
Globus:A Metacomputing Infrastructure ToolkitIan Foster� Carl Kesselmanyhttp://www.globus.org/AbstractEmerging high-performance applications require the ability to exploit diverse, ge-ographically distributed resources. These applications use high-speed networks to in-tegrate supercomputers, large databases, archival storage devices, advanced visualiza-tion devices, and/or scienti�c instruments to form networked virtual supercomputers ormetacomputers. While the physical infrastructure to build such systems is becomingwidespread, the heterogeneous and dynamic nature of the metacomputing environmentposes new challenges for developers of system software, parallel tools, and applications.In this article, we introduce Globus, a system that we are developing to address thesechallenges. The Globus system is intended to achieve a vertically integrated treatmentof application, middleware, and network. A low-level toolkit provides basic mechanismssuch as communication, authentication, network information, and data access. Thesemechanisms are used to construct various higher-level metacomputing services, such asparallel programming tools and schedulers. Our long-term goal is to build an AdaptiveWide Area Resource Environment (AWARE), an integrated set of higher-level servicesthat enable applications to adapt to heterogeneous and dynamically changing meta-computing environments. Preliminary versions of Globus components were deployedsuccessfully as part of the I-WAY networking experiment.1 IntroductionNew classes of high-performance applications are being developed that require unique capa-bilities not available in a single computer. Such applications are enabled by the constructionof networked virtual supercomputers, ormetacomputers [2], execution environments in whichhigh-speed networks are used to connect supercomputers, databases, scienti�c instruments,and advanced display devices, perhaps located at geographically distributed sites. In prin-ciple, networked virtual supercomputers can both increase accessibility to supercomputingcapabilities and enable the assembly of unique capabilities that could not otherwise becreated in a cost-e�ective manner.Experience with high-speed networking testbeds has demonstrated convincingly thatthere are indeed applications of considerable scienti�c and economic importance that canbene�t from metacomputing capabilities. For example, the I-WAY networking experiment,which connected supercomputers and other resources at 17 di�erent sites across NorthAmerica, saw 60 groups develop applications in areas as diverse as large-scale scienti�csimulation [23, 24], collaborative engineering [5, 6], and supercomputer-enhanced scienti�cinstruments [17].�Mathematics and Computer Science Division, Argonne National Laboratory, foster@mcs.anl.govyThe Beckman Institute, California Institute of Technology, carl@compbio.caltech.edu1

2 Metacomputers have much in common with both distributed and parallel systems,yet also di�er from these two architectures in important ways. Like a distributedsystem, a networked supercomputer must integrate resources of widely varying capabilities,connected by potentially unreliable networks and often located in di�erent administrativedomains. However, the need for high performance can require programming modelsand interfaces radically di�erent from those used in distributed systems. As in parallelcomputing, metacomputing applications often need to schedule communications carefullyto meet performance requirements. However, the heterogeneous and dynamic nature ofmetacomputing systems limits the applicability of parallel computing tools and techniques.These considerations suggest that while metacomputing can build on distributedand parallel software technologies, it also requires signi�cant advances in mechanisms,techniques, and tools. The Globus project is intended to accelerate these advances. Ina �rst phase, we are developing and deploying a metacomputing infrastructure toolkitproviding basic capabilities and interfaces in areas such as communication, information,resource location, resource scheduling, authentication, and data access. Together, thesetoolkit components de�ne a metacomputing abstract machine on which can be constructeda range of alternative infrastructures, services, and applications (Figure 1). We ourselvesare building parallel programming tools and resource discovery and scheduling services, andother groups are working in other areas.Our long-term goal in the Globus project is to address the problems of con�guration andperformance optimization in metacomputing environments. These are challenging issues,because of the inherent complexity of metacomputing systems, the fact that resources areoften only identi�ed at runtime, and the dynamic nature of resource characteristics. Webelieve that successful applications must be able to con�gure themselves to �t the executionenvironment delivered by the metacomputing system, and then adapt their behavior tosubsequent changes in resource characteristics. We are investigating the design of higher-level services layered on the Globus toolkit that enable the construction of such adaptiveapplications. We refer collectively to these services as forming an Adaptive Wide AreaResource Environment, or AWARE.The rest of the article is as follows. In Section 2, we introduce general characteristics ofmetacomputing systems and requirements for metacomputing infrastructure. In Section 3,we describe the Globus architecture and the techniques used to support resource-awareapplications. In Section 4, we describe major toolkit components. In Sections 5 and 6, wedescribe higher-level services constructed with the toolkit and testbeds that have deployedtoolkit components. We conclude in Section 7 with a discussion of current system statusand future plans.2 MetacomputingWe use the term metacomputer to denote a networked virtual supercomputer, constructeddynamically from geographically distributed resources linked by high-speed networks. Forexample, Figure 2 shows a metacomputer constructed during the I-WAY experiment forreal-time processing of image data from a meteorological satellite [17].Figure 2 illustrates an example of such a system; a somewhat simpli�ed version of thisarchitecture was used in the I-WAY for real-time image processing of a data stream from ameteorological satellite [17].Metacomputing, like more mainstream applications of distributed computing, is moti-vated by a need to access resources not located within a single computer system. Frequently,

