ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

THE NETWORK-ENABLED OPTIMIZATION SYSTEM (NEOS)
SERVER

Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Moré

Mathematics and Computer Science Division
Preprint MCS-P615-1096

October 1996

Revised Version (March 1997)

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Computational and Technology Research, U.S. Depart-
ment of Energy, under Contract W-31-109-Eng-38, by a grant of Northwestern University
to the Optimization Technology Center, and by the National Science Foundation, through
the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-
9120008.

THE NETWORK-ENABLED OPTIMIZATION SYSTEM (NEOS)
SERVER"~

Joseph Czyzyk, Michael P. Mesnier, Jorge J. Moré

Abstract

The Network-Enabled Optimization System (NEOS) is an environment for solving
optimization problems over the Internet. Users submit optimization problems to the
NEOS Server via e-mail, the World Wide Web, or the NEOS Submission Tool. The
NEQOS Server locates the appropriate optimization solver, computes all additional in-
formation (for example, derivatives and sparsity patterns) required by the solver, links
the optimization problem with the solver, and returns a solution. This article discusses
the design and implementation of the NEOS Server.

1 Introduction

The Network-Enabled Optimization System (NEOS) is an Internet-based service for opti-
mization. The goal of NEOS is to be the definitive site for optimization information and
technology, providing users not only with up-to-date literature on optimization but ready
access to a growing library of optimization software. The main components of NEOS are
the NEOS Guide and the NEOS Server. The NEOS Guide is a Web-based guide to op-
timization theory and practice, while the NEOS Server is an Internet-based client/server
application that provides access to a library of optimization software. This article focuses
on the NEOS Server.

The NEOS Server introduces a novel approach to the solution of optimization problems.
In the conventional approach the user must first identify and obtain the appropriate piece
of optimization software; write code to define the problem in the manner required; and then
compile, link, and run the software. Typically, Fortran or C code must be written to define
the problem, compute function values and derivatives, and specify sparsity patterns. With
NEOS, users are able to solve optimization problems over the Internet by providing only
the minimal input required to specify the problem.

The NEOS Server handles linear and nonlinear optimization problems, ranging from
linear programming to nonlinearly constrained optimization; we are in the process of adding

solvers to handle optimization problems subject to integer variables. We illustrate the

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, 1. 60439-4844.
This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38, by a grant of Northwestern University to the Optimization Technology Center, and by the
National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative
Agreement No. CCR-9120008.

advantages of the NEOS way of solving optimization problems with the general nonlinearly

constrained optimization problem
min{f(z) 1 2; < < ay, g <c(z) <eyt. (1.1)

This formulation requires that we determine variables z € R” that minimize the function
f:R" = R subject to the bounds z; < # < z, and the nonlinear constraints ¢; < ¢(z) < ¢,
specified by a mapping ¢ : R" — R™.

The conventional approach to the solution of (1.1) requires that the user provide addi-
tional information besides the function f, constraint function ¢, the bounds z;, z, on the
variables, and bounds ¢;, ¢, on the constraints. In particular, the user is often asked to
provide a subroutine to evaluate the gradient V f(z) of f and the Jacobian matrix ¢/(z) of
¢ for any trial x generated by the optimization software. In addition, for sparse problems,
the user may also be required to supply the sparsity patterns of the Hessian matrix V2 f(x)
and the Jacobian matrix ¢/(z).

The conventional user of optimization software must also select and retrieve the appro-
priate optimization software and link this software with the code to evaluate the function
and constraints. In general, the solution process for the nonlinearly constrained problem

(1.1) requires the following steps:

Decide on the appropriate optimization solver for the application.

Retrieve the optimization solver.

Develop code to evaluate the functions f and ¢, and the bounds z;, z, and ¢, c,.
Develop code for the gradient, Hessians, and sparsity patterns.

Develop code to link the optimization solver with the application.

Debug, compile, and execute.

Interpret the results.

The NEOS Server provides a novel alternative to this process. For the constrained
optimization problem (1.1), the user submits the problem dimensions m and n, subroutines
to evaluate the function f and ¢, the bounds z;, z,, ¢;, ¢, and the starting point. The NEOS
Server locates the appropriate solver; computes the gradient of f; the Jacobian matrix of
c; the sparsity patterns of the Hessian of f and of the Jacobian matrix of ¢; and links with
the solver. The user is given a solution vector, along with run-time statistics. Most of the
computation is done in the background, hidden from the user.

