
THE INEXACT RATIONAL KRYLOV SEQUENCE METHOD�R. B. LEHOUCQy AND KARL MEERBERGENzAbstract. The rational Krylov sequence (RKS) method is a generalization of Arnoldi's method.It constructs an orthogonal reduction of a matrix pencil into an upper Hessenberg pencil. The RKSmethod is useful when the matrix pencil may be e�ciently factored. However, it requires the solutionof a linear system at every step. This article considers solving the resulting linear systems in aninexact manner by using an iterative method. We show that a Cayley transformation used withinthe RKS method is more e�cient and robust than the usual shift-and-invert transformation. Arelationship with the recently introduced Jacobi{Davidson method of Sleijpen and van der Vorst isalso established.1. Introduction. Suppose that a few eigenvalues near a complex number � andpossibly corresponding eigenvectors of the generalized matrix eigenvalue problemAx = Bx�(1.1)are needed. Assume that both A and B are large complex matrices of order n:Also suppose that at least one of A or B is nonsingular so that equation (1.1) hasn eigenvalues. Without loss of generality, assume that B is invertible. Followingstandard convention, we refer to (A;B) as a matrix pencil. For us, n is consideredlarge when it is prohibitive to compute all the eigenvalues as a dense algorithm inLAPACK [1] would attempt to do.A standard approach is to perform inverse iteration [18, page 405] with the matrixA� �B: The sequence of iteratesv; (A� �B)�1Bv; [(A� �B)�1B]2v; : : :(1.2)is produced. Under some mild assumptions, the sequence converges toward the desiredeigenvector, and a Rayleigh quotient calculation gives an estimate of the eigenvalue.Another approach is to extract the approximate eigenpair by using the informationfrom the subspace de�ned by joining together m iterates of the sequence (1.2). Thisleads to a straightforward extension [20] of the ideas introduced by Ericsson andRuhe [14] for the spectral (shift-and-invert) transformation Lanczos method. Startingwith the vector v, Arnoldi's method [2] builds, step by step, an orthogonal basis forthe Krylov subspaceKm(TSI ; v) � Spanfv; TSIv; : : : ; (TSI )m�1vg where TSI = (A� �B)�1B:One improvement to the inverse iteration scheme given is to vary the shift � � �jat every step. For example, set �j equal to the Rayleigh quotient zHAz=zHBz, wherez is an unit vector in the direction of (TSI)jv: Ruhe [29, 31] elegantly shows how tobuild an orthogonal basis for the rational Krylov subspaceSpanfv; T SI1 v; � � � ; (TSIm�1 � � �TSI1 )vg; where T SIj = (A � �jB)�1B:� The work of R. B. Lehoucq was supported by the Mathematical, Information, and Computa-tional Sciences Division subprogram of the O�ce of Computational and Technology Research, U.S.Department of Energy, under Contract W-31-109-Eng-38. The work by Karl Meerbergen was sup-ported by the project Iterative Methods in Scienti�c Computing , contract number HCM networkCHRC-CT93-0420, coordinated by CERFACS, Toulouse, France.y Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439USA, lehoucq@mcs.anl.gov, http://www.mcs.anl.gov/home/lehoucq/index.html.z Department of Mathematics, Utrecht University, 3584 CD Utrecht, The Netherlands,meerbergen@math.ruu.nl, http://www.math.ruu.nl/people/meerbergen.1



2 R. B. LEHOUCQ AND KARL MEERBERGENThe resulting algorithm is called a rational Krylov sequence (RKS) method and is ageneralization of the shift-and-invert Arnoldi method where the shift is varied duringeach step.All the methods considered require the solution of (A � �B)x = By for x: Thisis typically accomplished by factoring A� �B: For example, when A� �B is sparse,a direct method [6, 7, 9, 10, 12, 11] may be employed. If the shifts �j are not varied,then use of one of these direct methods in conjunction with ARPACK [19] is a powerfulcombination for computing a few solutions of the generalized eigenvalue problem (1.1).However, for large eigenvalue problems (n > 10; 000), direct methods using theRKS method may not provide an e�cient solution because of the potentially pro-hibitive storage requirements. The motivation for the current study is to investigatethe use of iterative methods for the linear systems of equations arising in the RKSmethod. We shall call these methods inexact RKS ones. One bene�t is that for themany eigenvalue problems arising from a discretization of partial di�erential equa-tions, an intelligent preconditioner may often be constructed. In particular, we shalldemonstrate that a Cayley transformation TCj � (A � �jB)�1(A � �jB) performsmore robustly than a shift-and-invert transformation TSIj � (A � �jB)�1B whenusing iterative methods for the linear solves.Fittingly, the literature on approaches for �nding a few solutions to the generalizedeigenvalue