3
Resource

(al)location
. . .Data access

(RIO)

Globus
toolkit
modules

Globus metacomputing abstract machine

Authent-
ication

G U S T OI - W A Y . . .
Meta
computing
testbeds

Heterogeneous, geographically distributed devices and networks

Higher
level
services

Comms
(Nexus)

Globus services: AWARE

Information
service

I-Soft
scheduler

MPI, CC++,
CAVEcomm

. . .

Other services (actual/planned)

AppLeS

CORBA HPC++

Legion . . .

Fig. 1. The Globus toolkitthe driving force is economic: the resources in question|for example, supercomputers|are too expensive to be replicated. Alternatively, an application may require resourcesthat would not normally be co-located, because a particular con�guration is required onlyrarely: for example, a collaborative engineering environment that connects the virtualreality systems, design databases, and supercomputers required to work on a particularengineering problem. Finally, certain unique resources|such as specialized databases andpeople|cannot be replicated. In each case, the ability to construct networked virtualsupercomputers can provide qualitatively new capabilities that enable new approaches toproblem solving.2.1 Metacomputing ApplicationsScientists and engineers are just beginning to explore the new applications enabledby networked supercomputing. The I-WAY experiment [4] identi�ed four signi�cantapplication classes.1. Desktop supercomputing. These applications couple high-end graphics capabilitieswith remote supercomputers and/or databases. This coupling connects users moretightly with computing capabilities, while at the same time achieving distanceindependence between resources, developers, and users.2. Smart instruments. These applications connect users to instruments such asmicroscopes, telescopes, or satellite downlinks [17] that are themselves coupled withremote supercomputers. This computational enhancement can enable both quasi-realtime processing of instrument output and interactive steering.3. Collaborative environments. A third set of applications couple multiple virtualenvironments so that users at di�erent locations can interact with each other and

4
Fig. 2. Networked supercomputers are constructed dynamically from geographically distributedresources. This �gure shows a collection of parallel supercomputers, network-connected workstations,and a satellite downlink.with supercomputer simulations [5, 6].4. Distributed supercomputing. These applications couple multiple computers to tackleproblems that are too large for a single computer or that can bene�t from executingdi�erent problem components on di�erent computer architectures [21, 23, 24]. Wecan distinguish scheduled and unscheduled modes of operation. In scheduled mode,resources, once acquired, are dedicated to an application. In unscheduled mode,applications use otherwise idle resources that may be reclaimed if needed; Condor [19]is one system that supports this mode of operation. In general, scheduled modeis required for tightly coupled simulations, particularly those with time constraints,while unscheduled mode is appropriate for loosely coupled applications that can adaptto time-varying resources.2.2 Metasystem CharacteristicsWhile the I-WAY and other networking testbeds have provided intriguing hints of whatfuture metacomputing systems may look like and how they may be used, the de�nition andapplication of such systems remain research problems. Nevertheless, we can make generalobservations about their characteristics (see also [14]).� Scale and the need for selection. To date, most metacomputing experiments have beenperformed on relatively small testbeds, with the 17-site I-WAY being the largest. Inthe future we can expect to deal with much larger collections, from which resourceswill be selected for particular applications according to criteria such as connectivity,cost, security, and reliability.� Heterogeneity at multiple levels. Both the computing resources used to constructvirtual supercomputers and the networks that connect these resources are often highly

