
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
THE NETWORK-ENABLED OPTIMIZATION SYSTEM (NEOS)SERVERJoseph Czyzyk, Michael P. Mesnier, and Jorge J. Mor�eMathematics and Computer Science DivisionPreprint MCS-P615-1096October 1996Revised Version (March 1997)

This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38, by a grant of Northwestern Universityto the Optimization Technology Center, and by the National Science Foundation, throughthe Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.

THE NETWORK-ENABLED OPTIMIZATION SYSTEM (NEOS)SERVER�Joseph Czyzyk, Michael P. Mesnier, Jorge J. Mor�eAbstractThe Network-Enabled Optimization System (NEOS) is an environment for solvingoptimization problems over the Internet. Users submit optimization problems to theNEOS Server via e-mail, the World Wide Web, or the NEOS Submission Tool. TheNEOS Server locates the appropriate optimization solver, computes all additional in-formation (for example, derivatives and sparsity patterns) required by the solver, linksthe optimization problem with the solver, and returns a solution. This article discussesthe design and implementation of the NEOS Server.1 IntroductionThe Network-Enabled Optimization System (NEOS) is an Internet-based service for opti-mization. The goal of NEOS is to be the de�nitive site for optimization information andtechnology, providing users not only with up-to-date literature on optimization but readyaccess to a growing library of optimization software. The main components of NEOS arethe NEOS Guide and the NEOS Server. The NEOS Guide is a Web-based guide to op-timization theory and practice, while the NEOS Server is an Internet-based client/serverapplication that provides access to a library of optimization software. This article focuseson the NEOS Server.The NEOS Server introduces a novel approach to the solution of optimization problems.In the conventional approach the user must �rst identify and obtain the appropriate pieceof optimization software; write code to de�ne the problem in the manner required; and thencompile, link, and run the software. Typically, Fortran or C code must be written to de�nethe problem, compute function values and derivatives, and specify sparsity patterns. WithNEOS, users are able to solve optimization problems over the Internet by providing onlythe minimal input required to specify the problem.The NEOS Server handles linear and nonlinear optimization problems, ranging fromlinear programming to nonlinearly constrained optimization; we are in the process of addingsolvers to handle optimization problems subject to integer variables. We illustrate the�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844.This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-gram of the O�ce of Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38, by a grant of Northwestern University to the Optimization Technology Center, and by theNational Science Foundation, through the Center for Research on Parallel Computation, under CooperativeAgreement No. CCR-9120008. 1

advantages of the NEOS way of solving optimization problems with the general nonlinearlyconstrained optimization problemmin ff(x) : xl � x � xu; cl � c(x) � cug : (1.1)This formulation requires that we determine variables x 2 IRn that minimize the functionf : IRn 7! IR subject to the bounds xl � x � xu and the nonlinear constraints cl � c(x) � cuspeci�ed by a mapping c : IRn 7! IRm.The conventional approach to the solution of (1.1) requires that the user provide addi-tional information besides the function f , constraint function c, the bounds xl; xu on thevariables, and bounds cl; cu on the constraints. In particular, the user is often asked toprovide a subroutine to evaluate the gradient rf(x) of f and the Jacobian matrix c0(x) ofc for any trial x generated by the optimization software. In addition, for sparse problems,the user may also be required to supply the sparsity patterns of the Hessian matrix r2f(x)and the Jacobian matrix c0(x).The conventional user of optimization software must also select and retrieve the appro-priate optimization software and link this software with the code to evaluate the functionand constraints. In general, the solution process for the nonlinearly constrained problem(1.1) requires the following steps:Decide on the appropriate optimization solver for the application.Retrieve the optimization solver.Develop code to evaluate the functions f and c, and the bounds xl; xu and cl; cu.Develop code for the gradient, Hessians, and sparsity patterns.Develop code to link the optimization solver with the application.Debug, compile, and execute.Interpret the results.The NEOS Server provides a novel alternative to this process. For the constrainedoptimization problem (1.1), the user submits the problem dimensions m and n, subroutinesto evaluate the function f and c, the bounds xl; xu; cl; cu, and the starting point. The NEOSServer locates the appropriate solver; computes the gradient of f ; the Jacobian matrix ofc; the sparsity patterns of the Hessian of f and of the Jacobian matrix of c; and links withthe solver. The user is given a solution vector, along with run-time statistics. Most of thecomputation is done in the background, hidden from the user.Derivatives (gradients, Jacobian and Hessian matrices) of nonlinear problems and thesparsity patterns are determined by ADIFOR/SparsLinc [3] for Fortran codes and byADOL-C [9] for C codes. Execution of the codes takes place on workstations providedby the software administrators. A variety of machines, even a massively parallel proces-sor, could be used to solve the problem; the only restriction is that the workstation must2