problem (1.1), where only approximate solutions to the linear systemsare available, is sparse. Szyld [38] considers the situation where the matrix pencilis symmetric positive de�nite. Algorithms based on Jacobi-Davidson methods arediscussed in [15, 34]. The recent report by Meerbergen and Roose [21] providedmotivation for the current article.Our article is organized as follows. We introduce the RKS method in x2. Theinexact RKS method is introduced in x3 along with a connection with inverse iterationand some examples illustrating our ideas. In x4, we illustrate our method for ageneralized eigenvalue problem. We compare the inexact RKS and Jacobi{Davidsonmethods in x5. We conclude the paper in x6 with a summary of the main ideas andsome remaining questions.In this article, matrices are denoted by upper-case Roman characters. Vectorsare denoted by lower-case Roman characters. The range of the matrix V is denotedby R(V ): The Hermitian transpose of the vector x is denoted by xH :2. The Rational Krylov Sequence Method. The method is outlined by thealgorithm listed in Figure 2. For the practical RKS algorithm given in [31], Ruheconsiders the shift-and-invert transformation T SIj = (A��jB)�1B rather than TCj =(A � �jB)�1(A � �jB): In exact arithmetic, both transformations lead to the samerational Krylov space, since TCj = I + (�j � �j)T SIj :(2.1)However, in �nite-precision arithmetic and/or in conjunction with iterative methodsfor linear systems, substantial di�erences may exist. We call the �j's the poles, the �j'sthe zeros, and the Vjtj's the continuation vectors. The selection of these quantitiesis postponed until x3. This section will discuss some relationships in Steps 1{7, theform of Gram{Schmidt orthogonalization we employ, and �nally the computation ofapproximate eigenpairs and their convergence.By eliminating w from Steps 2{5, we obtain the relationship(A� �jB)�1(A� �jB)Vjtj � Vj+1~hj;(2.2)



INEXACT RATIONAL KRYLOV SEQUENCE METHOD 3� Choose a starting vector v1 with kv1k = 1:� Set V0  [ v1 ] ; and ~L0; ~K0  [ ].� For j = 1; 2; : : : ;m1. Select a pole �j , a zero �j 6= �j and a vector tj 2 Rj with ktjk = 1:2. Form w = Vjtj (continuation vector).3. Form w (A� �jB)�1(A� �jB)w:4. Orthogonalize w := w � Vjhj with hj = V Hj w (Gram-Schmidt).5. Set Vj+1 = � Vj w=hj+1;j � where hj+1;j = kwk:6. Set ~lj = � hjhj+1;j �� � tj0 � and ~kj = � hjhj+1;j ��j � � tj0 � �j.7. Set ~Lj = � ~Lj�10 ~lj � and ~Kj = � ~Kj�10 ~kj �.8. Compute approximate eigenpairs of interest.9. Check whether the approximate eigenpairs satisfy the convergence criterion.Fig. 2.1. Computing the Rational Krylov Sequence (RKS) for the matrix pencil (A,B)where ~hj = � h1;j h2;j � � � hj+1;j �T : Let ~tj = � tTj 0 �T . Rearranging Equa-tion (2.2) results in (A � �jB)Vj+1~hj = (A� �jB)Vj+1~tj ;AVj+1(~hj � ~tj) = BVj+1(~hj�j � ~tj�j):By putting together the relations for j = 1; : : : ;m, we have thatAVm+1( ~Hm � ~Tm) = BVm+1( ~HmMm � ~TmNm);(2.3)where ~hj and ~tj are associated with the jth columns of ~Hm and ~Tm, respectively, andMm = diag(�1; : : : ; �m), Nm = diag(�1; : : : ; �m).A �nal simpli�cation is to rewrite Equation (2.3) asAVm+1 ~Lm = BVm+1 ~Km;(2.4)where ~Lm � ~Hm� ~Tm and ~Km � ~HmMm � ~TmNm: We remark that as long as hj+1;jis nonzero, both ~Hm and ~Lm are unreduced upper Hessenberg (rectangular) matricesand thus of full rank.In Appendix A, we show that the use of TSIj leads to the RKS relationAVm+1 ~Lm(Mm �Nm)�1 = BVm+1 ~Km(Mm � Nm)�1 :(2.5)2.1. Orthogonalization. The orthogonalization of Step 3 of Algorithm 2 usesan iterative classical Gram-Schmidt algorithm. This is the same approach used bySorensen [37] based on the analysis [5] of reorthogonalization in the Gram{Schmidtalgorithm.2.2. Computing Eigenvalue Estimates. We now consider the calculation ofapproximate eigenpairs for the RKS method. We discuss how to compute Ritz pairs.Harmonic Ritz pairs [23, 27, 24, 36] may also be computed, as was shown by Ruhe [31],but these are not considered here. The main purpose of this article is to study theuse of iterative linear system solvers in RKS and not the various ways to extract