Derivatives (gradients, Jacobian and Hessian matrices) of nonlinear problems and the
sparsity patterns are determined by ADIFOR/SparsLinc [3] for Fortran codes and by
ADOL-C [9] for C codes. Execution of the codes takes place on workstations provided
by the software administrators. A variety of machines, even a massively parallel proces-

sor, could be used to solve the problem; the only restriction is that the workstation must

run UNIX with support for TCP/IP. At present these workstations reside at Argonne Na-
tional Laboratory, Northwestern University, and the University of Wisconsin. The NEOS
solver [8] for complementarity problems at Wisconsin is of special interest since, in addi-
tion to the scheduling facilities already provided by the Server, the Condor [10] scheduling
system provides site-specific scheduling on clusters of workstations.

We have concentrated on the nonlinearly constrained optimization problem (1.1), but
the NEOS Server is able to solve a wide range of optimization problems. At present NEOS

supports solvers in the following areas:

Unconstrained optimization

Bound constrained optimization
Nonlinearly constrained optimization
Complementarity problems

Linear network optimization

Linear programming

Stochastic linear programming

Users with optimization problems in these areas are able to use the latest version of state-
of-the art optimization software. Developers of optimization software, on the other hand,
are provided with a potentially large user base and immediate feedback on their software.

Since the NEOS Server simplifies the solution process, users are able to focus their
attention on solving the optimization problem, rather than on the details of the optimization
software. In particular, users are able to solve the problem with several algorithms or
with different formulations of the problem. For example, a user with an unconstrained

optimization problem

min {f(z) : 2 € R"}

can solve this problem with any of the solvers in the unconstrained optimization area, or

may add bounds to the problem and solve the problem as the bound-constrained problem
min{f(z) ra; <z < a,}.

The only change needed is to write a subroutine to compute the bounds z; and z,.

As another example, users with a linear programming problem can model the problem
as a stochastic linear programming problem by providing additional parameters that specify
the randomness of a given model. Even though solving a stochastic linear program can be
considerably different from a standard linear program, the user is shielded from these details
by the NEOS Server.

The NEOS Server grew out of an early, e-mail-based system for the submission of linear

algebra problems. The beta version of the Server was released in May 1995; the Server was

made available for general use in September 1995. Projects with similar aims to NEOS are
in the planning stages. The NetSolve [5] and RCS [1] projects, for example, are intended
to allow users to build an application by calling libraries with remote procedure calls. The
current interfaces of NetSolve and RCS deal only with linear algebra problems. Moreover,
neither NetSolve nor RCS is currently available for general use.

We are planning to extend NEOS by allowing remote procedure calls. This extension
would enable users to call NEOS directly from their Fortran and C programs. Extensions
of NEOS to other related areas are also being considered.

This article concentrates on two important aspects of the design and implementation
of the Server: user interfaces and software registration. The usefulness of the Server is
dictated, to a large extent, by the interfaces used to submit optimization problems. Con-
sequently, submission of optimization problems must be intuitive and simple. These issues
are discussed in Section 3. The Server should also be able to grow and add optimization
solvers. Since the optimization solvers can be provided by a wide range of optimization
experts, the registration of a new solver with the Server must be automatic and simple,
with little intervention by the Server administrators. The software registration process is
discussed in Section 4. We conclude the article with a brief introduction to the solvers
available in the NEOS Software Library.

2 Design of the NEOS Server

The basic goal of the Server is to provide Internet access to a growing library of optimization
software—the NEOS Software Library—with user interfaces that abstract the user from the
optimization software. The user needs only to provide a definition of the problem with the
required data.

Figure 2.1 shows how the NEOS Server interacts with Internet users. In the typical
situation, a user submits a problem to the NEOS Server via one of the three interfaces. The
Server then locates the appropriate solver in the library and performs a file transfer with all
the user’s data. The software administrator for the solver has written code that checks the
input for consistency, generates any additional information that may be necessary, executes
the optimization solver, and generates the appropriate results. NEOS then returns the
solution to the user.

Providing Internet access to a growing library of optimization solvers requires a design

with a range of capabilities:

The Server requires only a minimal specification of the optimization problem: Server
interfaces either piggy-back on existing media (e-mail and the World Wide Web) or
can be easily downloaded and installed on the client machine (the NEOS Submission
Tool).