run UNIX with support for TCP/IP. At present these workstations reside at Argonne Na-tional Laboratory, Northwestern University, and the University of Wisconsin. The NEOSsolver [8] for complementarity problems at Wisconsin is of special interest since, in addi-tion to the scheduling facilities already provided by the Server, the Condor [10] schedulingsystem provides site-speci�c scheduling on clusters of workstations.We have concentrated on the nonlinearly constrained optimization problem (1.1), butthe NEOS Server is able to solve a wide range of optimization problems. At present NEOSsupports solvers in the following areas:Unconstrained optimizationBound constrained optimizationNonlinearly constrained optimizationComplementarity problemsLinear network optimizationLinear programmingStochastic linear programmingUsers with optimization problems in these areas are able to use the latest version of state-of-the art optimization software. Developers of optimization software, on the other hand,are provided with a potentially large user base and immediate feedback on their software.Since the NEOS Server simpli�es the solution process, users are able to focus theirattention on solving the optimization problem, rather than on the details of the optimizationsoftware. In particular, users are able to solve the problem with several algorithms orwith di�erent formulations of the problem. For example, a user with an unconstrainedoptimization problem min ff(x) : x 2 IRngcan solve this problem with any of the solvers in the unconstrained optimization area, ormay add bounds to the problem and solve the problem as the bound-constrained problemmin ff(x) : xl � x � xug :The only change needed is to write a subroutine to compute the bounds xl and xu.As another example, users with a linear programming problem can model the problemas a stochastic linear programming problem by providing additional parameters that specifythe randomness of a given model. Even though solving a stochastic linear program can beconsiderably di�erent from a standard linear program, the user is shielded from these detailsby the NEOS Server.The NEOS Server grew out of an early, e-mail-based system for the submission of linearalgebra problems. The beta version of the Server was released in May 1995; the Server was3

made available for general use in September 1995. Projects with similar aims to NEOS arein the planning stages. The NetSolve [5] and RCS [1] projects, for example, are intendedto allow users to build an application by calling libraries with remote procedure calls. Thecurrent interfaces of NetSolve and RCS deal only with linear algebra problems. Moreover,neither NetSolve nor RCS is currently available for general use.We are planning to extend NEOS by allowing remote procedure calls. This extensionwould enable users to call NEOS directly from their Fortran and C programs. Extensionsof NEOS to other related areas are also being considered.This article concentrates on two important aspects of the design and implementationof the Server: user interfaces and software registration. The usefulness of the Server isdictated, to a large extent, by the interfaces used to submit optimization problems. Con-sequently, submission of optimization problems must be intuitive and simple. These issuesare discussed in Section 3. The Server should also be able to grow and add optimizationsolvers. Since the optimization solvers can be provided by a wide range of optimizationexperts, the registration of a new solver with the Server must be automatic and simple,with little intervention by the Server administrators. The software registration process isdiscussed in Section 4. We conclude the article with a brief introduction to the solversavailable in the NEOS Software Library.2 Design of the NEOS ServerThe basic goal of the Server is to provide Internet access to a growing library of optimizationsoftware|the NEOS Software Library|with user interfaces that abstract the user from theoptimization software. The user needs only to provide a de�nition of the problem with therequired data.Figure 2.1 shows how the NEOS Server interacts with Internet users. In the typicalsituation, a user submits a problem to the NEOS Server via one of the three interfaces. TheServer then locates the appropriate solver in the library and performs a �le transfer with allthe user's data. The software administrator for the solver has written code that checks theinput for consistency, generates any additional information that may be necessary, executesthe optimization solver, and generates the appropriate results. NEOS then returns thesolution to the user.Providing Internet access to a growing library of optimization solvers requires a designwith a range of capabilities:The Server requires only a minimal speci�cation of the optimization problem: Serverinterfaces either piggy-back on existing media (e-mail and the World Wide Web) orcan be easily downloaded and installed on the client machine (the NEOS SubmissionTool). 4