4 R. B. LEHOUCQ AND KARL MEERBERGENeigenvalues. Therefore, we use standard Ritz values throughout, though the theorycan easily be extended to harmonic Ritz values.Consider a matrix C and a subspace R(X), where X 2 Cn�k is of full rank. Thepair (�; y�Xz) is called a Ritz pair of C with respect to the subspace R(X) if andonly if Cy � �y ? R(X) :This is referred to as a Galerkin projection. Two important properties of a Galerkinprojection are the following. First, if R(X) � Cn, the Ritz pairs are exact eigenpairsof C. Second, if C is normal, the Ritz values lie in the convex hull of the eigenvaluesof C. For example, if C is Hermitian, the Ritz values lie between the smallest andlargest eigenvalue of C.The following theorem shows how Ritz pairs may be computed from the RKSmethod outlined by the algorithm listed in Figure 2.Theorem 2.1. (�; y � Vm+1 ~Lmz) is called a Ritz pair for B�1A in R(Vm+1 ~Lm)if and only if ~LHm ~Kmz = �~LHm ~Lmz:(2.6)Proof. Following the de�nition and Equation (2.4), (�; y) is a Ritz pair whenB�1AVm+1 ~Lmz � �Vm+1 ~Lmz = Vm+1( ~Km � �~Lm)z ?R(Vm+1 ~Lm):Thus, (Vm+1 ~Lm)HVm+1( ~Km��~Lm)z = 0; and the desired relation (2.6) is established.We denote by �(m)i the approximate eigenvalues computed available after m stepsof the RKS algorithm of Figure 2. Unless otherwise stated, we assume that the Ritzvalues are in increasing distance from �m, that is, j�(m)1 � �mj � j�(m)2 � �mj � � � � �j�(m)m ��mj: The associated Ritz vector is denoted by y(m)i : The sub- and superscriptsare omitted whenever the context is clear.2.2.1. Computing Ritz Pairs. The generalized eigenvalue problem (2.6) maybe solved as a standard one. Since ~Lm is an unreduced upper Hessenberg matrix, ~Lmis of full rank, and hence ~LHm ~Lm is invertible. Thus, the standard eigenvalue problem~Lym ~Kmz = z�; where ~Lym = (~LHm ~Lm)�1 ~Lm;is solved. We remark that ~Lym is the Moore-Penrose generalized inverse of ~Lm: Theexplicit formation of the inverse of ~LHm ~Lm is not required. Instead, ~Lym ~Km may becomputed by least squares methods, for example with the LAPACK [1] software. TheRitz vector is y = Vm+1 ~Lmz:2.3. Stopping Criterion. The accuracy of a Ritz pair (�; y = Vm+1Lmz) istypically estimated by the residual norm kAy�By�k: From Equation (2.4), it followsthat f � Ay � �By = BVm+1( ~Km � �~Lm)z � BVm+1g:(2.7)Thus, a simple check for convergence of a Ritz pair in Algorithm 2 is whenkgk � tol



INEXACT RATIONAL KRYLOV SEQUENCE METHOD 5is satis�ed for a user-de�ned error tolerance tol. Since (A + E)y = By�, whereE = �fyH=(yHy), it follows that if kB�1Ek = k � Vm+1gk = kgk is small relativeto kB�1Ak, then (�; y) is an eigenpair for a nearby problem. If � is not a poorlyconditioned eigenvalue of the matrix pencil and kB�1k is not large, then the size ofkgk indicates the accuracy of the computed Ritz value.This conclusion motivates us to say that the sequence of Ritz pairs (�(m)i ; y(m)i )converges toward an eigenpair of Equation (1.1) if and only if kg(m)i k tends to zeroas m increases toward n: Although this convergence is not rigorously de�ned (wenecessarily have kg(n)i k = 0), it does allow us to track the progress of a Ritz pair afterstep m of Algorithm 2.3. The Inexact RKS Method. At Steps 3{5 of the RKS algorithm in Figure 2the Cayley transformationVj+1~hj = (A� �jB)�1(A � �jB)Vj tjis computed by a two step process. First, the linear system(A� �jB)w = (A � �jB)Vjtj(3.1)is solved for w: Next, w is orthogonalized against Vj , and the solution Vj+1~hj results.These two steps account for the largest source of errors arising when computing inoating-point arithmetic. Since our interest is in using a (preconditioned) iterativemethod for the solution of Equation (3.1), we neglect the errors in the Gram{Schmidtorthogonalization phase, as explained in x2.1.Let us formally analyze the errors arising from the solution of Equation (3.1).With a robust implementation of a direct method, a backward stable solution is com-puted. Let xj=Vj+1~hj denote the computed solution and sj � (A� �jB)Vj tj � (A��jB)xj the associated residual. Thus,(A � �jB + sjxHj =kxjk2)xj = (A� �jB)Vjtj :Here, ksjxHj k=kxjk2 = ksjk: If ksjk=kA��jBk is a modest multiple of machine preci-sion, we say that the direct method is backward stable. Note that even if a backwardstable solution xj is in hand, however, it may share few, if any, digits of accuracy withw:Moreover, achieving such a backward stable solution with an iterative method maybe prohibitively expensive. Therefore, we shall study the situation for which a largebackward error is allowed for the solution of the linear system.In order to give an indication of what we mean by large, a few (brief) words aboutiterative linear system solvers are needed. A linear system Cx = b is said to be solvedwith a relative residual tolerance � when the solution, x, satis�es kb � Cxk � �kbk:Basic iterative solvers include the Jacobi and Gauss-Seidel relaxation methods. Theseare called stationary solvers, since the solution can be written as x = M�1b + Gx0,where x0 denotes the initial solution. In all our experiments, x0 = 0 so that kb�Cxk =kb�CM�1bk � �kbk with � = kI �CM�1k. Thus, we obtain, roughly speaking, thesame relative residual norm for any b: In general, Krylov methods [4, 16] are muchmore powerful. GMRES [33], BiCGSTAB(`) [35], and QMR [17] are among thosemost widely used. The performance of these solvers often substantially improveswhen a suitable preconditioner is employed. See [3] for templates for all these solvers.To summarize, then, what we mean by a large error is that � lies in the interval[ 10�8; 10�2 ]:



