppose that a few eigenvalues near a complex number p and
possibly corresponding eigenvectors of the generalized matrix eigenvalue problem

(1.1) Az = Bz

are needed. Assume that both A and B are large complex matrices of order n.
Also suppose that at least one of A or B is nonsingular so that equation (1.1) has
n eigenvalues. Without loss of generality, assume that B is invertible. Following
standard convention, we refer to (A, B) as a matrix pencil. For us, n is considered
large when 1t is prohibitive to compute all the eigenvalues as a dense algorithm in
LAPACK [1] would attempt to do.

A standard approach is to perform inverse iteration [18, page 405] with the matrix
A — puB. The sequence of iterates

(1.2) v, (A= puB) ' Bu, [(A—uB) !B, ...

is produced. Under some mild assumptions, the sequence converges toward the desired
eigenvector, and a Rayleigh quotient calculation gives an estimate of the eigenvalue.
Another approach is to extract the approximate eigenpair by using the information
from the subspace defined by joining together m iterates of the sequence (1.2). This
leads to a straightforward extension [20] of the ideas introduced by Ericsson and
Ruhe [14] for the spectral (shift-and-invert) transformation Lanczos method. Starting
with the vector v, Arnoldi’s method [2] builds, step by step, an orthogonal basis for
the Krylov subspace

ICm(TSI, v) = Span{v, T, ., (TSI)m_lv} where T°1 = (A—uB) 'B.

Omne improvement to the inverse iteration scheme given is to vary the shift y = y;
at every step. For example, set p; equal to the Rayleigh quotient M Az 2 Bz where
z is an unit vector in the direction of (7°!)/v. Ruhe [29, 31] elegantly shows how to
build an orthogonal basis for the rational Krylov subspace

Span{v, TPTw, - (TSL, ... TPy}, where T]»SI =(A—pu;B)"'B.
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The resulting algorithm is called a rational Krylov sequence (RKS) method and is a
generalization of the shift-and-invert Arnoldi method where the shift is varied during
each step.

All the methods considered require the solution of (A — uB)x = By for «. This
is typically accomplished by factoring A — uB. For example, when A — uB is sparse,
a direct method [6, 7, 9, 10, 12, 11] may be employed. If the shifts p; are not varied,
then use of one of these direct methods in conjunction with ARPACK [19] is a powerful
combination for computing a few solutions of the generalized eigenvalue problem (1.1).

However, for large eigenvalue problems (n > 10,000), direct methods using the
RKS method may not provide an efficient solution because of the potentially pro-
hibitive storage requirements. The motivation for the current study is to investigate
the use of iterative methods for the linear systems of equations arising in the RKS
method. We shall call these methods inezact RKS ones. One benefit is that for the
many eigenvalue problems arising from a discretization of partial differential equa-
tions, an intelligent preconditioner may often be constructed. In particular, we shall
demonstrate that a Cayley transformation T]»C = (A — pj B)7'(A — v; B) performs
more robustly than a shift-and-invert transformation T]»SI = (A — u;B)™'B when
using iterative methods for the linear solves.

Fittingly, the literature on approaches for finding a few solutions to the generalized
eigenvalue problem (1.1), where only approximate solutions to the linear systems
are available, is sparse. Szyld [38] considers the situation where the matrix pencil
is symmetric positive definite. Algorithms based on Jacobi-Davidson methods are
discussed in [15, 34]. The recent report by Meerbergen and Roose [21] provided
motivation for the current article.

Our article is organized as follows. We introduce the RKS method in §2. The
inexact RKS method is introduced in §3 along with a connection with inverse iteration
and some examples illustrating our ideas. In §4, we illustrate our method for a
generalized eigenvalue problem. We compare the inexact RKS and Jacobi—Davidson
methods in §5. We conclude the paper in §6 with a summary of the main ideas and
some remaining questions.

In this article, matrices are denoted by upper-case Roman characters. Vectors
are denoted by lower-case Roman characters. The range of the matrix V is denoted
by R(V). The Hermitian transpose of the vector x is denoted by z#.

2. The Rational Krylov Sequence Method. The method is outlined by the
algorithm listed in Figure 2. For the practical RKS algorithm given in [31], Ruhe
considers the shift-and-invert transformation T]»SI = (A—p; B)~! B rather than T]»C =
(A — pj B)™'(A — v;B). In exact arithmetic, both transformations lead to the same
rational Krylov space, since

(2.1) T =T+ (= )T

However, in finite-precision arithmetic and/or in conjunction with iterative methods
for linear systems, substantial differences may exist. We call the y;’s the poles, the v;’s
the zeros, and the Vjt;’s the continuation vectors. The selection of these quantities
is postponed until §3. This section will discuss some relationships in Steps 1-7, the
form of Gram—-Schmidt orthogonalization we employ, and finally the computation of
approximate eigenpairs and their convergence.