E-mail

World Wide Web

Submission Tool

NEOS

Server

Internet
Users

NEOS Software
Library:

Optimization
Solvers

Figure 2.1: NEOS Server: Interaction with Internet UsersThe Server provides a uniform, automated method for software registration. TheServer manages the library of optimization solvers that have been registered with theNEOS Server.The Server is fault-tolerant. In particular, the Server automatically restarts itselfand re-establishes connections to client machines. In addition, the solvers for theoptimization software packages have been written to anticipate a variety of errors andto provide useful feedback to users.The Server maintains a logging system of all NEOS transactions. NEOS administra-tors have a searchable client database.In the remainder of the article we elaborate on these capabilities. We concentrate, inparticular, on the user interfaces and the registration process used by the NEOS Server.3 The User InterfacesThe NEOS Server gives Internet users the choice of three interfaces: e-mail, the World WideWeb, and the NEOS Submission Tool. In all cases, a user with an optimization problemselects the appropriate solver from the list of available solvers, composes the job submission,and submits the problem to NEOS. The user interfaces are designed so that this processis intuitive and requires the minimal amount of information. Once received by NEOS, jobsubmissions are parsed to determine the problem type and then scheduled on an appropriateworkstation. The results are returned to the user through the same interface that was usedto submit the problem. 5

3.1 E-MailThe e-mail interface is the most primitive form of job submission and is used primarily byusers who do not have direct Internet access or do not operate in a windowing environmentsuch as X Windows or Windows 95. General information about the Server can be obtainedby mailing the message help to neos@mcs.anl.gov. The user receives the general help �lewith a short description of the Server and a list of the solvers available in the NEOS SoftwareLibrary. The user can obtain additional information on a speci�c solver by sending NEOSthe messagetype <problem type identifier>solver <solver identifier>helpwhere <problem type identifier> is replaced by the identifying token for the type of op-timization problem and <solver identifier> is replaced by the token for the optimizationsolver; a complete list of NEOS token identi�ers is returned with the general help �le.The help �le for each solver includes information on how to specify the optimizationproblem, a template for submitting problems, and sample job submissions. Users of thee-mail interface must place the speci�cation of the optimization problem in a �le, delimitingthis data with a set of prede�ned tokens. A discussion of these tokens is included with theinformation on the selected software. For example, the templatetype UCOsolver NMTRn = <number of variables>begin.initpt<fortran code>end.initptbegin.fcn<fortran code>end.fcncan be used to submit unconstrained optimization problems to NEOS. The �rst line tellsNEOS the type of optimization problem that is being submitted. In this case, the typeis UCO (UnConstrained Optimization). The second line speci�es that the user wants touse the NMTR solver. The number of variables is speci�ed by setting n to the appropriatevalue. The initial point subroutine is placed between the begin.initpt and end.initpttokens, while the function evaluation subroutine must appear between the begin.fcn andend.fcn tokens. 6