5heterogeneous. Heterogeneity can arise at multiple levels, ranging from physicaldevices, through system software, to scheduling and usage policies.� Unpredictable structure. Traditionally, high-performance applications have beendeveloped for a single class of system with well-known characteristics|or even forone particular computer. In contrast, metacomputing applications can be requiredto execute in a wide range of environments, constructed dynamically from availableresources. Geographical distribution and complexity are other factors that make itdi�cult to determine system characteristics such as network bandwidth and latencya priori.� Dynamic and unpredictable behavior. Traditional high-performance systems usescheduling disciplines such as space sharing or gang-scheduling to provide exclusive|and hence predictable|access to processors and networks. In metacomputingenvironments, resources|especially networks|are more likely to be shared. Oneconsequence of sharing is that behavior and performance can vary over time. Forexample, in wide area networks built using the Internet Protocol suite, networkcharacteristics such as latency, bandwidth and jitter may vary as tra�c is rerouted.Large-scale metasystems may also su�er from network and resource failures. Ingeneral, it is not possible to guarantee even minimum quality of service requirements.� Multiple administrative domains. The resources used by metacomputing applicationsoften are not owned or administered by a single entity. The need to deal with multipleadministrative entities complicates the already challenging network security problem,as di�erent entities may use di�erent authentication mechanisms, authorizationschemes, and access policies. The need to execute user-supplied code at di�erentsites introduces additional concerns.Fundamental to all of these issues is the need for mechanisms that allow applications toobtain real-time information about system structure and state, use that information to makecon�guration decisions, and be noti�ed when information changes. Required informationcan include network activity, available network interfaces, processor characteristics, andauthentication mechanisms. Decision processes can require complex combinations of thesedata in order to achieve e�cient end-to-end con�guration of complex networked systems.3 The Globus Metacomputing Infrastructure ToolkitA number of pioneering e�orts have produced useful services for the metacomputingapplication developer. For example, Parallel Virtual Machine (PVM) [12] and theMessage Passing Interface (MPI) [16] provide a machine-independent communication layer,Condor [19] provides a uniform view of processor resources, Legion [13] builds systemcomponents on a distributed object-oriented model, and the Andrew File System (AFS) [22]provides a uniform view of �le resources. Each of these systems has been proven e�ectivein large-scale application experiments.Our goal in the Globus project is not to compete with these and other related e�orts,but rather to provide basic infrastructure that can be used to construct portable, high-performance implementations of a range of such services. To this end, we focus on (a) thedevelopment of low-level mechanisms that can be used to implement higher-level services,and (b) techniques that allow those services to observe and guide the operation of thesemechanisms. If successful, this approach can reduce the complexity and improve the quality

6of metacomputing software by allowing a single low-level infrastructure to be used formany purposes, and by providing solutions to the con�guration problem in metacomputingsystems.To demonstrate that the Globus approach is workable, we must show that it is possibleto use a single set of low-level mechanisms to construct e�cient implementations of diverseservices on multiple platforms. As we report below, we have had some initial successes inthe communication area: our Nexus communication library has been used to construct high-performance implementations of diverse parallel programming interfaces. However, this iscertainly not a conclusive demonstration, and the �nal verdict on the Globus approachmust await the results of further research.In the following, we �rst introduce the Globus toolkit and then describe the mechanismsthat allow higher-level services to observe and guide the operation of toolkit components.3.1 The Globus ToolkitThe Globus toolkit comprises a set of modules. Each module de�nes an interface, whichhigher-level services use to invoke that module's mechanisms, and provides an implemen-tation, which uses appropriate low-level operations to implement these mechanisms in dif-ferent environments.Currently identi�ed toolkit modules are as follows. These descriptions focus onrequirements; Sections 4 and 6 address implementation status.� Resource location and allocation. This component provides mechanisms for expressingapplication resource requirements, for identifying resources that meet these require-ments, and for scheduling resources once they have been located. Resource locationmechanisms are required because applications cannot, in general, be expected to knowthe exact location of required resources, particularly when load and resource avail-ability can vary. Resource allocation involves scheduling the resource and performingany initialization required for subsequent process creation, data access, etc. In somesituations|for example, on some supercomputers|location and allocation must beperformed in a single step.� Communications. This component provides basic communication mechanisms. Thesemechanisms must permit the e�cient implementation of a wide range of communica-tion methods, including message passing, remote procedure call, distributed sharedmemory, stream-based, and multicast. Mechanisms must be cognizant of networkquality of service parameters such as jitter, reliability, latency, and bandwidth.� Uni�ed resource information service. This component provides a uniform mechanismfor obtaining real-time information about metasystem structure and status. Themechanism must allow components to post as well as receive information. Supportfor coping and access control is also required.� Authentication interface. This component provides basic authentication mechanismsthat can be used to validate the identity of both users and resources. Thesemechanisms provide building blocks for other security services such as authorizationand data security that need to know the identity of parties engaged in an operation.� Process creation. This component is used to initiate computation on a resource onceit has been located and allocated. This task includes setting up executables, creatingan execution environment, starting an executable, passing arguments, integrating the