By eliminating w from Steps 2-5, we obtain the relationship

(22) (A= 1 B)" (A = v B)Vjtj = Visahy,
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o Choose a starting vector vy with ||v1]| = 1.
e Set Vo — [v1 ], and Eo,[?o —[1
e Fory=1,2,...,m
1. Select a pole pj, a zero v; # p; and a vector t; € R’ with ||¢;|| = 1.
Form w = Vjt; (continuation vector).
Form w + (A — u; B)™' (A — v; B)w.
Orthogonalize w := w — V;h; with h; = V" w (Gram-Schmidt).
Set Vigr = [ Vi w/hypa,; | where hyy,; = ||w]|.

i h; t - h; t
6. Set l; = [ byt :| — [ 0 :| and k; = [ byt w=| g | v

Iy
0

T o W D

7. Set L, = [ l~]:| and K; = [ Kjo_l k;

8. Compute approximate eigenpairs of interest.
9. Check whether the approximate eigenpairs satisfy the convergence criterion.

Fia. 2.1. Computing the Rational Krylov Sequence (RKS) for the matriz pencil (A,B)

where 77,]' = [ hlyj hzyj h]'_|_17]' ]T. Let {]' = [ th 0 ]T
tion (2.2) results in

. Rearranging Equa-

(A = B)Visih; = (A= v B)Vjsalj,
AVjy1(hy —t5) = BVjp1(hjp; —tivy).

By putting together the relations for j = 1,..., m, we have that
(2.3) AVii1 (Hp — Tin) = BViy1 (Hoy My, — Ty Ny ),

where 77,]' and th are associated with the jth columns of H,, and fm, respectively, and

My, = diag(p1, ..., i), N = diag(va, ..., vm).
A final simplification is to rewrite Equation (2.3) as

(2.4) AViy1 Ly = BViy1 Ko,

where Em = f]m —Tm and f(m = f]mMm —TmNm. We remark that as long as hj41 ;
is nonzero, both H,, and L,, are unreduced upper Hessenberg (rectangular) matrices
and thus of full rank.

In Appendix A, we show that the use of T]»SI leads to the RKS relation

(2.5) AVt Ln (M, — Npp) ™t = BViy1 Kin (M, — Npy) ™1

2.1. Orthogonalization. The orthogonalization of Step 3 of Algorithm 2 uses
an iterative classical Gram-Schmidt algorithm. This is the same approach used by
Sorensen [37] based on the analysis [5] of reorthogonalization in the Gram-Schmidt
algorithm.

2.2. Computing Eigenvalue Estimates. We now consider the calculation of
approximate eigenpairs for the RKS method. We discuss how to compute Ritz pairs.
Harmonic Ritz pairs [23, 27, 24, 36] may also be computed, as was shown by Ruhe [31],
but these are not considered here. The main purpose of this article is to study the
use of iterative linear system solvers in RKS and not the various ways to extract
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eigenvalues. Therefore, we use standard Ritz values throughout, though the theory
can easily be extended to harmonic Ritz values.

Consider a matrix C' and a subspace R(X), where X € C™** is of full rank. The
pair (6,y=Xz) is called a Ritz pair of C' with respect to the subspace R(X) if and
only if

Cy—0y LR(X) .

This is referred to as a Galerkin projection. Two important properties of a Galerkin
projection are the following. First, if R(X) = C", the Ritz pairs are exact eigenpairs
of C'. Second, if C' is normal, the Ritz values lie in the convex hull of the eigenvalues
of C'. For example, if C' is Hermitian, the Ritz values lie between the smallest and
largest eigenvalue of C'.

The following theorem shows how Ritz pairs may be computed from the RKS
method outlined by the algorithm listed in Figure 2.

THEOREM 2.1. (6,y = Vm+1imz) is called a Ritz pair for B=YA in R(Vint1 im)
of and only if

(2.6) LER, 2 =0LEL,, 2.

Proof. Following the definition and Equation (2.4), (6, y) is a Ritz pair when
B Y AVi1 Lz — 0V 1 Lonz = Vi1 (Ko — 0L0)2 L R(Vigr Lin).

Thus, (Vip41 Em)HVmH (R’m —Him)z = 0, and the desired relation (2.6) is established.
a

We denote by Hl(m) the approximate eigenvalues computed available after m steps
of the RKS algorithm of Figure 2. Unless otherwise stated, we assume that the Ritz
values are in increasing distance from g, that is, |9§m) — pm]| < |9§m) — pm] < <
|9£nm) — fm |- The associated Ritz vector is denoted by yl(»m). The sub- and superscripts
are omitted whenever the context 1s clear.