subroutine fcn(n,x,f)integer ndouble precision fdouble precision x(n)integer nx, nydouble precision lambdalambda = 0.008nx = 10ny = 10call dodc(nx,ny,x,f,lambda)endsubroutine dodc(nx,ny,x,f,lambda).....end Figure 3.1: Example of Fortran subroutine for the NEOS ServerThe submission format requires that the user's function be in the format requiredby NEOS. For example, NEOS requires that the calling sequence of the function sub-routine be of the form fcn(n,x,f). Users with a di�erent calling sequence can write awrapper routine. For example, if the user is using a function with a calling sequence ofdodc(nx,ny,x,f,lambda), where nx*ny are the number of variables, and lambda is a pa-rameter, then the routine shown in Figure 3.1 is suitable. Clearly, similar routines can bewritten for a wide variety of optimization problems.The main disadvantage of the e-mail interface is that the user needs to provide the spec-i�cation of the optimization problem with the required tokens. This can lead to unexpectederrors. For example, many mailers attach signatures to each mail message. The use of theNEOS token END-NEOS-INPUT prevents NEOS from reading further in the message.3.2 World Wide WebSubmission via the World Wide Web makes job submission easy for users with access toNetscape or a similar browser. The NEOS Web interface begins with the URLhttp://www.mcs.anl.gov/home/otc/Server/for the NEOS Server. This homepage describes the NEOS Server and lists the availablesolvers within the Software Library. By following the appropriate links, the user can obtainadditional information on a solver and submit a problem to the Server.Unlike e-mail users, Web users need not be concerned with tokens and data delimitation.Instead, Web users specify the optimization problem via radio/check buttons, text entries,and URL addresses. 7

An important advantage of the Web interface is that the user gets immediate feedbackon the job submission. Error messages are returned so that the user is able to makecorrections and resubmit the job. The main disadvantage of the Web interface is that thejob submission must be placed in Web-accessible �les. For example, instead of placing thefunction evaluation subroutine in an e-mail message with the appropriate tokens, the usermust place the function evaluation subroutine in a Web-accessible �le. An anonymous ftpsite is an example of a Web-accessible �le.The main advantage of the Web interface is that additional information on the solver oron the optimization theory behind the solvers can be readily provided. In particular, eachsolver has a link that points to the appropriate entry in the NEOS Guide.3.3 Submission ToolThe NEOS Submission Tool is designed for users with a direct Internet connection. Thisis the fastest of the three interfaces because communication is done with TCP/IP sockets.Like the Web interface, the Submission Tool provides appropriate entries for the users' data.Unlike the Web interface, the Submission Tool allows the uploading of �les from the user'slocal �le space to the NEOS Server.The NEOS Submission Tool is a TCl/Tk [11] application. Users can obtain more infor-mation and download the submission tool from the URLhttp://www.mcs.anl.gov/home/otc/Server/neos/subtool.htmlAlthough the Submission Tool is written with TCl/Tk, users need only have Perl [12]installed.Figure 3.2 shows the NEOS Submission Tool form for the NMTR solver for uncon-strained optimization. The user needs to specify only the language used in the job sub-mission, the number of variables, and the �les for the initial point and function evaluationsubroutines. Browse buttons are available to ease the speci�cation of the various �les.As with the e-mail and Web interfaces, the Submission Tool comes with a descriptionof the Software Library and sample submissions.4 Software RegistrationThe NEOS Server is able to expand through software registration, a simple, automatedprocess that allows additional optimization solvers to be registered with NEOS. Registeredsoftware administrators must provide the software and the hardware; all client/server ser-vices are provided by NEOS. The following information is required for registration:The type of optimization problem (for example, nonlinearly constrained optimization)The name of the solver (for example, LANCELOT)8

Figure 3.2: The NEOS Submission ToolThe e-mail address of the software administrator(s) and a passwordAddresses for registered workstationsA con�guration �leHelp �lesThe type of the optimization problem and the name of the solver are the identi�ers that arealso used during e-mail submission. For example, registration of NMTR for unconstrainedminimization was done by setting the type to UCO and setting the name of the solver to NMTR.Similarly, registration of LANCELOT would be done by setting type to NCO (nonlinearlyconstrained optimization) and setting the name of the solver to LANCELOT.The list of workstations must contain addresses for any UNIX machine that supportsTCP/IP sockets and that can execute the solver.The con�guration �le and the help �les are used to generate the e-mail, Web, andSubmission Tool interfaces. This process is entirely automated, and interfaces are generatedto be consistent with other solvers in the Server.After registration, the software administrator must download and install the NEOSCommunications Package. This package contains a client/server application, local server,that allows a client (the NEOS Server) to connect and request that a job be executed.Figure 4.1 shows the information required by the NEOS Communications Package.The software identi�er and password were provided by the software administration dur-ing the registration process. The only new piece of information required by the NEOSCommunications Package is the path of the solve script.9