6 R. B. LEHOUCQ AND KARL MEERBERGENBy putting all the sj for j = 1; : : : ;m together in Sm � � s1 � � � sm � ; we haveAVm+1 ~Lm = BVm+1 ~Km � Sm;(3.2)which we call an inexact rational Krylov sequence (I-RKS) relation. This relationmay be rewritten as (A + Sm ~LymV Hm+1)Vm+1 ~Lm = BVm+1 ~Km ;(3.3)where ~Lym = (~LHm ~Lm)�1~LHm is the generalized Moore-Penrose inverse. In other words,we have computed an exact RKS for the pencil (A+Em ; B), where Em = Sm ~LymV Hm+1:Denote by ��1min(~Lm) the reciprocal of the minimum singular value of ~Lm: Thus, ifkEmk � kSmk k~Lymk = kSmk��1min(~Lm)is large, the Ritz pairs from x2.2.1 may not be those of a pencil near (A;B): Thissituation implies that even if we use a direct method for the linear systems, a nearlyrank de�cient ~Lm might lead to inaccurate Ritz pairs. We call the Ritz pairs for (A+Em; B) (x2.2.1) inexact Ritz pairs for (A;B): We de�ne and discuss a few quantitiesthat will prove helpful in the discussion that follows.� Cayley residual sj : this is the residual of the linear system (3.1).� RKS residual f (j) : the RKS method computes a Ritz pair (�(j); y(j)) withy(j) = Vj+1 ~Ljz(j) and ky(j)k = 1 for (A + Ej ; B), and so the RKS residualsatis�es f (j) � BVj+1( ~Kj � �(j) ~Lj)z(j) = (A+ Ej)y(j) � �(j)By(j):� True residual r(j) : this is the residual de�ned by r(j) = Ay(j) � �(j)By(j):These three residuals may be linked via the two relationshipsr(j) = f (j) � Sjz(j) = f (j) � Ejy(j) for j = 1; : : : ;m;(3.4)which follow from Equation (3.3) and the de�nition of Ej: We assume that the exactRKS method converges in m iterations. Hence, f (m) = 0; and, in order to have the se-quence kr(j)k converge to zero, kSjz(j)k must also tend to zero. We present numericalevidence that demonstrates that this situation occurs when using an inexact Cayleytransformation, whereas it does not when an inexact shift-and-invert transformationis used.The choice of the zero of the Cayley transformation is crucial to its success, as waspointed out in [21]. Suppose that (�(j�1); y(j�1)) is an (inexact) Ritz pair computedin the (j � 1)st iteration. Then, tj and �j are chosen such that �j = �(j�1) andVjtj = y(j�1). We then solve the linear system(A� �jB)xj = r(j�1) :(3.5)With an iterative system solver with relative residual tolerance � , we obtainksjk � �kr(j�1)k :(3.6)If the shift-and-invert transformation is used, the system(A � �jB)xj = BVj tj



INEXACT RATIONAL KRYLOV SEQUENCE METHOD 7� Given v1, kv1k = 1. Let t1 = [1] and �(0) = 0.� For j = 1; 2; : : : ;m:1. Compute residual r(j�1) = AVjtj � �(j�1)BVjtj :2. If kr(j�1)k < tol then exit.3. Let the zero �j = �(j�1) and select a pole �j 6= �j.4. Solve (approximately) the linear system (A� �jB)x = r(j�1) for x.5. Orthonormalize x against Vj :6. Update ~Lj and ~Kj .7. Solve the eigenvalue problem ~Lyj ~Kjz = �z (see x 2.2.1).8. Let �(j) be Ritz value of interest and the continuation vector be tj+1 =~Ljz(j)=k~Ljz(j)k associated with �(j).Fig. 3.1. Computing eigenvalues of the pencil (A;B) by the inexact rational Krylov sequence(I-RKS) methodis solved. Solving this linear system with the same relative residual tolerance as forthe Cayley transform, we obtainksjk � �kBVjtjk � �kBk :(3.7)Figure 3 shows an algorithm that implements I-RKS using the Cayley transfor-mation. We now illustrate a few properties of this algorithm by means of an example.Consider the matrices A = diag(1; � � � ; 5) and B = I: The pencil (A; I) haseigenpairs (j; ej), j = 1; : : : ; 5: The goal is to compute the eigenpair (1; e1) withI-RKS using a �xed pole �j = 0:7 and starting with v1 = [ 1; : : : ; 1 ]T=p5: TheCayley system (A � �jI)xj = r(j�1)is solved as xj = M�1r(j�1), whereM�1 = 266664 (1� �j)�1 10�210�2 . . . . . .. . . . . . 10�210�2 (5� �j)�1 377775 :The residual tolerance is � = kI�(A��jI)M�1k � 5�10�2:We performed m = n = 5iterations, so R(V5L5) � Cn, which implies that f (5)i = 0 for i = 1; : : : ; 5: Thus, thecomputed eigenpairs are exact eigenpairs of A+ E5: We found thatA+E5 = 266664 1:0000 0:0120 �0:0697 0:3708 �0:4728�0:0000 1:9987 �0:5981 4:4591 �5:6013�0:0001 0:1003 0:4666 17:1897 �21:1757�0:0002 0:0340 �4:4220 36:8172 �40:7251�0:0002 0:0151 �3:7375 26:8228 �27:8127 377775