2.2.1. Computing Ritz Pairs. The generalized eigenvalue problem (2.6) may
be solved as a standard one. Since L,, is an unreduced upper Hessenberg matrix, L,
is of full rank, and hence L L,, is invertible. Thus, the standard eigenvalue problem

L} Kpz=z20, where LI =(LEL,)"'L,,

is solved. We remark that E;fn is the Moore-Penrose generalized inverse of L,,. The
explicit formation of the inverse of Egim is not required. Instead, E;fn[;’m may be
computed by least squares methods, for example with the LAPACK [1] software. The
Ritz vector is y = Vipq1 Emz

2.3. Stopping Criterion. The accuracy of a Ritz pair (0,y = Vipg1Lmz) is
typically estimated by the residual norm ||Ay — Byf||. From Equation (2.4), it follows
that

(2.7) f=Ay— 0By = BVpy1(Kpm —0Lpy)z = BVpirg.
Thus, a simple check for convergence of a Ritz pair in Algorithm 2 is when

gl < ror
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is satisfied for a user-defined error tolerance ToL. Since (A + E)y = By, where
E = —fyff /(y"y), it follows that if |[B=1E|| = || — Ving19|| = ||g]| is small relative
to |[B~1A||, then (6,y) is an eigenpair for a nearby problem. If @ is not a poorly
conditioned eigenvalue of the matrix pencil and [|[B~}|| is not large, then the size of
[|l¢]] indicates the accuracy of the computed Ritz value.

0" 0™

converges toward an eigenpair of Equation (1.1) if and only if ||gl(m)|| tends to zero
as m increases toward n. Although this convergence is not rigorously defined (we

This conclusion motivates us to say that the sequence of Ritz pairs (

necessarily have ||gl(n)|| =0), it does allow us to track the progress of a Ritz pair after
step m of Algorithm 2.

3. The Inexact RKS Method. At Steps 3-5 of the RKS algorithm in Figure 2
the Cayley transformation

Vigrhy = (A = uiB) (A = v B)Vjt
is computed by a two step process. First, the linear system
(3.1) (A= pj B)w = (A —v; B)Vjt;

is solved for w. Next, w is orthogonalized against V;, and the solution Vj 1 77,]' results.
These two steps account for the largest source of errors arising when computing in
floating-point arithmetic. Since our interest is in using a (preconditioned) iterative
method for the solution of Equation (3.1), we neglect the errors in the Gram—Schmidt
orthogonalization phase, as explained in §2.1.

Let us formally analyze the errors arising from the solution of Equation (3.1).
With a robust implementation of a direct method, a backward stable solution is com-
puted. Let z; = K/j+1/~zj denote the computed solution and s; = (A —v; B)V;t; — (A —
u; B)x; the associated residual. Thus,

(A =i B+ sjufl [|ajl*)x; = (A= vy B)Vit;.

Here, ||5]l‘f[||/||l‘]||2 = |Is;]]- I ||s;1]/1|A— 1; B|| is a modest multiple of machine preci-
sion, we say that the direct method is backward stable. Note that even if a backward
stable solution z; is in hand, however, it may share few, if any, digits of accuracy with
w. Moreover, achieving such a backward stable solution with an iterative method may
be prohibitively expensive. Therefore, we shall study the situation for which a large
backward error is allowed for the solution of the linear system.

In order to give an indication of what we mean by large, a few (brief) words about
iterative linear system solvers are needed. A linear system C'z = b is said to be solved
with a relative residual tolerance 7 when the solution, #, satisfies ||b — C'z|| < 7(|b||.
Basic iterative solvers include the Jacobi and Gauss-Seidel relaxation methods. These
are called stationary solvers, since the solution can be written as = M 16 + Gz°,
where 2% denotes the initial solution. In all our experiments, ° = 0 so that ||pb—C'z|| =
||b— CM~1b|| < 7||b]| with 7 = ||I — C M ~*||. Thus, we obtain, roughly speaking, the
same relative residual norm for any b. In general, Krylov methods [4, 16] are much
more powerful. GMRES [33], BICGSTAB(¢) [35], and QMR [17] are among those
most widely used. The performance of these solvers often substantially improves
when a suitable preconditioner is employed. See [3] for templates for all these solvers.
To summarize, then, what we mean by a large error is that 7 lies in the interval

[1078,1072].
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By putting all the s; for j = 1,...,m together in S,, = [ S1 - Sm ] , we have
(3.2) AVy1 Ly = BVig1 Ky — S,

which we call an inexact rational Krylov sequence (I-RKS) relation. This relation
may be rewritten as

(3.3) (A4 Su LEVE Wi Lin = BViy1 Ky

where E;fn = (Egim)_lig is the generalized Moore-Penrose inverse. In other words,

we have computed an exact RKS for the pencil (A+Fy,, B), where Fy, = Sy, E;fn anzq+1~
-1

Denote by O'min(im) the reciprocal of the minimum singular value of L,,. Thus, if

1Bl < 1Smll ILE 1 = (1Sl (Lim )
is large, the Ritz pairs from §2.2.1 may not be those of a pencil near (A, B). This
situation implies that even if we use a direct method for the linear systems, a nearly
rank deficient L, might lead to inaccurate Ritz pairs. We call the Ritz pairs for (4 +
Em, B) (§2.2.1) inezact Ritz pairs for (A4, B). We define and discuss a few quantities
that will prove helpful in the discussion that follows.
o Cayley residual s; : this is the residual of the linear system (3.1).
e RKS residual fU) : the RKS method computes a Ritz pair (0Y) y\)) with
yl) = K/j+1ijz(j) and ||y(j)|| =1 for (A + E;, B), and so the RKS residual
satisfies

fU) = B(/]._I_l([{’]. _ g(]’)ij)z(j) =(A+ Ej)y(j) — gU) By,

o True residual rU9) : this is the residual defined by rU) = Ayl) — gU) Byli).
These three residuals may be linked via the two relationships
(3.4) P = () =520 = f) — Eii) for j=1 m

gy 5

which follow from Equation (3.3) and the definition of E;. We assume that the exact
RKS method converges in m iterations. Hence, f(™) = 0, and, in order to have the se-
quence ||r(9)|| converge to zero, ||sz(j)|| must also tend to zero. We present numerical
evidence that demonstrates that this situation occurs when using an inexact Cayley
transformation, whereas it does not when an inexact shift-and-invert transformation
1s used.