NEOS Software

() /\ . !\ Library:
\l E-mail / / Optimization
Internet |/ \| NEOS ;Olvers .
Users World Wide Web —_— = =
> < Srver | /00 OO
\1 Submission Tool / DA]

Figure 2.1: NEOS Server: Interaction with Internet Users

The Server provides a uniform, automated method for software registration. The
Server manages the library of optimization solvers that have been registered with the

NEOS Server.

The Server is fault-tolerant. In particular, the Server automatically restarts itself
and re-establishes connections to client machines. In addition, the solvers for the
optimization software packages have been written to anticipate a variety of errors and

to provide useful feedback to users.

The Server maintains a logging system of all NEOS transactions. NEOS administra-

tors have a searchable client database.

In the remainder of the article we elaborate on these capabilities. We concentrate, in

particular, on the user interfaces and the registration process used by the NEOS Server.

3 The User Interfaces

The NEOS Server gives Internet users the choice of three interfaces: e-mail, the World Wide
Web, and the NEOS Submission Tool. In all cases, a user with an optimization problem
selects the appropriate solver from the list of available solvers, composes the job submission,
and submits the problem to NEOS. The user interfaces are designed so that this process
is intuitive and requires the minimal amount of information. Once received by NEOS, job
submissions are parsed to determine the problem type and then scheduled on an appropriate
workstation. The results are returned to the user through the same interface that was used

to submit the problem.

3.1 E-Mail

The e-mail interface is the most primitive form of job submission and is used primarily by
users who do not have direct Internet access or do not operate in a windowing environment
such as X Windows or Windows 95. General information about the Server can be obtained
by mailing the message help to neos@mcs.anl.gov. The user receives the general help file
with a short description of the Server and a list of the solvers available in the NEOS Software
Library. The user can obtain additional information on a specific solver by sending NEOS

the message

type <problem type identifier>
solver <solver identifier>
help

where <problem type identifier> is replaced by the identifying token for the type of op-
timization problem and <solver identifier> is replaced by the token for the optimization
solver; a complete list of NEOS token identifiers is returned with the general help file.
The help file for each solver includes information on how to specify the optimization
problem, a template for submitting problems, and sample job submissions. Users of the
e-mail interface must place the specification of the optimization problem in a file, delimiting
this data with a set of predefined tokens. A discussion of these tokens is included with the

information on the selected software. For example, the template

type UCO
solver NMTR

n = <number of variables>

begin.initpt
<fortran code>
end.initpt

begin.fcn
<fortran code>
end.fcn

can be used to submit unconstrained optimization problems to NEOS. The first line tells
NEOS the type of optimization problem that is being submitted. In this case, the type
is UCO (UnConstrained Optimization). The second line specifies that the user wants to
use the NMTR solver. The number of variables is specified by setting n to the appropriate
value. The initial point subroutine is placed between the begin.initpt and end.initpt
tokens, while the function evaluation subroutine must appear between the begin.fcn and

end.fcn tokens.

subroutine fcn(n,x,f)
integer n

double precision f
double precision x(n)

integer nx, ny
double precision lambda
lambda = 0.008

nx = 10

ny = 10

call dodc(nx,ny,x,f,lambda)
end

subroutine dodc(nx,ny,x,f,lambda)

Figure 3.1: Example of Fortran subroutine for the NEOS Server

The submission format requires that the user’s function be in the format required
by NEOS. For example, NEOS requires that the calling sequence of the function sub-
routine be of the form fcn(n,x,f). Users with a different calling sequence can write a
wrapper routine. For example, if the user is using a function with a calling sequence of
dodc(nx,ny,x,f,lambda), where nx*ny are the number of variables, and lambda is a pa-
rameter, then the routine shown in Figure 3.1 is suitable. Clearly, similar routines can be
written for a wide variety of optimization problems.

The main disadvantage of the e-mail interface is that the user needs to provide the spec-
ification of the optimization problem with the required tokens. This can lead to unexpected
errors. For example, many mailers attach signatures to each mail message. The use of the
NEOS token END-NEOS-INPUT prevents NEOS from reading further in the message.

3.2 World Wide Web

Submission via the World Wide Web makes job submission easy for users with access to
Netscape or a similar browser. The NEOS Web interface begins with the URL

http://www.mcs.anl.gov/home/otc/Server/

for the NEOS Server. This homepage describes the NEOS Server and lists the available
solvers within the Software Library. By following the appropriate links, the user can obtain
additional information on a solver and submit a problem to the Server.