7new process into the rest of the computation, and managing termination and processshutdown.� Data access. This component is responsible for providing high-speed remote accessto persistent storage such as �les. Some data resources such as databases may beaccessed via distributed database technology or the Common Object Request BrokerArchitecture (CORBA). The Globus data access module addresses the problem ofachieving high performance when accessing parallel �le systems and network-enabledI/O devices such as the High Performance Storage System (HPSS).Together, the various Globus toolkit modules can be thought of as de�ning ametacomputing virtual machine. The de�nition of this virtual machine simpli�es applicationdevelopment and enhances portability by allowing programmers to think of geographicallydistributed, heterogeneous collections of resources as uni�ed entities.3.2 Support for Resource-Aware Services and ApplicationsMetacomputing applications often need to operate networking and computing resourcesat close to maximum performance. Hence, metacomputing environments must allowprogrammers to observe di�erences in system resource characteristics and to guide howthese resources are used to implement higher-level services. Achieving these goals withoutcompromising portability is a signi�cant challenge for the designer of metacomputingsoftware.We use the Globus communication module to illustrate some of these issues. Thismodule must select, for each call to its communication functions, one of several low-levelmechanisms. On a local area network, communication might be performed with TCP/IP,while in a parallel computer, specialized high-performance protocols typically o�er higherbandwidth and lower latencies. In a wide area environment, specialized ATM protocols canbe more e�cient. The ability to manage protocol parameters (TCP packet size, networkquality of service) further complicates the picture. The choice of low-level mechanism usedfor a particular communication is a nontrivial problem that can have signi�cant implicationsfor application performance.Globus toolkit modules address this problem by providing interfaces that allow theselection process to be exposed to, and guided by, higher-level tools and applications.These interfaces provide rule-based selection, resource property inquiry, and noti�cationmechanisms.� Rule-based selection. Globus modules can identify selection points at which choicesfrom among alternatives (resources, parameter values, etc.) are made. Associatedwith each selection point is a default selection rule provided by the module developer(e.g., \use TCP packet size X ," \use TCP over ATM"). A rule replacementmechanism allows higher-level services to specify alternative strategies (\use TCPpacket size Y ," \use specialized ATM protocols").� Resource property inquiry. Information provided by the uni�ed information service(Section 4) can be used to guide selection processes within both Globus modules andapplications that use these modules. For example, a user might provide a rule thatstates \use ATM interface if load is low, otherwise Internet," hence using informationabout network load to guide resource selection.� Noti�cation. A noti�cation mechanism allows a higher-level service or applicationto specify constraints on the quality of service delivered by a Globus service and to

8
SP

SP

SP

EP
0 1 2

EPFig. 3. Nexus communication mechanisms. The �gure shows three contexts (address spaces)and three communication links. Three startpoints in context 1 reference endpoints in contexts 0and 2.name a call-back function that should be invoked if these constraints are violated.This mechanism can be used, for example, to switch between networks when onebecomes loaded.Higher-level services and applications can use Globus selection, inquiry, and noti�cationmechanisms to con�gure computations e�ciently for available resources, and/or to adaptbehavior when the quantity and/or quality of available resources changes dynamicallyduring execution. For example, consider an application that performs computation onone computer and transfers data over a wide area network for visualization at remote sites.At startup time, the application can determine available computational power and networkcapacity and con�gure its computational and communication structures appropriately (e.g.,it might decide to use compression for some data but not others). During execution,noti�cation mechanisms allow it to adapt to changes in network quality of service.We use the term Adaptive Wide Area Resource Environment (AWARE) to denotea set of application interfaces, higher-level services, and adaptation policies that enablespeci�c classes of applications to exploit a metacomputing environment e�ciently. Weare investigating AWARE components for several applications, and anticipate developingAWARE toolkits for di�erent classes of metacomputing application.4 Globus Toolkit ComponentsWe now describe in more detail the Globus communications, information service, authen-tication, and data access services. In each case, we outline how the component maps todi�erent implementations, is used to implement di�erent higher-level services, and supportsthe development of AWARE services and applications.4.1 CommunicationsThe Globus communications module is based on the Nexus communication library [11].Nexus de�nes �ve basic abstractions: nodes, contexts, threads, communication links, andremote service requests (Figure 3). The Nexus functions that manipulate these abstractionsconstitute the Globus communication interface. This interface is used extensively by otherGlobus modules and has also been used to construct various higher-level services, includingparallel programming tools (Section 5.1). The Active Messages [20] and Fast Messages [25]systems have similarities in goals and approach, but there are also signi�cant di�erences [7].Nexus programs bind communication startpoints and endpoints to form communicationlinks. If multiple startpoints are bound to an endpoint, incoming communications are