The choice of the zero of the Cayley transformation is crucial to its success, as was
pointed out in [21]. Suppose that (84U =1 yU=1) is an (inexact) Ritz pair computed
in the (j — 1)st iteration. Then, ¢; and v; are chosen such that v; = 0U=1 and
Vit; = yU=1_ We then solve the linear system

(3.5) (A—p;B)e; =70~

With an iterative system solver with relative residual tolerance 7, we obtain
j—1

(3.6) sl < 7llrtd =1

If the shift-and-invert transformation is used, the system

(A — pjB)x; = BVjt;
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o Given vy, ||v1]] = 1. Let ¢ = [1] and 6(%) = 0.

e For j=1,2,...,m.

Compute residual =1 = AVit; — 9(j_1)B(/jtj.

If ||#U V|| < ror then exit.

Let the zero v; = 00U~ and select a pole i # vj.

Solve (approximately) the linear system (A — p; B)x = =1 for .
Orthonormalize x against V;.

Update Ej and f(j.

Solve the eigenvalue problem E;r f(jz =0z (see § 2.2.1).

0 =~ O Ot = W N

Let #1) be Ritz value of interest and the continuation vector be ti1 =
L;29)/||L; 29| associated with 6.

Fia. 3.1. Computing eigenvalues of the pencil (A, B) by the inexact rational Krylov sequence
(I-RKS) method

is solved. Solving this linear system with the same relative residual tolerance as for
the Cayley transform, we obtain

(3.7) 15[l < 7l BVits]| < 7| Bl -

Figure 3 shows an algorithm that implements I-RKS using the Cayley transfor-
mation. We now illustrate a few properties of this algorithm by means of an example.

Consider the matrices A = diag(1l,---,5) and B = I. The pencil (4,I) has
eigenpairs (j,e;), j = 1,...,5. The goal is to compute the eigenpair (1,e;) with
I-RKS using a fixed pole y; = 0.7 and starting with v; = [ 1,...,1]7/+/5. The
Cayley system

(A= pj ey ="
is solved as z; = M=1U=1D where

(1— )~ 107
10-2 ’

. 10—2
1072 (5= pyy)!

The residual tolerance is 7 = ||I — (A —p; )M || &~ 51072, We performed m = n =5
iterations, so R(VsLs) = C", which implies that fi(s) =0fori=1,...,5. Thus, the
computed eigenpairs are exact eigenpairs of A + E5. We found that

1.0000 0.0120 —0.0697 0.3708 —0.4728

—0.0000 1.9987 —0.5981 4.4591 —5.6013

A+ Es=| —0.0001 0.1003  0.4666 17.1897 —21.1757
—0.0002 0.0340 —4.4220 36.8172 —40.7251

—0.0002 0.01561 —=3.7375 26.8228 —27.8127
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o Given vy, 8 and [, = [1].
e For y=1,2,...m.
1. Select a pole p;.
2. Let the zero be v; = 87 and the continuation vector be t; = ;1 /||;—1]|
3. Compute the residual r0=" = AV,t; — 0~DV;¢;
4. If ||rU || < ToL then exit
Cayley: A—p;B)Vpio0; =07
5. Solve EShift—aIRd—invert:) EA - uJBgij,lxj = BV, } for z;
6. Compute ij and l~c], the 7th column of E] and K'], respectively.
7. Compute the Rayleigh quotient §) = l~]Hl~c]/l~]Hij

Fia. 3.2. Inverse iteration computed using inexact transformations

and has eigenpairs

i = 1 2 3 445
6" = 1.0000 2.0123 2.5340 3.4618 & 6.3095i
1.0000 0.0165  —0.0177 0.0045 + 0.00681
0.0000 0.9812  —0.1340 0.0249 + 0.09514
y = | 00000  —0.1801 0.9229 0.0149 & 0.3758i
0.0000  —0.0602 0.3188  —0.082640.7214i
0.0000  —0.0310 0.1681  —0.1810 & 0.5374i
Since fi(s) = 0, the true residual has the form 7“5»5) = —E5y§5). For example ||r§5)|| =

6-10=5 but 1-10~1 < [|7{*)]] < 1-10" for i > 1.

This example shows that E5 is nearly rank deficient and that the desired eigen-
vector of (A, I) is nearly its nullvector. Therefore, the desired eigenvalue, in this case,
A1 = 1, can be computed with a small true residual. It should be noted that the
perturbation E'5 is small in the direction of only one eigenspace, which implies that
I-RKS is not able to compute several eigenvalues at the same time. This is not the
situation when the linear systems are solved with a direct method.