Unlike e-mail users, Web users need not be concerned with tokens and data delimitation.

Instead, Web users specify the optimization problem via radio/check buttons, text entries,

and URL addresses.

An important advantage of the Web interface is that the user gets immediate feedback
on the job submission. Error messages are returned so that the user is able to make
corrections and resubmit the job. The main disadvantage of the Web interface is that the
job submission must be placed in Web-accessible files. For example, instead of placing the
function evaluation subroutine in an e-mail message with the appropriate tokens, the user
must place the function evaluation subroutine in a Web-accessible file. An anonymous ftp
site is an example of a Web-accessible file.

The main advantage of the Web interface is that additional information on the solver or
on the optimization theory behind the solvers can be readily provided. In particular, each

solver has a link that points to the appropriate entry in the NEOS Guide.

3.3 Submission Tool

The NEOS Submission Tool is designed for users with a direct Internet connection. This
is the fastest of the three interfaces because communication is done with TCP/IP sockets.
Like the Web interface, the Submission Tool provides appropriate entries for the users’ data.
Unlike the Web interface, the Submission Tool allows the uploading of files from the user’s
local file space to the NEOS Server.

The NEOS Submission Tool is a TCl/Tk [11] application. Users can obtain more infor-

mation and download the submission tool from the URL
http://www.mcs.anl.gov/home/otc/Server/neos/subtool . html

Although the Submission Tool is written with TCl/Tk, users need only have Perl [12]
installed.

Figure 3.2 shows the NEOS Submission Tool form for the NMTR solver for uncon-
strained optimization. The user needs to specify only the language used in the job sub-
mission, the number of variables, and the files for the initial point and function evaluation
subroutines. Browse buttons are available to ease the specification of the various files.

As with the e-mail and Web interfaces, the Submission Tool comes with a description

of the Software Library and sample submissions.

4 Software Registration

The NEOS Server is able to expand through software registration, a simple, automated
process that allows additional optimization solvers to be registered with NEOS. Registered
software administrators must provide the software and the hardware; all client/server ser-

vices are provided by NEOS. The following information is required for registration:

The type of optimization problem (for example, nonlinearly constrained optimization)
The name of the solver (for example, LANCELOT)

Relative Error

Minimum Function Value

Eile Help
4 C

Language
~ Fortran

Number of Variables |

Initial Point Subroutine | browse >>
4 Function Only

Function Type
~ Function and Gradient

Function Subroutine | browse »=»

fbsolute Error [1.0d-10

J1.0d-10

|-1.0d30

Comments

|

submit | close |

Figure 3.2: The NEOS Submission Tool

The e-mail address of the software administrator(s) and a password
Addresses for registered workstations

A configuration file

Help files

The type of the optimization problem and the name of the solver are the identifiers that are
also used during e-mail submission. For example, registration of NMTR for unconstrained
minimization was done by setting the type to UCO and setting the name of the solver to NMTR.
Similarly, registration of LANCELOT would be done by setting type to NCO (nonlinearly
constrained optimization) and setting the name of the solver to LANCELOT.

The list of workstations must contain addresses for any UNIX machine that supports
TCP/IP sockets and that can execute the solver.

The configuration file and the help files are used to generate the e-mail, Web, and
Submission Tool interfaces. This process is entirely automated, and interfaces are generated
to be consistent with other solvers in the Server.

After registration, the software administrator must download and install the NEOS
Communications Package. This package contains a client/server application, local_server,
that allows a client (the NEOS Server) to connect and request that a job be executed.
Figure 4.1 shows the information required by the NEOS Communications Package.

The software identifier and password were provided by the software administration dur-
ing the registration process. The only new piece of information required by the NEOS

Communications Package is the path of the solve script.

[¢] MEOS local-server Setup

Software Type P

o =
Solver Title [P

o =
Password |

5 Y =
Software Driver [/PCrisalve

5 Y =
Contact Person {e-mail) |czyzyk@mcs.anl.gw

= Y =
I _| Notify _| Debug _| Save
| . Test HEOS 4 NEOS

o

Figure 4.1: NEOS Communication Package

The local_server executes as a daemon process on the registered workstations. Once
started, the local _server binds to the first available port on the list of registered worksta-
tions and waits for connections from NEOS. When an optimization problem is received by
the NEOS Server, the Server contacts the first available workstation. Upon connection, the
local_server downloads the user’s data, launches the optimization solver, and returns the
results generated by the solver. During this entire process the connection between the user
and the remote software package is maintained—with NEOS as the liaison. This allows
software packages to communicate with the user.