9interleaved, in the same manner as messages sent to the same node in a message passingsystem. If a startpoint is bound to multiple endpoints, communication results in a multicastoperation. A startpoint can be copied between processors, causing new communication linksto be created that mirror the links associated with the original startpoint. This supportfor copying means that startpoints can be used as global names for objects. These namescan be communicated and used anywhere in a distributed system.A communication link supports a single communication operation: an asynchronousremote service request (RSR). An RSR is applied to a startpoint by providing a procedurename and a data bu�er. For each endpoint linked to the startpoint, the RSR transfersthe data bu�er to the address space in which the endpoint is located and remotely invokesthe speci�ed procedure, passing the endpoint and the data bu�er as arguments. A localaddress can be associated with an endpoint, in which case startpoints associated with theendpoint can be thought of as \global pointers" to that address.The Nexus interface and implementation support rule-based selection (Section 3.2)of the methods|such as protocol, compression method, and quality of service|used toperform communication [7]. Di�erent communication methods can be associated withdi�erent communication links, with selection rules determining which method should beused when a new link is established. These mechanisms have been used to support multiplecommunication protocols [7] and selective use of secure communication [10] in heterogeneousenvironments.4.2 Metacomputing Information ServiceAs noted above, metacomputing environments depend critically on access to informationabout the underlying networked supercomputing system. Required information can includethe following.� Con�guration details about resources such as the amount of memory, CPU speed,number of nodes in a parallel computer, or the number and type of network interfacesavailable.� Instantaneous performance information, such as point-to-point network latency,available network bandwidth, and CPU load.� Application-speci�c information, such as memory requirements or program structuresfound e�ective on previous runs.Di�erent data items will have di�erent scopes of interest and security requirements,but some information at least may potentially be required globally, by any systemcomponent. Information may be obtained from multiple sources: for example, fromstandard information services such as the Network Information Service (NIS) or SimpleNetwork Management Protocol (SNMP) Management Information Base (MIB); fromspecialized services such as the Network Weather Service [1]; or from external sourcessuch as the system manager or an application.Globus de�nes a single, uni�ed access mechanism for this wide range of information,called the Metacomputing Information Service (MIS). Logically, each MIS entry comprisesan index and zero or more associated key/value pairs. Frequently, the index is the name ofa metacomputing resource, and the associated key/value pairs de�ne resource attributes.Applications can query the MIS to determine, for example, the value currently associatedwith a particular key.

10 rs6000 \protocols = udp\udp=*c \startups = ss, rsh \login = foster \ss_port = 6291sun1 : sun2 : sun3 \protocols=atm, udp \atm-interface=*c \udp-interface=*w \login = itf \startups = rshFig. 4. RDB entries describing the network interfaces, authentication mechanisms, and processcreation mechanisms supported by one RS/6000 and three Sun workstations.The MIS implementation currently uses a textual database format (Figure 4). A proxymechanism supports the integration of other data services, such as SNMP and NIS, andallows remote access. Issues such as caching and replication are de�ned by higher-levelGlobus services built on the MIS. We are extending the MIS with a noti�cation interfacethat will allow higher-level services or applications to request noti�cations when speci�edconditions in the MIS become true.4.3 Authentication MethodsThe initial version of the Globus authentication module supported password, Unix RSH,and Secure Socket Layer authentication. To increase the degree of abstraction at the toolkitinterface, we are moving towards the use of the Generic Security System (GSS) [18]. GSSde�nes a standard procedure and API for obtaining credentials (passwords or certi�cates),for mutual authentication (client and server), and for message-oriented encryption anddecryption. GSS is independent of any particular security mechanism and can be layeredon top of di�erent security methods, such as Kerberos and SSL.GSS must be altered and extended to meet the requirements of metacomputingenvironments. As a metacomputing system may use di�erent authentication mechanismsin di�erent situations and for di�erent purposes, we require a GSS implementation thatsupports the concurrent use of di�erent security mechanisms. In addition, inquiry andselection functions are needed so that higher-level services implementing speci�c securitypolicies can select from available low-level security mechanisms.4.4 Data Access ServicesServices that provide metacomputing applications with access to persistent data can facestringent performance requirements and must support access to data located in multipleadministrative domains. Distributed �le systems such as the Network File System andDistributed File System address remote access to some extent but have not been designedfor high-performance applications. Parallel �le systems and I/O libraries have been designedfor performance but not for distributed execution.To address these problems, the Globus data access module de�nes primitives that