Because of the Galerkin projection, I-RKS computes the eigenpairs of A + F5
exactly after m = 5 iterations. In general, however, 7“55) # 0, since the inexact Ritz
pair is not computed from a Galerkin projection with A. We also remark that 9515)

and 9&5) are complex, which would not be the case with Galerkin projection, since A
is a real symmetric matrix. This is in contrast with other iterative eigenvalue solvers,
such as the Arnoldi method and the Jacobi-Davidson method.

In the remainder of this section, we discuss why I-RKS works. A link with inverse
iteration is established in §3.1, and a formal justification is given in §3.2.

3.1. Inverse Iteration. From Equation (2.2) and the matrix identity (2.1), it
follows that

Vigrhy = Vity + (nj — vj)(A = iy B)"' BVjt;.
Thus, with INJ = Ejej, we have

(3.8) Visrly = (j — v5)(A — p; B)™ " BVjt;,
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and hence Vj+1l~j is the linear combination of the columns of V;;; obtained by per-
forming one step of inverse iteration on the vector V;t;. An inductive argument easily
establishes the following property.

LEMMA 3.1. Ifty =1 and t; = l;_1/||l;_1|| for j > 1, then

J
Viealy = G [ (A= i B)™"B) v,
i=1
where {; = ||l~]|| = lvj— ;| ||(A—p; B)"1 BVjt;|| and vy is the starting vector of RKS.
_ Lemma 3.1 indicates how to compute an approximate eigenvalue. If we denote
k; = Kjej, Equation (2.4) gives the Rayleigh quotient

N .
(3.9) o) = Vi) BTL AW 1) _ L7k
(Vi1 p)H (Vi ly) lfflj

as an estimate of an eigenvalue.
An algorithm for inverse iteration is given in Figure 3.1. The approximate eigen-
pair on iteration j is (0U), yU) = V]_|_1l~]/||l~]||), so we can use the relationships (3.4)
with 20) = ¢;/||l;||. Recall that we use v; = 60~ and Vjt; = y~1. The entries
09 and v; determine the initial guesses for the eigenpair. We now compare inexact
inverse iteration computed via the RKS method using the shift-and-invert and Cayley
transformations with an example.
ExaMPLE 3.1. The Olmstead model [26] represents the flow of a layer of vis-
coelastic fluid heated from below. The equations are
Ju 0%v 0%u

(1-C)s—+C

3
axz T Ugyz T

0

o - 4T
with boundary conditions u(0) = u(1) = 0 and v(0) = v(1) = 0. Here u represents
the speed of the fluid and v is related to viscoelastic forces. The equation was dis-
cretized with central differences with gridsize h = 1/(n/2). After the discretization,
the equation may be written as & = f(z) with 7 = [uy, vy, us,va, ..., Up /2, Un/2).
The size of the Jacobian matrix A = df/Jdx is n = 100. We consider the Jacobian
for the parameter values B = 2, C' = 0.1 and R = 4.7 for the trivial steady state
[u,v] = 0. Thus, the interest is in the eigenvalue of largest real part.

We ran the algorithm in Figure 3.1. The linear systems were solved by 20 itera-
tions of Gauss-Seidel starting with a zero initial vector. Since this solver is stationary,
the relative residual norm, 7, is almost constant. The initial guess for the eigenvalue
was 0(°) = 0. The initial vector for RKS was v; = [1,...,1]7/\/n. The poles p; were
set equal to 5 for all j. The residuals (), fU) and sz(j) are shown in Table 3.1. All
three sequences decrease when the Cayley transform is used.

We redid the experiments using the shift-and-invert transformation. The results
are also shown in Table 3.1. Both [|S;2\)|| and ||r/)|| stagnate near the same value.
Note, however, that || (/)] tends to zero.

Table 3.1 shows that the true residual decreases when the Cayley transformation
is used, but stagnates for the shift-and-invert transformation. The following result
indicates what occurs under some mild conditions when performing inexact inverse
iteration with either the shift-and-invert or the Cayley transformation.
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TaBLE 3.1
Numerical results for inverse iteration on Example 3.1 using inevact Cayley and shift-and-invert
transformations. The table shows the norms of true TesidualT(J), S]Z(]), and the RKS residual f(J).

The norm of l~J 15 also displayed for the Cayley transformation.