Facilities exist for automatically restarting local server in the event that the host
machine is rebooted or local server is killed.

We illustrate the solution process with a nonlinearly constrained optimization problem
submitted to the LANCELOT solver. The LANCELOT solver is located somewhere on the
Internet, but only the Server is concerned with the actual location. Figure 4.2 shows the

sequence of events during the solution process.

The user submits a nonlinearly constrained optimization problem with the NEOS

Submission Tool. In this case the supplied code is in Fortran.
The NEOS Server contacts the first available workstation.

The local_server performs a file transfer from the NEOS Server. The transfer

includes all of the user’s data.

The local_server launches the solver for the problem type. The solver checks the

data, compiles the user’s subroutines, generates gradients and Jacobian matrices with

10

5)

File

Contacting remote workstation... j;

Performing file transfer..
Launching driver:
LAENCELOT driver {(neos)
Copying LANCELCT data
Compiling initpt
Compiling zbound
Compiling chound
Compiling fcon
Compiling cfen
BEunning security check
Generating g_fon and g_ofen with ADIFOR
Compiling ADIFORE generated g fcon
Compiling BADIFOR gensrated g_cofon
Linking wvour code to software library
Exzecuting algoerithm. ..
Composing results
Returning results..

Bl

—

Figure 4.2: Output from the NEOS Submission Tool

ADIFOR, links with the appropriate libraries, executes the optimization software, and

generates a solution.

The local _server returns the job results to the NEOS Server.

A similar process occurs for every NEOS job, that is, data is transferred from the user, to
the NEOS Server, and then to a remote workstation for execution. The connection between
the user and the software package is maintained during this process, thus allowing for a
real-time report of the software’s progress. Both the Submission Tool and Web interfaces

support this status capability; e-mail users receive only the end result.

5 The NEOS Software Library

The Software Library is the set of optimization solvers that have been registered with the
NEOS Server. Participating hosts have chosen to make their software available to the
Internet via NEOS. Not only is the user relieved of downloading, compiling, and installing
the software, but the individual software administrators are relieved of software distribution.

The NEOS Software Library is distributed. In other words, the actual code for each
optimization solver may reside anywhere on the Internet. Communication between the
NEOS Server and the remote workstations where the software is located is handled by the
NEOS Communications Package—an Internet client/server application providing socket
communications between the NEOS Server and the remote software.

The NEOS Server has solvers in seven different areas of optimization. Solvers in other

areas (for example, systems of nonlinear equations and nonlinear least squares) will be

11

added in the near future. Our current offering consists of the following;:

Unconstrained optimization: NMTR

Bound constrained optimization: L-BFGS-B, LANCELOT
Nonlinearly constrained optimization: LANCELOT
Complementarity problems: PATH

Linear network optimization: NETFLO, RELAX4

Linear programming: AUGMENTED, PCx

Stochastic linear programming: AUGMENTED, MSLIP

We do not describe all the optimization solvers currently in the Software Library since
they are listed in the NEOS Web interface, and have pointers to the relevant literature.

Additional information on optimization can be obtained from the URL
http://www.mcs.anl.gov/home/otc/Guide/

for the NEOS Guide. The main issue that needs to be addressed is the input format for
the specification of the problem.

The nonlinear solvers accept Fortran input, but most of the solvers also accept C input.
For example, the L-BFGS-B solver [13] for bound constrained optimization problems accepts
input in terms of either Fortran or C code. On the other hand, the LANCELOT [6] solver
for general constrained optimization problems accepts the problem specification in terms of
Fortran subroutines or in the SIF format.

For nonlinear solvers capable of solving large-scale problems, we require that the solver

accept functions in partially separable form, that is, functions of the form

where each element function f; depends on only a few components of , and m is the number
of element functions. Both L-BFGS-B and LANCELOT follow this requirement, which
allows [4] the efficient generation of gradients with automatic differentiation techniques.