11
Local file systems

A D I O

A D I O
R I O

MPI-IOChemIO

Application programs

RIO server

Local file systemsFig. 5. RIO mechanisms for high-performance access to remote �le systemsprovide remote access to parallel �le systems. This remote I/O (RIO) interface (Figure 5)is based on the abstract I/O device (ADIO) interface [27]. ADIO de�nes an interface foropening, closing, reading and writing parallel �les. It does not de�ne semantics for caching,�le replication, or parallel �le descriptor semantics. Several popular I/O systems have beenimplemented e�ciently on ADIO [27]. RIO extends ADIO by adding transparent remoteaccess and global naming using a URL-based naming scheme. RIO remote access featuresuse Nexus mechanisms.5 Higher-Level ServicesIn the preceding section, we described the core interfaces and services provided by theGlobus toolkit. These interfaces are not intended for application use. Rather, they areintended to be used to construct higher-level policy components. These policy componentscan serve the function of middleware, on which yet higher-level components are constructedto create application-level interfaces. In the following, we describe two such middlewarecomponents.5.1 Parallel Programming InterfacesNumerous parallel programming interfaces have been adapted to use Globus authentication,process creation, and communication services, hence allowing programmers to developmetacomputing applications using familiar tools. These interfaces include a completeimplementation of MPI (and hence tools layered on top of MPI, such as many HighPerformance Fortran systems); Compositional C++ [3], a parallel extension to C++;Fortran M, a task-parallel Fortran; nPerl, a version of the Perl scripting language extendedwith remote reference and remote procedure call mechanisms; and NexusJava, a Java classlibrary that supports remote procedure calls.We say a few words here about the Globus implementation of MPI. A \Nexusdevice" supports the abstract device interface used within the MPICH implementation

12of MPI [9, 15]; Globus mechanisms are used for authentication and process startup [10].These components are su�ciently integrated that in the I-WAY a user could allocatea heterogeneous collection of resources and then start a program simply by typing\impirun." Under the covers, of course, Globus mechanisms are used to select appropriateauthentication, process creation, and communication mechanisms.5.2 Uni�ed Certi�cate-based AuthenticationThe Globus authentication interface can be used to implement a range of di�erent securitypolicies. We are currently investigating a policy that de�nes a global, public key-basedauthentication space for all users and resources. That is, we provide a centralized authoritythat de�ne system-wide names (\accounts") for users and resources. These names allowan application to use a single \user id" and \password" for all resources. They also permitthe application to verify the identity of requested resources. Note that this policy does notaddress authorization: resources can use their usual mechanisms to determine the users towhich they will grant access.While not practical for large-scale, open environments, the use of a centralized authorityto identify users and resources is appropriate for limited-scale testbed environments such asthe I-WAY and GUSTO (see below). The approach has the signi�cant advantage that it canbe implemented easily with current certi�cate-based authentication protocols, such as thatprovided in the Secure Socket Library (SSL). Note that while names (that is, certi�cates)are issued by a centralized certi�cate authority, the authentication of users and servicesinvolves only the agents being authenticated; it does not require any interaction with theissuing authority.In the longer term, authentication and authorization schemes must address therequirements of larger, dynamic, heterogeneous communities, in which trust relationshipsspan multiple administrative domains and can be irregular and selective. Some memberorganizations will be more trusting of speci�c members than others; still others maybe competitors. Some members may feel the need to control all trust relationshipsexplicitly, even if it means that fewer community assets are available for their use; this maystimulate the evolution of sub-communities with their own set of trust and authorizationrelationships. Community members willing to delegate to other members the ability toextend relationships on their behalf may more fully enjoy the bene�ts of membership inthe greater community.Our certi�cate-based policy can be extended to support limited forms of trustdelegation. Globus resource certi�cates can be given to sites with multiple resources (orusers). These sites can in turn set up a local certi�cate authority, which signs certi�catesthat it issues with the certi�cate issued by the Globus authority. This situation is acceptableif the user (or resource) trusts the administration of the site issuing the Globus-signedcerti�cate.6 Globus Testbeds and ExperiencesWe have referred above to the I-WAY experiment, in which a number of Globus componentswere �rst deployed as part of the I-Soft software environment [8]. These componentsincluded the Nexus communication library, Kerberos-based authentication, a processcreation mechanism, and a centralized scheduler for compute resources. While inadequate ina number of respects (e.g., nonscalable, no scheduling of network resources), this experimentdid demonstrate the advantages of the Globus approach of providing basic mechanisms. I-