Cayley Shift-and-invert
oL NSED N NG O 1S 9
1 1-10° 8107t 7.107! 5.2 4-10° 5-10° 4.1071
2 1-10t 1-10t 5.107Y 06 | 7-107' 7.107!  7.1072
3 1-10° 1-10° 2.107r 1.6 | 4107  4.107Y  3.1072
4 |2107t 2107t 81072 1.2 {5100 51071 1-1072
5 1-107*  9.107% 4.1072 1.0 | 5-107Y  5.107'  7.107°
6 | 51072 5.1072  2.1072 1.0 | 5-107Y  s5.1071  4.107°
7 | 21072 21072 s8.107* 1.0 | 5107t 51071 2.107°
8 9.10—* 9.107* 3.107°* 1.0 |5.107Y 5.107Y  1.1072
9 | 4107 4.107* 1.107* 1.0 | 5-107Y  s5.1071 5.107*
10 | 2.107*  1.107*  4.107* 1.0 | 5107  5.107%  3.107*
11 | 6-107*  6.107* 2.107* 1.0 | 5107 5.107Y  1.107%
12 | 2.107*  2.107*  6-107° 1.0 | 51071 5.107%  7.107°
13 | 8-107>  8.107° 2:107° 1.0 | 5-107'  5.107%  4.107°
14 | 3-107®> 3.10=®* 8.107° 1.0 | 5.107Y 5.107Y  2.107°
15| 1-107>  1.107°*  3.107° 1.0 | 5-107' 5.107%  1.107°

THEOREM 3.2. Assume that there is an integer k < m and value v > 0 such
that ||l~]|| > v for j > k. Assume that ||fO)|] < p||fU=D]| for j > k and p a positive
number.

If a Cayley transform is used, then for j >k +1,

) r J—k r i—k
(3.10) O (o 1) e (2) e

and when a shift-and-invert transformation s used,
. . T
(3.11) P9 < P F PN+ ;HBH ~

Here, T is the relative residual tolerance used for the linear solves (see equations (3.6)
and (3.7)). R R R
Proof. With zU) = ei /|l 1], (3.4) becomes r) = fU) — si /|| With ||4]] > 7,
it follows that
[P < LF9N + (151111751
(3.12) < F9N+ Nlsil /7 -
For the Cayley transform, we prove (3.10) by induction on j. We clearly have that
PN < PN+ 1]

which satisfies (3.10) for j = k. Suppose that (3.10) holds for some integer j — 1 >
k. From the hypothesis of the theorem, we have that ||fU)| < p||fU-Y|| < --- <
# 5| F*)||. Combining this with equations (3.12) and (3.6) results in

PN < DN+ sll/y < 277121+ 7 /92
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Using our inductive hypothesis on ||#U=b)|| gives

DI < 7+ 710+ 7/ 5O+ ()
< (ot 7/ HIB N + (/Y HIP

from which (3.10) follows. For shift-and-invert, (3.11) follows from (3.12) and (3.7),
which completes the proof. O

The value p denotes the convergence ratio of the exact RKS process on (A +
FEpm, B). This process converges when p < 1. The theorem shows that if p+ 7/ < 1,
inexact inverse iteration with the Cayley transformation converges. Since p+71/v > p,
inexact inverse iteration, in general, converges slower than the exact one. With the
shift-and-invert transformation, although the term || f)|| may converge to zero, |||
may stagnate, since the contribution to the true residual, coming from s;, is constant.
We also remark that when a direct method is used for the linear system of equations,
7 1s a multiple of machine precision. Thus, whether a shift-and-invert or Cayley
transformation is used, the true residual ||r()|| decreases at a rate proportional to p.

For the exact Cayley transformation, we have

Vigihy = (A — s B)~Lf=D
and INJ = 77,]' —1; and [|t;]] = 1. Hence, we have

18 <[] <146 where 6 =[(A—u;B) || If9=] .

Thus, v = max(0, minj>5 1 — & ). If fU=Y) converges to zero and ||(A — p; B)™!||

remains modest, 1 &+ §; tends to one for increasing j. Computation reveals that quite
often ||l~]|| ~ 1 after a very small number of iterations. This also holds for inexact
inverse iteration, since it can be seen as exact inverse iteration applied to (A+ Fy,, B),
as 1s the case in Table 3.1. Hence, for large enough k, v & 1, such that the convergence
rate of inverse iteration for large & using the Cayley transform can be estimated by
p+T.

3.2. Imexact Rational Krylov. We now formally discuss the algorithm listed
in Figure 3. The Ritz vector ylU) = Vj_|_1sz(j), computed as explained in § 2.2.1 is
a linear combination of

VZ'_HINZ' =¢(A- piB)_lBy(i_l) with y(i_l) =ViLi_1207Y for i= 1,...,7.

We observed from the numerical experiments that the last component of zU) is large
compared with the initial components. The explanation rests with the fact that Vj+1l~j
is the improvement of the previous Ritz vector by inverse iteration, thus giving the
best approximation of the desired eigenvector among the VH_llNZ"s.

The inexact Ritz pairs (H(i), y(i)) lead to true residuals #(9). If the Cayley trans-
form is used, the Cayley residual on iteration i satisfies ||s;||] < 7||r¢=1)||. The true
residual on the jth iteration is decomposed as #() = f00) — sz(j), where

J
185201 < 3 Mlsill el =49)
i=1
gives an upper bound to ||sz(j)||. In the right-hand side, ||s;|| is independent of j and

can be quite large for small 2. Since |eZ»Tz(])| forms a decreasing sequence for increasing
Jj, we have a decreasing sequence ||sz(])||.
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TABLE 3.2
Numerical results for the Olmstead model of Example 3.2. The table shows the order of accuracy
for the residual norm of the rightmost Ritz pair, the norm of S]Z(]), and the first four components

ofz(J).