Figure 4.1: NEOS Communication PackageThe local server executes as a daemon process on the registered workstations. Oncestarted, the local server binds to the �rst available port on the list of registered worksta-tions and waits for connections from NEOS. When an optimization problem is received bythe NEOS Server, the Server contacts the �rst available workstation. Upon connection, thelocal server downloads the user's data, launches the optimization solver, and returns theresults generated by the solver. During this entire process the connection between the userand the remote software package is maintained|with NEOS as the liaison. This allowssoftware packages to communicate with the user.Facilities exist for automatically restarting local server in the event that the hostmachine is rebooted or local server is killed.We illustrate the solution process with a nonlinearly constrained optimization problemsubmitted to the LANCELOT solver. The LANCELOT solver is located somewhere on theInternet, but only the Server is concerned with the actual location. Figure 4.2 shows thesequence of events during the solution process.The user submits a nonlinearly constrained optimization problem with the NEOSSubmission Tool. In this case the supplied code is in Fortran.The NEOS Server contacts the �rst available workstation.The local server performs a �le transfer from the NEOS Server. The transferincludes all of the user's data.The local server launches the solver for the problem type. The solver checks thedata, compiles the user's subroutines, generates gradients and Jacobian matrices with10

Figure 4.2: Output from the NEOS Submission ToolADIFOR, links with the appropriate libraries, executes the optimization software, andgenerates a solution.The local server returns the job results to the NEOS Server.A similar process occurs for every NEOS job, that is, data is transferred from the user, tothe NEOS Server, and then to a remote workstation for execution. The connection betweenthe user and the software package is maintained during this process, thus allowing for areal-time report of the software's progress. Both the Submission Tool and Web interfacessupport this status capability; e-mail users receive only the end result.5 The NEOS Software LibraryThe Software Library is the set of optimization solvers that have been registered with theNEOS Server. Participating hosts have chosen to make their software available to theInternet via NEOS. Not only is the user relieved of downloading, compiling, and installingthe software, but the individual software administrators are relieved of software distribution.The NEOS Software Library is distributed. In other words, the actual code for eachoptimization solver may reside anywhere on the Internet. Communication between theNEOS Server and the remote workstations where the software is located is handled by theNEOS Communications Package|an Internet client/server application providing socketcommunications between the NEOS Server and the remote software.The NEOS Server has solvers in seven di�erent areas of optimization. Solvers in otherareas (for example, systems of nonlinear equations and nonlinear least squares) will be11

added in the near future. Our current o�ering consists of the following:Unconstrained optimization: NMTRBound constrained optimization: L-BFGS-B, LANCELOTNonlinearly constrained optimization: LANCELOTComplementarity problems: PATHLinear network optimization: NETFLO, RELAX4Linear programming: AUGMENTED, PCxStochastic linear programming: AUGMENTED, MSLIPWe do not describe all the optimization solvers currently in the Software Library sincethey are listed in the NEOS Web interface, and have pointers to the relevant literature.Additional information on optimization can be obtained from the URLhttp://www.mcs.anl.gov/home/otc/Guide/for the NEOS Guide. The main issue that needs to be addressed is the input format forthe speci�cation of the problem.The nonlinear solvers accept Fortran input, but most of the solvers also accept C input.For example, the L-BFGS-B solver [13] for bound constrained optimization problems acceptsinput in terms of either Fortran or C code. On the other hand, the LANCELOT [6] solverfor general constrained optimization problems accepts the problem speci�cation in terms ofFortran subroutines or in the SIF format.For nonlinear solvers capable of solving large-scale problems, we require that the solveraccept functions in partially separable form, that is, functions of the formf(x) = mXi=1 fi(x);where each element function fi depends on only a few components of x, andm is the numberof element functions. Both L-BFGS-B and LANCELOT follow this requirement, whichallows [4] the e�cient generation of gradients with automatic di�erentiation techniques.The range of formats used to specify problems for linear solvers is strongly dependenton the area. Instead of Fortran or C codes, these solvers accept the input as a data �le.The linear programming solvers (for example, PCx [7]) accept the problem speci�cationin the MPS format, although other formats are clearly possible. Solving stochastic linearprogramming problems with the NEOS Server is straightforward because solvers in thisarea accept the input in a format based on the MPS standard and designed to promote thee�cient conversion of originally deterministic problems.Solvers in other areas of the NEOS Server use formats that have been adopted in these ar-eas. Thus, solvers for (linear) minimum-cost network
ow problems (for example, RELAX-IV [2]) accept input in the DIMACS format.12