8 R. B. LEHOUCQ AND KARL MEERBERGEN� Given v1, �(0) and ~l0 = [1]:� For j = 1; 2; : : :m:1. Select a pole �j :2. Let the zero be �j = �(j�1) and the continuation vector be tj = ~lj�1=k~lj�1k3. Compute the residual r(j�1) = AVjtj � �(j�1)Vjtj4. If kr(j�1)k < tol then exit5. Solve � (Cayley:) (A� �jB)Vj+1xj = r(j�1)(Shift-and-invert:) (A� �jB)Vj+1xj = BVjtj � for xj6. Compute ~lj and ~kj, the jth column of ~Lj and ~Kj, respectively.7. Compute the Rayleigh quotient �(j) = ~lHj ~kj=~lHj ~lj:Fig. 3.2. Inverse iteration computed using inexact transformationsand has eigenpairsi = 1 2 3 4 & 5�(5)i = 1:0000 2:0123 2:5340 3:4618� 6:3095iy(5)i = 266664 1:00000:00000:00000:00000:0000 0:01650:9812�0:1801�0:0602�0:0310 �0:0177�0:13400:92290:31880:1681 0:0045� 0:0068i0:0249� 0:0951i0:0149� 0:3758i�0:0826� 0:7214i�0:1810� 0:5374i 377775 :Since f (5)i = 0, the true residual has the form r(5)i = �E5y(5)i : For example kr(5)1 k =6�10�5 but 1�10�1 < kr(5)i k < 1�101 for i > 1:This example shows that E5 is nearly rank de�cient and that the desired eigen-vector of (A; I) is nearly its nullvector. Therefore, the desired eigenvalue, in this case,�1 = 1, can be computed with a small true residual. It should be noted that theperturbation E5 is small in the direction of only one eigenspace, which implies thatI-RKS is not able to compute several eigenvalues at the same time. This is not thesituation when the linear systems are solved with a direct method.Because of the Galerkin projection, I-RKS computes the eigenpairs of A + E5exactly after m = 5 iterations. In general, however, r(5)i 6= 0, since the inexact Ritzpair is not computed from a Galerkin projection with A: We also remark that �(5)4and �(5)5 are complex, which would not be the case with Galerkin projection, since Ais a real symmetric matrix. This is in contrast with other iterative eigenvalue solvers,such as the Arnoldi method and the Jacobi-Davidson method.In the remainder of this section, we discuss why I-RKS works. A link with inverseiteration is established in x3.1, and a formal justi�cation is given in x3.2.3.1. Inverse Iteration. From Equation (2.2) and the matrix identity (2.1), itfollows that Vj+1~hj = Vjtj + (�j � �j)(A � �jB)�1BVjtj :Thus, with ~lj = ~Ljej , we haveVj+1~lj = (�j � �j)(A� �jB)�1BVjtj ;(3.8)



INEXACT RATIONAL KRYLOV SEQUENCE METHOD 9and hence Vj+1~lj is the linear combination of the columns of Vj+1 obtained by per-forming one step of inverse iteration on the vector Vjtj. An inductive argument easilyestablishes the following property.Lemma 3.1. If t1 = 1 and tj = ~lj�1=k~lj�1k for j > 1, thenVj+1~lj = �j jYi=1 �(A� �iB)�1B� v1;where �j � k~ljk = j�j��j j k(A��iB)�1BVjtjk and v1 is the starting vector of RKS.Lemma 3.1 indicates how to compute an approximate eigenvalue. If we denote~kj � ~Kjej , Equation (2.4) gives the Rayleigh quotient�(j) = (Vj+1~lj)HB�1A(Vj+1~lj)(Vj+1~lj)H (Vj+1~lj) = ~lHj ~kj~lHj ~lj(3.9)as an estimate of an eigenvalue.An algorithm for inverse iteration is given in Figure 3.1. The approximate eigen-pair on iteration j is (�(j); y(j)= Vj+1~lj=k~ljk), so we can use the relationships (3.4)with z(j) = ej=k~ljk. Recall that we use �j = �(j�1) and Vjtj = y(j�1). The entries�(0) and v1 determine the initial guesses for the eigenpair. We now compare inexactinverse iteration computed via the RKS method using the shift-and-invert and Cayleytransformations with an example.Example 3.1. The Olmstead model [26] represents the ow of a layer of vis-coelastic uid heated from below. The equations are8><>: @u@t = (1� C) @2v@X2 + C @2u@X2 + Ru� u3B @v@t = u� vwith boundary conditions u(0) = u(1) = 0 and v(0) = v(1) = 0. Here u representsthe speed of the uid and v is related to viscoelastic forces. The equation was dis-cretized with central di�erences with gridsize h = 1=(n=2). After the discretization,the equation may be written as _x = f(x) with xT = [u1; v1; u2; v2, : : :, un=2, vn=2].The size of the Jacobian matrix A = @f=@x is n = 100. We consider the Jacobianfor the parameter values B = 2, C = 0:1 and R = 4:7 for the trivial steady state[u; v] = 0. Thus, the interest is in the eigenvalue of largest real part.We ran the algorithm in Figure 3.1. The linear systems were solved by 20 itera-tions of Gauss-Seidel starting with a zero initial vector. Since this solver is stationary,the relative residual norm, � , is almost constant. The initial guess for the eigenvaluewas �(0) = 0: The initial vector for RKS was v1 = [ 1; : : : ; 1 ]T=pn: The poles �j wereset equal to 5 for all j: The residuals r(j), f (j) and Sjz(j) are shown in Table 3.1. Allthree sequences decrease when the Cayley transform is used.We redid the experiments using the shift-and-invert transformation. The resultsare also shown in Table 3.1. Both kSjz(j)k and kr(j)k stagnate near the same value.Note, however, that kf (j)k tends to zero.Table 3.1 shows that the true residual decreases when the Cayley transformationis used, but stagnates for the shift-and-invert transformation. The following resultindicates what occurs under some mild conditions when performing inexact inverseiteration with either the shift-and-invert or the Cayley transformation.