The range of formats used to specify problems for linear solvers is strongly dependent
on the area. Instead of Fortran or C codes, these solvers accept the input as a data file.
The linear programming solvers (for example, PCx [7]) accept the problem specification
in the MPS format, although other formats are clearly possible. Solving stochastic linear
programming problems with the NIEOS Server is straightforward because solvers in this
area accept the input in a format based on the MPS standard and designed to promote the
efficient conversion of originally deterministic problems.

Solvers in other areas of the NEOS Server use formats that have been adopted in these ar-
eas. Thus, solvers for (linear) minimum-cost network flow problems (for example, RELAX-
IV [2]) accept input in the DIMACS format.

12

Acknowledgments

The design of the NEOS Server was developed in consultation with members of the Optimi-

zation Technology Center, in particular, Jorge Nocedal, Steve Wright, Richard Marynowski,

Jon Owen, Emmett Tomai, and Andrew Crane. Other contributors include Bill Gropp, for

the original design of the e-mail based component of the Server, and the developers of ADI-
FOR and ADOL-C. We would also like to thank those who have provided valuable feedback
during the development and testing of our software registration system, in particular, Ali
Bouaricha, Michael Ferris, Zhijun Wu, and Ciyou Zhu.

References

[1]

P. ARBENZ, W. GANDER, AND M. OETTL, The remote computation system, in High-
Performance Computing and Networking, H. Liddell, A. Colbrook, B. Hertzberger, and
P. Sloot, eds., no. 1067 in Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1996, pp. 820-825.

D. BERTSEKAS AND P. TsenaG, RELAX-IV: A faster version of the RELAX code
Jor solving minimum cost flow problems, Technical Report, Massachusetts Institute of

Technology, Cambridge, Massachusetts, 1994. Also available by ftp from lids.mit.edu
in /pub/bertsekas/RELAX/RELAX4.PS.

C. Biscuor, A. CARLE, P. KHADEMI, AND A. MAUER, The ADIFOR 2.0 system for
the automatic differentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-
gonne National Laboratory, Argonne, Illinois, 1994. Also available as CRPC-TR94491,

Center for Research on Parallel Computation, Rice University.

A. BouaRIcHA AND J. J. MoRE, Impact of partial separability on large-scale opti-
mization, Preprint MCS-P487-0195, Argonne National Laboratory, Argonne, Illinois,
1995. Accepted for publication in Computational Optimization and Applications.

H. CasaNnovAa AND J. DONGARRA, NetSolve: A network server for solving com-
putational science problems, Technical Report CS-95-313, University of Tennessee,

Knoxville, Tennessee, 1995.

A. R. Conn, N. I. M. GouLp, aND P. L. ToinT, LANCELQOT, Springer Series in
Computational Mathematics, Springer-Verlag, 1992.

J. Czvzyk, S. MEHROTRA, AND S. J. WRIGHT, PCz user guide, Technical Mem-
orandum ANL/MCS-TM-217, Argonne National Laboratory, Argonne, Illinois, 1996.
Also available as ftp://ftp.mcs.anl.gov/pub/neos/PCx/PCx-user.ps.

13

[8]

[9]

[10]

M. C. FERRIS, M. P. MESNIER, AND J. J. MORE, The NEOS Server for complemen-
tarity problems: PATH, Technical Report 96-08, University of Wisconsin, Madison,
Wisconsin, 1996. Also available as MCS-P616-1096, Mathematics and Computer Sci-

ence Division, Argonne National Laboratory.

A. GRIEWANK, D. JUEDES, AND J. UTKE, ADOL-C: A package for the automatic dif-
ferentiation of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996),
pp- 131-167.

M. J. Lirzgow, M. LivNY, AND M. W. MuTKA, Condor - A hunter of idle work-
stations, in Proceedings of the 8th International Conference on Distributed Comput-
ing Systems, Washington, District of Columbia, 1988, IEEE Computer Society Press,
pp. 108-111.

J. K. OusTeERHOUT, Tel and the Tk Toolkit, Addison-Wesley, 1994.

L. WarrL, T. CHRISTIANSEN, AND R. L. SCHWARTZ, Programming Perl, O'Reilly &

Associates, Inc., second ed., 1996.

C. Zuu, R. H. Byrp, P. LU, AND J. NOCEDAL, L-BFGS-B: Fortran subroutines for
large-scale bound constrained optimization, Technical Report, Northwestern University,
1994.

14