13WAY applications developed with a variety of parallel tools (MPI, CAVEcomm, CC++,etc.) were ported to the I-WAY environment by adapting those tools to use Globusmechanisms for authentication, process creation, and communication. If Globus hadenforced a particular parallel programming interface, considerable e�ort would have beenrequired to adapt existing applications to use this interface.We are currently working with the high-performance computing community to de�neadditional testbeds. We describe here just one of these, the Globus Ubiquitous Super-computing Testbed (GUSTO). GUSTO is intended initially at least as a computer sciencerather than an application testbed, meaning that the initial development focus is on de-ploying and evaluating basic mechanisms for authentication, scheduling, communication,and information infrastructure. In this respect it complements e�orts such as the I-WAYthat focus more on applications.GUSTO is intended to span approximately �fteen sites (�ve core sites are active as ofNovember 1996), encompassing a number of supercomputers (IBM SP2, Silicon GraphicsPower Challenge, etc.), and workstations. Basic connectivity is via the Internet, althoughsome machines are also connected via OC3 (155 Mb/sec) ATM networks. Eventually, weexpect most GUSTO sites to be accessible over the National Science Foundation's OC3vBNS network. Authentication is based on the uniform certi�cate mechanism describedabove. The initial information service is provided by a centralized information server thatmaintains information about resource con�guration and current network characteristics.This information is updated dynamically, providing a more accurate view of systemcon�guration than was available in I-Soft [8].7 Conclusions and Future WorkThe Globus project is attacking the metacomputing software problem from the bottom up,by developing basic mechanisms that can be used to implement a variety of higher-level ser-vices. Communication, resource location, resource allocation, information, authentication,data access, and other services have been identi�ed, and considerable progress has beenmade toward constructing quality implementations. The de�nition, development, applica-tion, evaluation, and re�nement of these components are ongoing processes that we expectto proceed for the next two years at least. We hope to involve more of the metacomputingcommunity in this process, by adapting relevant higher-level services (e.g., application-levelscheduling [1], performance steering [26]) to use Globus mechanisms, and by participatingin the construction of additional testbeds (e.g., GUSTO).The Globus project is also addressing the con�guration problem in metacomputing sys-tems, with the goal of producing an Adaptive Wide Area Resource Environment that sup-ports the construction of adaptive services and applications. We have introduced selection,information, and noti�cation mechanisms and have de�ned Globus component interfaces sothat these mechanisms can be used to guide the con�guration process. Preliminary experi-ments with dynamic communication selection suggest that these con�guration mechanismscan have considerable value [7].In summary, we list three areas in which we believe the Globus project has alreadymade contributions and in which we hope to see considerable further progress:� The de�nition of a core metacomputing system architecture on which a range ofalternative metacomputing environments can be built.� The development of a framework that allows applications to respond to dynamicbehaviors in the underlying metacomputing environment, and the de�nition and