10 R. B. LEHOUCQ AND KARL MEERBERGENTable 3.1Numerical results for inverse iteration on Example 3.1 using inexact Cayley and shift-and-inverttransformations. The table shows the norms of true residual r(j), Sjz(j), and the RKS residual f (j):The norm of ~lj is also displayed for the Cayley transformation.Cayley Shift-and-invertj kr(j)k kSjz(j)k kf (j)k k~ljk kr(j)k kSjz(j)k kf (j)k1 1�100 8�10�1 7�10�1 5:2 4�100 5�100 4�10�12 1�101 1�101 5�10�1 0:6 7�10�1 7�10�1 7�10�23 1�100 1�100 2�10�1 1:6 4�10�1 4�10�1 3�10�24 2�10�1 2�10�1 8�10�2 1:2 5�10�1 5�10�1 1�10�25 1�10�1 9�10�2 4�10�2 1:0 5�10�1 5�10�1 7�10�36 5�10�2 5�10�2 2�10�2 1:0 5�10�1 5�10�1 4�10�37 2�10�2 2�10�2 8�10�3 1:0 5�10�1 5�10�1 2�10�38 9�10�3 9�10�3 3�10�3 1:0 5�10�1 5�10�1 1�10�39 4�10�3 4�10�3 1�10�3 1:0 5�10�1 5�10�1 5�10�410 2�10�3 1�10�3 4�10�4 1:0 5�10�1 5�10�1 3�10�411 6�10�4 6�10�4 2�10�4 1:0 5�10�1 5�10�1 1�10�412 2�10�4 2�10�4 6�10�5 1:0 5�10�1 5�10�1 7�10�513 8�10�5 8�10�5 2�10�5 1:0 5�10�1 5�10�1 4�10�514 3�10�5 3�10�5 8�10�6 1:0 5�10�1 5�10�1 2�10�515 1�10�5 1�10�5 3�10�6 1:0 5�10�1 5�10�1 1�10�5Theorem 3.2. Assume that there is an integer k � m and value  > 0 suchthat k~ljk �  for j > k: Assume that kf (j)k � �kf (j�1)k for j � k and � a positivenumber.If a Cayley transform is used, then for j � k + 1,kr(j)k � �� + ��j�k kf (k)k+ ���j�k kr(k)k(3.10)and when a shift-and-invert transformation is used,kr(j)k � �j�kkf (k)k+ � kBk :(3.11)Here, � is the relative residual tolerance used for the linear solves (see equations (3.6)and (3.7)).Proof. With z(j) = ej=k~ljk, (3.4) becomes r(j) = f (j) � sj=k~ljk. With k~ljk � ,it follows that kr(j)k � kf (j)k+ ksjk=k~ljk� kf (j)k+ ksjk= :(3.12)For the Cayley transform, we prove (3.10) by induction on j. We clearly have thatkr(k)k � kf (k)k+ kr(k)k ;which satis�es (3.10) for j = k. Suppose that (3.10) holds for some integer j � 1 �k: From the hypothesis of the theorem, we have that kf (j)k � �kf (j�1)k � � � � ��j�kkf (k)k: Combining this with equations (3.12) and (3.6) results inkr(j)k � kf (j)k+ ksjk= � �j�kkf (k)k+ �=kr(j�1)k:



INEXACT RATIONAL KRYLOV SEQUENCE METHOD 11Using our inductive hypothesis on kr(j�1)k giveskr(j)k � (�j�k + �=(� + �=)j�k�1)kf (k)k+ (�=)j�kkr(k)k� (�+ �=)j�kkf (k)k+ (�=)j�kkr(k)k ;from which (3.10) follows. For shift-and-invert, (3.11) follows from (3.12) and (3.7),which completes the proof.The value � denotes the convergence ratio of the exact RKS process on (A +Em; B). This process converges when � < 1. The theorem shows that if �+ �= < 1,inexact inverse iteration with the Cayley transformation converges. Since �+�= � �,inexact inverse iteration, in general, converges slower than the exact one. With theshift-and-invert transformation, although the term kf (j)k may converge to zero, kr(j)kmay stagnate, since the contribution to the true residual, coming from sj , is constant.We also remark that when a direct method is used for the linear system of equations,� is a multiple of machine precision. Thus, whether a shift-and-invert or Cayleytransformation is used, the true residual kr(j)k decreases at a rate proportional to �:For the exact Cayley transformation, we haveVj+1~hj = (A � �jB)�1f (j�1)and ~lj = ~hj � ~tj and ktjk = 1. Hence, we have1� �j � k~ljk � 1 + �j where �j = k(A� �jB)�1k kf (j�1)k :Thus,  = max(0;minj�k 1 � �j): If f (j�1) converges to zero and k(A � �jB)�1kremains modest, 1� �j tends to one for increasing j: Computation reveals that quiteoften k~ljk � 1 after a very small number of iterations. This also holds for inexactinverse iteration, since it can be seen as exact inverse iteration applied to (A+Em ; B),as is the case in Table 3.1. Hence, for large enough k,  � 1, such that the convergencerate of inverse iteration for large k using the Cayley transform can be estimated by� + �:3.2. Inexact Rational Krylov. We now formally discuss the algorithm listedin Figure 3. The Ritz vector y(j) = Vj+1 ~Ljz(j), computed as explained in x 2.2.1, isa linear combination ofVi+1~li = �i(A � �iB)�1By(i�1) with y(i�1) = Vi ~Li�1z(i�1) for i = 1; : : : ; j :We observed from the numerical experiments that the last component of z(j) is largecompared with the initial components. The explanation rests with the fact that Vj+1~ljis the improvement of the previous Ritz vector by inverse iteration, thus giving thebest approximation of the desired eigenvector among the Vi+1~li's.The inexact Ritz pairs (�(i); y(i)) lead to true residuals r(i). If the Cayley trans-form is used, the Cayley residual on iteration i satis�es ksik � �kr(i�1)k. The trueresidual on the jth iteration is decomposed as r(j) = f (j) � Sjz(j), wherekSjz(j)k � jXi=1 ksik jeTi z(j)jgives an upper bound to kSjz(j)k. In the right-hand side, ksik is independent of j andcan be quite large for small i. Since jeTi z(j)j forms a decreasing sequence for increasingj, we have a decreasing sequence kSjz(j)k.