J Nl NS0 | el 2D Jed 2D [ed 59 Jed 5]
16107t 1.1071 2.107¢

2| 2-10° 3-107¢ 5.107¢ 3-10°

3121072 1.107%2 | 5.107* 6.107¢ 1

4121072 1.107% | 3-107° 6-1071 1 2
58107 7.107* 1-107%  4.107%2  6-1072  3.1071
6 |3-107* 3.107* | 2.107° 2.107%2  3.1072 3.107!
71210™° 2.107° | 2.107¢  1.107° 2.107*  2.1072
851077 5107 | 7107% 2107° 5100 1.107°
9 |310% 3.107% | 4107° 2.107% 2.107% 6.107°

ExAMPLE 3.2. We now discuss an example for which eZ»Tz(j) and sz(j) tend to
zero in the I-RKS method. The matrix arises from the same problem as in Exam-
ple 3.1, but now n = 200. We ran Algorithm I-RKS from Figure 3 with fixed y; =5,
starting with vector vy = [1,---,1]¥/\/n. The linear systems were solved by GMRES
preconditioned by ILU. The number of iterations of GMRES was determined by the
relative error tolerance, which was selected as 7 = 10~*. Table 3.2 shows the residual
norm and the norm of the error term S;2U). Both [|S;20)]| and ||r()|| tend to zero.
For large j, ||sz(j)|| ~ ||\)]|. This is the case because fU) converges more rapidly
to zero than sz(j). Table 3.2 also illustrates the fact that eZ»Tz(j) decreases for a fixed
¢ and increasing j.

4. A Numerical Example. This example illustrates the use of inexact rational
Krylov methods for the solution of a generalized eigenvalue problem. We also make a
comparison between inexact inverse iteration with the Cayley transform and I-RKS.

The simulation of flow of a viscous fluid with a free surface on a tilted plane,
leads, with a finite element approach, to an eigenvalue problem Az = Bz with
A, B € R*%*%3 and B a singular matrix. The computation of the eigenvalue nearest
—10 is the objective. Since our theory is valid only for nonsingular B, we interchange
the role of A and B by computing the eigenvalue v = A~! of Bz = Az~y nearest
p=-—10"1

The fact that B is singular implies that v = 0 is an eigenvalue. It has been shown
that the presence of this eigenvalue can disturb the calculation of a nonzero eigenvalue
when the spectral transformation Lanczos method [13, 25], the shift-invert Arnoldi
method [28, 22], or the rational Krylov method [8] are used. One way to reduce the
impact of v = 0 1s to start the I-RKS method with an initial vector v; that is poor
in the eigenspace corresponding to v = 0 [25]. This can be achieved by selecting
vy = (B — pA)~! Bv with v arbitrary.

The eigenvalue 4 nearest —0.1 was computed by use of I-RKS (Fig. 3) with fixed
pole u; = —0.1. The linear systems were solved by GMRES preconditioned with
ILUT(1£i1=40,tol=1.e-3) [32] with 7 = 10=%. The initial vector v; was computed
from the system (B — pA)v; = Bv with v = [ 1,---,1 ]¥ using the GMES-ILUT
solver. The algorithm was stopped when ||r§])|| < oL = 10713,

The numerical results are shown in Table 4.1 for inexact rational Krylov (I-RKS)
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TABLE 4.1
Numerical results for the tilted plane problem from § 4. The methods used are inexact rational
Krylov (I-RKS) and inverse iteration with the Cayley transform. On iteration j, 0(9) is the inevact
Ritz value, sy the Cayley residual, and g(J) = (I{'] - €(J)[~/J)Z(J).

I-RKS (Fig. 3) Inverse Iteration (Fig. 3.1)
G s I W] e s I el
1| —9.40554 5-107° 1-107¢  3.107™% | —9.40554 5.-107° 1.107% 2.107°
2| —9.48481 1-107° 3.107®  5.107¢ | —9.49928 1.107*° 2.1077  4.107*
3| —9.48825 1.107'%  1.107° 8.107% | —9.48705 2-107' 4.107° 6.107°¢
4| —9.48831 6-107'*  2.107*'  1.107° | —9.48845 3-107'2 4.107° 8.107
5| —9.48832 2.107%  6.107*° 6.107!! | —9.48831 3-107*° 5.107° .10
6 | —9.48832 5-107'7 2.107** 1.107'? | —9.48832 5.107** 5.107'  8.107°
7 —9.48832 4.107'* 5.107%  6.10710
8 —9.48832 5.1071%  4.107  3.1071
9 —9.48832 3-107'7  3.107*  6.107'2

and inexact inverse iteration using the Cayley transform. First, note that ||fU)| <
IAI1997]], so [|¢g¥)]| does not measure the RKS residual (see also (2.7)). Also note that
for both I-RKS and inverse iteration, the sequences |||, [|s;]] and l9"7)]| decrease.
Both methods converge to A = y~! & —9.486. Finally, note that I-RKS is faster than
inverse iteration.