14 evaluation of various adaptation policies.� The demonstration in testbeds such as the I-WAY and GUSTO that useful higher-level services can be layered e�ectively on top of the interfaces de�ned by theGlobus toolkit, and that automatic con�guration mechanisms can be used to enhanceportability and performance.AcknowledgmentsWe gratefully acknowledge the contributions made by Steve Tuecke, Jonathan Geisler,Craig Lee, Steve Schwab, Warren Smith, Jace Mogill, and John Garnett to the designand implementation of Globus components. It is also a pleasure to acknowledge thecontributions of Tom DeFanti and Rick Stevens and the many other participants in theI-WAY project.This work was supported by the National Science Foundation's Center for Research inParallel Computation, under Contract CCR-8809615, by the Defense Advanced ResearchProjects Agency under contract N66001-96-C-8523, and by the Mathematical, Information,and Computational Sciences Division subprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.References[1] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-level scheduling ondistributed heterogeneous networks, in Proceedings of Supercomputing '96, ACM, 1996.[2] C. Catlett and L. Smarr,Metacomputing, Communications of the ACM, 35 (1992), pp. 44{52.[3] K. M. Chandy and C. Kesselman, CC++: A declarative concurrent object oriented program-ming notation, in Research Directions in Object Oriented Programming, The MIT Press, 1993,pp. 281{313.[4] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss, Overview of the I-WAY: Widearea visual supercomputing, International Journal of Supercomputer Applications, 10 (1996),pp. 123{130.[5] D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann,Remote engineeringtools for the design of pollution control systems for commercial boilers, International Journalof Supercomputer Applications, 10 (1996), pp. 208{218.[6] T. L. Disz, M. E. Papka, M. Pellegrino, and R. Stevens, Sharing visualization experiences amongremote virtual environments, in International Workshop on High Performance Computing forComputer Graphics and Visualization, Springer-Verlag, 1995, pp. 217{237.[7] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke, Managing multiple communicationmethods in high-performance networked computing systems, Journal of Parallel and DistributedComputing, (1997). To appear.[8] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke, Software infrastructure for theI-WAY high-performance distributed computing experiment, in Proc. 5th IEEE Symp. on HighPerformance Distributed Computing, IEEE Computer Society Press, 1996, pp. 562{571.[9] I. Foster, J. Geisler, and S. Tuecke,MPI on the I-WAY: A wide-area, multimethod implementa-tion of the Message Passing Interface, in Proceedings of the 1996 MPI Developers Conference,IEEE Computer Society Press, 1996, pp. 10{17.[10] I. Foster, N. Karonis, C. Kesselman, G. Koenig, and S. Tuecke, A secure communications in-frastructure for high-performance distributed computing, preprint, Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, Ill., 1996.[11] I. Foster, C. Kesselman, and S. Tuecke, The Nexus approach to integrating multithreading andcommunication, Journal of Parallel and Distributed Computing, (1996). To appear.[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam, PVM: ParallelVirtual Machine|A User's Guide and Tutorial for Network Parallel Computing, MIT Press,1994.

15[13] A. Grimshaw and W. Wolf, Legion { a view from 50,000 feet, in Proc. 5th IEEE Symp. onHigh Performance Distributed Computing, IEEE Computer Society Press, 1996, pp. 89{99.[14] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reynolds, Jr., Legion: The next logicalstep toward a nationwide virtual computer, Tech. Rep. CS-94-21, Department of ComputerScience, University of Virginia, 1994.[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable implementationof the MPI message passing interface standard, Technical Report ANL/MCS-TM-213, Math-ematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1996.[16] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with theMessage Passing Interface, MIT Press, 1995.[17] C. Lee, C. Kesselman, and S. Schwab, Near-realtime satellite image processing: Metacomputingin CC++, Computer Graphics and Applications, 16 (1996), pp. 79{84.[18] J. Linn, Generic security service application program interface, Internet RFC 1508, (1993).[19] M. Litzkow, M. Livney, and M. Mutka, Condor - a hunter of idle workstations, in Proc. 8thIntl Conf. on Distributed Computing Systems, 1988, pp. 104{111.[20] A. Mainwaring, Active Message applications programming interface and communication sub-system organization, tech. rep., Dept. of Computer Science, UC Berkeley, Berkeley, CA, 1996.[21] C. Mechoso et al., Distribution of a Coupled-ocean General Circulation Model across high-speed networks, in Proceedings of the 4th International Symposium on Computational FluidDynamics, 1991.[22] J. Morris et al., Andrew: A distributed personal computing environment, Communications ofthe ACM, 29 (1986).[23] J. Nieplocha and R. Harrison, Shared memory NUMA programming on the I-WAY, in Proc.5th IEEE Symp. on High Performance Distributed Computing, IEEE Computer Society Press,1996, pp. 432{441.[24] M. Norman et al., Galaxies collide on the I-WAY: An example of heterogeneous wide-areacollaborative supercomputing, International Journal of Supercomputer Applications, 10 (1996),pp. 131{140.[25] S. Pakin, M. Lauria, and A. Chien, High performance messaging on workstations: Illinois FastMessages (fm) for Myrinet, in Proceedings of Supercomputing '95, IEEE Computer SocietyPress, 1996.[26] D. Reed, C. Elford, T. Madhyastha, E. Smirni, and S. Lamm, The Next Frontier: Interactiveand Closed Loop Performance Steering, in Proceedings of the 1996 ICPP Workshop onChallenges for Parallel Processing, Aug. 1996, pp. 20{31.[27] R. Thakur, W. Gropp, and E. Lusk, An Abstract-Device Interface for Implementing PortableParallel-I/O Interfaces, in Proceedings of The 6th Symposium on the Frontiers of MassivelyParallel Computation, October 1996.