AcknowledgmentsThe design of the NEOS Server was developed in consultation with members of the Optimi-zation Technology Center, in particular, Jorge Nocedal, Steve Wright, Richard Marynowski,Jon Owen, Emmett Tomai, and Andrew Crane. Other contributors include Bill Gropp, forthe original design of the e-mail based component of the Server, and the developers of ADI-FOR and ADOL-C. We would also like to thank those who have provided valuable feedbackduring the development and testing of our software registration system, in particular, AliBouaricha, Michael Ferris, Zhijun Wu, and Ciyou Zhu.References[1] P. Arbenz, W. Gander, and M. Oettl, The remote computation system, in High-Performance Computing and Networking, H. Liddell, A. Colbrook, B. Hertzberger, andP. Sloot, eds., no. 1067 in Lecture Notes in Computer Science, Springer-Verlag, Berlin,1996, pp. 820{825.[2] D. Bertsekas and P. Tseng, RELAX-IV: A faster version of the RELAX codefor solving minimum cost
ow problems, Technical Report, Massachusetts Institute ofTechnology, Cambridge, Massachusetts, 1994. Also available by ftp from lids.mit.eduin /pub/bertsekas/RELAX/RELAX4.PS.[3] C. Bischof, A. Carle, P. Khademi, and A. Mauer, The ADIFOR 2.0 system forthe automatic di�erentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-gonne National Laboratory, Argonne, Illinois, 1994. Also available as CRPC-TR94491,Center for Research on Parallel Computation, Rice University.[4] A. Bouaricha and J. J. Mor�e, Impact of partial separability on large-scale opti-mization, Preprint MCS-P487-0195, Argonne National Laboratory, Argonne, Illinois,1995. Accepted for publication in Computational Optimization and Applications.[5] H. Casanova and J. Dongarra, NetSolve: A network server for solving com-putational science problems, Technical Report CS-95-313, University of Tennessee,Knoxville, Tennessee, 1995.[6] A. R. Conn, N. I. M. Gould, and P. L. Toint, LANCELOT, Springer Series inComputational Mathematics, Springer-Verlag, 1992.[7] J. Czyzyk, S. Mehrotra, and S. J. Wright, PCx user guide, Technical Mem-orandum ANL/MCS-TM-217, Argonne National Laboratory, Argonne, Illinois, 1996.Also available as ftp://ftp.mcs.anl.gov/pub/neos/PCx/PCx-user.ps.13

[8] M. C. Ferris, M. P. Mesnier, and J. J. Mor�e, The NEOS Server for complemen-tarity problems: PATH, Technical Report 96-08, University of Wisconsin, Madison,Wisconsin, 1996. Also available as MCS-P616-1096, Mathematics and Computer Sci-ence Division, Argonne National Laboratory.[9] A. Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic dif-ferentiation of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996),pp. 131{167.[10] M. J. Litzkow, M. Livny, and M. W. Mutka, Condor - A hunter of idle work-stations, in Proceedings of the 8th International Conference on Distributed Comput-ing Systems, Washington, District of Columbia, 1988, IEEE Computer Society Press,pp. 108{111.[11] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.[12] L. Wall, T. Christiansen, and R. L. Schwartz, Programming Perl, O'Reilly &Associates, Inc., second ed., 1996.[13] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, L-BFGS-B: Fortran subroutines forlarge-scale bound constrained optimization, Technical Report, Northwestern University,1994.

14