12 R. B. LEHOUCQ AND KARL MEERBERGENTable 3.2Numerical results for the Olmstead model of Example 3.2. The table shows the order of accuracyfor the residual norm of the rightmost Ritz pair, the norm of Sjz(j), and the �rst four componentsof z(j). j krjk kSjz(j)k jeT1 z(j)j jeT2 z(j)j jeT3 z(j)j jeT4 z(j)j1 6�10�1 1�10�1 2�10�12 2�100 3�10�1 5�10�1 3�1003 2�10�2 1�10�2 5�10�3 6�10�1 14 2�10�2 1�10�2 3�10�3 6�10�1 1 25 8�10�4 7�10�4 1�10�4 4�10�2 6�10�2 3�10�16 3�10�4 3�10�4 2�10�5 2�10�2 3�10�2 3�10�17 2�10�5 2�10�5 2�10�6 1�10�3 2�10�3 2�10�28 5�10�7 5�10�7 7�10�8 2�10�5 5�10�5 1�10�39 3�10�8 3�10�8 4�10�9 2�10�6 2�10�6 6�10�5Example 3.2. We now discuss an example for which eTi z(j) and Sjz(j) tend tozero in the I-RKS method. The matrix arises from the same problem as in Exam-ple 3.1, but now n = 200. We ran Algorithm I-RKS from Figure 3 with �xed �j = 5,starting with vector v1 = [1; � � � ; 1]T=pn: The linear systems were solved by GMRESpreconditioned by ILU. The number of iterations of GMRES was determined by therelative error tolerance, which was selected as � = 10�4: Table 3.2 shows the residualnorm and the norm of the error term Sjz(j). Both kSjz(j)k and kr(j)k tend to zero.For large j, kSjz(j)k � kr(j)k. This is the case because f (j) converges more rapidlyto zero than Sjz(j). Table 3.2 also illustrates the fact that eTi z(j) decreases for a �xedi and increasing j.4. A Numerical Example. This example illustrates the use of inexact rationalKrylov methods for the solution of a generalized eigenvalue problem. We also make acomparison between inexact inverse iteration with the Cayley transform and I-RKS.The simulation of ow of a viscous uid with a free surface on a tilted plane,leads, with a �nite element approach, to an eigenvalue problem Ax = Bx� withA;B 2 R536�536 and B a singular matrix. The computation of the eigenvalue nearest�10 is the objective. Since our theory is valid only for nonsingular B, we interchangethe role of A and B by computing the eigenvalue  = ��1 of Bx = Ax nearest� = �10�1:The fact that B is singular implies that  = 0 is an eigenvalue. It has been shownthat the presence of this eigenvalue can disturb the calculation of a nonzero eigenvaluewhen the spectral transformation Lanczos method [13, 25], the shift-invert Arnoldimethod [28, 22], or the rational Krylov method [8] are used. One way to reduce theimpact of  = 0 is to start the I-RKS method with an initial vector v1 that is poorin the eigenspace corresponding to  = 0 [25]. This can be achieved by selectingv1 = (B � �A)�1Bv with v arbitrary.The eigenvalue  nearest �0:1 was computed by use of I-RKS (Fig. 3) with �xedpole �j = �0:1. The linear systems were solved by GMRES preconditioned withILUT(lfil=40,tol=1.e-3) [32] with � = 10�4. The initial vector v1 was computedfrom the system (B � �A)v1 = Bv with v = [ 1; � � � ; 1 ]T using the GMES-ILUTsolver. The algorithm was stopped when kr(j)1 k � tol = 10�13.The numerical results are shown in Table 4.1 for inexact rational Krylov (I-RKS)



INEXACT RATIONAL KRYLOV SEQUENCE METHOD 13Table 4.1Numerical results for the tilted plane problem from x 4. The methods used are inexact rationalKrylov (I-RKS) and inverse iteration with the Cayley transform. On iteration j, �(j) is the inexactRitz value, sj the Cayley residual, and g(j) = ( ~Kj � �(j) ~Lj)z(j).I-RKS (Fig. 3) Inverse Iteration (Fig. 3.1)j (�(j)1 )�1 ksjk kr(j)1 k kg(j)1 k (�(j)1 )�1 ksjk kr(j)k kg(j)k1 �9:40554 5�10�9 1�10�6 3�10�3 �9:40554 5�10�9 1�10�6 2�10�32 �9:48481 1�10�10 3�10�8 5�10�6 �9:49928 1�10�10 2�10�7 4�10�43 �9:48825 1�10�12 1�10�9 8�10�8 �9:48705 2�10�11 4�10�9 6�10�64 �9:48831 6�10�13 2�10�11 1�10�9 �9:48845 3�10�12 4�10�9 8�10�75 �9:48832 2�10�15 6�10�13 6�10�11 �9:48831 3�10�13 5�10�10 8�10�86 �9:48832 5�10�17 2�10�14 1�10�12 �9:48832 5�10�14 5�10�11 8�10�97 �9:48832 4�10�14 5�10�12 6�10�108 �9:48832 5�10�15 4�10�13 3�10�119 �9:48832 3�10�17 3�10�14 6�10�12and inexact inverse iteration using the Cayley transform. First, note that kf (j)k �kAkkg(j)k, so kg(j)k does not measure the RKS residual (see also (2.7)). Also note thatfor both I-RKS and inverse iteration, the sequences kr(j)k, ksjk and kg(j)k decrease.Both methods converge to � = �1 � �9:486. Finally, note that I-RKS is faster thaninverse iteration.5. A Connection with the Jacobi{Davidson Method. Based upon the re-cent work of Sleijpen and van der Vorst [36] which investigated a new method forstandard eigenvalue problems (B = I) that only uses approximate linear systems so-lutions. The two manuscripts [15, 34] extend the method for generalized eigenvalueproblems. We now proceed to show a connection between RKS and Jacobi{Davidsonwhen the linear systems are solved exactly.Consider the linear system(A� �jB)w = (A � ~�jB)pj ;(5.1)where pj = Vj ~Lj�1z(j�1) is a Ritz vector of interest. This amounts to selecting thejth continuation vector tj = ~Lj�1z(j�1) as in the Algorithm I-RKS in Figure 3 withassociated Ritz value ~�j = pHj ApjpHj Bpj :The right-hand side in (5.1) is then the residual of the eigenpair (~�j ; pj) and is or-thogonal to pj . Since we are interested in expanding our search space (the spanof the columns of Vj), multiply both sides of Equation (5.1) by the projector I �BpjpHj =(pHj Bpj): Using the fact that (A � ~�jB)pj ? pj , results in(I � BpjpHjpHj Bpj )(A � �jB)w = (A� ~�jB)pj :Since pj 2 R(Vj), the component of w in the direction of pj does not play a rolewhen w is added to the subspace R(Vj). Thus, we are interested in �nding only the



14 R. B. LEHOUCQ AND KARL MEERBERGENcomponent of w orthogonal to pj and so the linear system(I � BpjpHjpHj Bpj )(A � �jB)(I � pjpHjpHj pj )w = (A� ~�jB)pj(5.2)is solved instead. The Jacobi{Davidson method calls Equation (5.2) the correctionequation. We may rewrite Equation (5.2) with d � (I � pjpHj =(pHj pj))w ? pj as(A� �jB)d = "jBpj + (A� ~�jB)pj = (A � (~�j + "j)B)pj :(5.3)The orthogonality of pj and d leads to"j = pHj (A� �jB)�1(A� ~�jB)pjpHj (A� �jB)�1Bpj :Choosing the pole �j � ~�j + "j gives a relationship between the Jacobi{Davidson andRKS methods when Cayley transformations are used. In words, Jacobi{Davidsonis a RKS method with a speci�c Cayley transformation. The di�erence is that inthe correction equation (5.2) of the Jacobi{Davidson method, pj is orthogonal to theright-hand side. This is not the case for the RKS method with Cayley transformationde�ned by Equation (5.3).The solution of the linear system (5.2) leads to quadratic convergence when �j =~�j. Theorem 3.2 in [34] establishes this result under some mild conditions whileAppendix A in [34] demonstrates a connection with Newton's method.6. Conclusions. This paper demonstrated the use of iterative linear systemsolvers in Ruhe's rational Krylov sequence method. The analysis of the convergenceof inexact inverse iteration showed the importance of the use of the Cayley transfor-mation instead of the usual shift-and-invert transformation.A theoretical link between the inexact rational Krylov method and the Jacobi-Davidson method was made by observing a connection between the correction equa-tion and the Cayley transformation.We called the eigenpairs computed by I-RKS inexact Ritz pairs, since they areRitz pairs for a perturbed RKS method. The classical properties of Galerkin projec-tion are lost due to this inexactness. The fact that I-RKS solves a perturbed problemwith small perturbations in the desired eigendirections motivates the application of theRKS techniques developed for the process using exact linear solves. These techniquesinclude use of complex poles and zeros for real A and B [30], harmonic Ritz pairs,deation and purging [31], and the implicit application of a rational �lter [8]. Thepractical advantage of the inexact rational Krylov method is that the cheaply com-puted matrices ~Lm and ~Km are used to compute the Ritz pairs. The Jacobi-Davidsonmethod requires the explicit formation of V Hm AVm and VmBVm:A. Relation between the Shift-and-Invert and Cayley Transformations.In this appendix, we prove that the use of the shift-and-invert or the Cayley transfor-mations lead to similar recurrence relations.Lemma A.1. If in Step 3 of Algorithm 2, we use TCj = (A � �jB)�1(A � �jB)on the jth iteration, and we obtain the relationAVm+1 ~Lm = BVm+1 ~Km;then the use of TSIj = (A� �jB)�1B leads toAVm+1 ~Lm(Mm � Nm)�1 = BVm+1 ~Km(Mm � Nm)�1
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