5. A Connection with the Jacobi—Davidson Method. Based upon the re-
cent work of Sleijpen and van der Vorst [36] which investigated a new method for
standard eigenvalue problems (B = I) that only uses approximate linear systems so-
lutions. The two manuscripts [15, 34] extend the method for generalized eigenvalue
problems. We now proceed to show a connection between RKS and Jacobi—Davidson
when the linear systems are solved exactly.

Consider the linear system

(5.1) (A= i Byw = (A — 5 B)p,

where p; = Vjij_lz(j_l) is a Ritz vector of interest. This amounts to selecting the
Jth continuation vector ¢; = Lj_lz(j_l) as in the Algorithm I-RKS in Figure 3 with
associated Ritz value

_ pf A
' pl By

The right-hand side in (5.1) is then the residual of the eigenpair (7;,p;) and is or-
thogonal to p;. Since we are interested in expanding our search space (the span
of the columns of V;), multiply both sides of Equation (5.1) by the projector I —
Bpjpf/(pf[Bpj). Using the fact that (A — 7; B)p; L p;, results in

Bpjp}'

I —
( p Bp;

A = pj B)w = (A — v; B)p;.

Since p; € R(V;), the component of w in the direction of p; does not play a role
when w is added to the subspace R(V;). Thus, we are interested in finding only the
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component of w orthogonal to p; and so the linear system

Bpjp}' pipl
5.9 I— LA — 1 BY(T — 22w = (A — i B)p;
(5.2) ( p;quj)( i B)( p;qu) ( i B)p;j

is solved instead. The Jacobi-Davidson method calls Equation (5.2) the correction
equation. We may rewrite Equation (5.2) with d = (I — pjpf[/(pfpj))w L p; as

(5.3) (A —pjB)d = ¢jBp; + (A — 0 B)pj = (A = (0 + ;) B)p;.-
The orthogonality of p; and d leads to

P A BT (A 7 B)p;
! i (A~ B)=! Bp;

Choosing the pole v; = U; 4+ ¢; gives a relationship between the Jacobi-Davidson and
RKS methods when Cayley transformations are used. In words, Jacobi—-Davidson
is a RKS method with a specific Cayley transformation. The difference is that in
the correction equation (5.2) of the Jacobi-Davidson method, p; is orthogonal to the
right-hand side. This is not the case for the RKS method with Cayley transformation
defined by Equation (5.3).

The solution of the linear system (5.2) leads to quadratic convergence when p; =
7;. Theorem 3.2 in [34] establishes this result under some mild conditions while
Appendix A in [34] demonstrates a connection with Newton’s method.

6. Conclusions. This paper demonstrated the use of iterative linear system
solvers in Ruhe’s rational Krylov sequence method. The analysis of the convergence
of inexact inverse iteration showed the importance of the use of the Cayley transfor-
mation instead of the usual shift-and-invert transformation.

A theoretical link between the inexact rational Krylov method and the Jacobi-
Davidson method was made by observing a connection between the correction equa-
tion and the Cayley transformation.

We called the eigenpairs computed by I-RKS inexact Ritz pairs, since they are
Ritz pairs for a perturbed RKS method. The classical properties of Galerkin projec-
tion are lost due to this inexactness. The fact that I-RKS solves a perturbed problem
with small perturbations in the desired eigendirections motivates the application of the
RKS techniques developed for the process using exact linear solves. These techniques
include use of complex poles and zeros for real A and B [30], harmonic Ritz pairs,
deflation and purging [31], and the implicit application of a rational filter [8]. The
practical advantage of the inexact rational Krylov method is that the cheaply com-
puted matrices L,, and K,, are used to compute the Ritz pairs. The Jacobi-Davidson
method requires the explicit formation of anAVm and V,,, BV,,.

A. Relation between the Shift-and-Invert and Cayley Transformations.
In this appendix, we prove that the use of the shift-and-invert or the Cayley transfor-
mations lead to similar recurrence relations.

LEMMA A.1. If in Step 3 of Algorithm 2, we use T]»C =(A— ;B (4 —v;B)
on the jth iteration, and we obtain the relation

AViy1 Loy = BViy1 Koy,
then the use of T]»SI = (A — pu;jB)"'B leads to

AVig1 Iy (M — Ny ) ™4 = BViy 1 Ko (M, — Ny )™
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with Ny, = diag(vy, ..., vm) and My, = diag(py, ..., ftm)-
Proof. From T]»CVjt = Vit + (u; — V]')]}»SIVjt, we have

(A1) T3 Vity = Vipah
Vity + (nj —v)) T Vity = Vigahy
(A.2) TMVity = Visa(hy =) (k5 — v3)”

Multiplying (A.1) and (A.2) on the left by (A4 — p; B) and putting together the equa-
tions for j = 1, ..., m produce the relations

Avm+1(£’rm - Tm) = BVm+1(£{mMm - TmNm)

and

Avm+1(Hm - Tm)(Mm - Nm)_l = va+1((£’m - Tm)(Mm - Nm)_le - Tm)
= BVm+1(gmMm - TmNm)(Mm - Nm)_la

respectively. Noting that Em = f]m — fm and f(m = f]mMm — mem completes the
proof. O
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