4 33 Basic Test Problems: A Practical Evaluation of

Some Paramodulation Strategies

William McCunet
Argonne National Laboratory

4.1 Introduction

Many researchers who study the theoretical aspects of inference systems believe
that if inference rule A is complete and more restrictive than inference rule B, then
the use of A will lead more quickly to proofs than will the use of B. The literature
contains statements of the sort “our rule is complete and it heavily prunes the
search space; therefore it is efficient”.? These positions are highly questionable
and indicate that the authors have little or no experience with the practical use
of automated inference systems. Restrictive rules (1) can block short, easy-to-find
proofs, (2) can block proofs involving simple clauses, the type of clause on which
many practical searches focus, (3) can require weakening of redundancy control such
as subsumption and demodulation, and (4) can require the use of complex checks
in deciding whether such rules should be applied. The only way to determine the
practical value of inference rules and search strategies is to experiment on problems
in which long-term target users are interested.

In this chapter we present a new theorem prover for equational logic, a set of
33 equational theorems for evaluating paramodulation strategies, a large set of
experiments with several paramodulation strategies, and two equational proofs in
Robbins algebra. The new theorem prover, EQP, includes associative-commutative
unification and is restricted to equational logic, but in many other ways it is sim-
ilar to our production theorem prover Otter[10]. The 33 equational theorems,
which are mostly about lattice-like and group-like structures, are taken from a re-
cent interdisciplinary study on application of Otter to problems in equational logic
[11]. The experiments are with basic paramodulation, blocked paramodulation,
ordered-instance paramodulation, functional subsumption, a heuristic for eliminat-
ing associative-commutative unifiers, and methods for directing the search. The
two Robbins algebra theorems, which involve the hypotheses 3C3D (C'+ D = ()

ISupported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

2This is a very general statement. We are not referring in particular to the paramodulation
strategies on which we focus in this chapter

2 Chapter 4

and 3C3ID (n(C + D) = n(C)), were previously known, but we believe the proofs
we present here are the first equational proofs and the first ones found by computer.

4.2 The Test Problems

Our 33 test problems are taken from the recent monograph Automated Deduction
in Equational Logic and Cubic Curves [11], which contains a collection of first-order
theorems proved by Otter [10]. The theorems are in a narrow area: from the syn-
tactic view, all are equational, in languages with small sets of symbols, and most
have small sets of small equations; from the semantic view, most are about simple
lattice-like algebras and simple group-like algebras. Otter can already prove most
of the theorems, so this work sheds little light on new kinds of theorem (such as
theorems involving rich theories or complicated definitions) for which the paramod-
ulation strategies of these experiments might be useful. Nevertheless, we believe
the theorems are a good set for evaluating paramodulation strategies because they
are real and nontrivial theorems that arose in practice when a mathematician (R.
Padmanabhan) was studying algebraic structures with equational logic.

From the set of theorems in [11], we have excluded those involving the geometry
inference rule =(¢L)= , those with nonequational hypotheses such as cancellation,
those that required extremely specialized strategies to find a proof, and most of
those that were proved by Otter in less than a second or two. Also, many of the
theorems in [11] have multiple goals (nonunit denials), and in those cases we used

3 (each with a unit

only the most difficult goal. That left 33 equational theorems
goal), of which 13 have at least one associative commutative (AC) operation. The
names we use here are similar to those in [11], with the minor modification that if
we use just one goal of a multiple-goal theorem, we append a lower-case letter to
the name: “a” means that we use the first goal, “b” the second, and so on.

This brings us to a dirty part of these experiments—the maz-weight parameter.
It is a practical fact that Otter and EQP need a limit on the size of retained
clauses for most nontrivial searches. Otherwise, most retained clauses never enter
the search, wasting memory and wasting the time used trying to rewrite them with
new demodulators. (We assume that most other programs that generate and retain
a lot of clauses have the same problem.) When faced with a new conjecture or
theorem, we generally start with no limit or with a limit that was successful for a
similar problem. We usually learn quickly if the limit is a bad choice (the program

runs out of tasks to do if the limit 1s too small, and it runs out of memory if the

3The number is a coincidence, really, Larry.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 3

limit is too big), and we iterate a few times to find a limit that results in a well-
behaved search.* We used this method for the problems in [11], and we simply
copy the limits for these experiments. The danger in doing this is that a good limit
for one strategy is not necessarily acceptable for another strategy; for example, a
paramodulation restriction may require the use of a longer clause. Even reordering
the search with the pick-given-ratio (see 4.5.1, p. 8) parameter may require the use of
a higher limit, for example, if the generation of a greatly-simplifying demodulator
is delayed. Therefore, these experiments are biased somewhat toward a simple
starting strategy.

Otter and EQP (without AC unification) use a total order on function and con-
stant symbols (which, by the lexicographic recursive path order, induces a partial
simplification order on terms and a total simplification order on ground terms) to
orient equations and decide which are to be demodulators. The default symbol
order is constants < high-arity < - - - < binary < unary, and within arity, the lexi-
cographic AScII ordering is used. We override the default order for the same cases
and in the same ways as in [11]: In two cases (D-BA-2a and SD-2a), the purpose is
to unfold defined terms, and in the cases MFL-1, MFL-2, and MFL-3, the purpose
is to eliminate intuitively undesirable Skolem functions. For the experiments with
AC unification, a different term order was used (see 4.5.2, p. 9).

When we write “non-AC problems”, we mean all 33 problems with ordinary
unification, with AC axioms included for the 13 problems that have AC function
symbols; and when we write “AC problems”, we mean AC unification with the
13 problems that have AC function symbols. The test problems are listed in the
Appendix, starting on page 33.

4.3 Our Paramodulation Paradigm

Through the years, the members of the Argonne’s automated reasoning group have
invented and refined many inference rules and strategies for automated deduction
in first-order logic with equality. In the early days of automated theorem proving,
Larry Wos recognized the need for special treatment of equality if the field was to
be of practical use to mathematicians. As a result, he invented demodulation [22]
and then paramodulation [16]. Larry’s continuous emphasis on experimentation

4We have attempted to automate the selection of a good limit with Otter’s control-memory
flag [12]. This flag is part of Otter’s autonomous mode, which is used when the user has only one
chance to prove a theorem, i.e., in automated theorem proving competitions, in demonstrations,
for novice users, or when we're too lazy to make any decisions. For practical work, however, we
find an appropriate limit by iteration.

4 Chapter 4

with nontrivial problems has led the Argonne group to many advances in practical
automated reasoning.

Our “starting”® paramodulation inference system in both Otter and EQP has
the following properties.®

A term ordering is used to compare terms. If one side of an equation is greater
than the other, the equation is arranged so that greater side is on the left, and the
equation becomes a demodulator; it is then said to be oriented.

When paramodulating from (respectively into) an oriented equation, we paramod-
ulate from (respectively into) the left side only. With nonoriented equations, we
paramodulate from and into both sides. We never paramodulate from or into vari-
ables.

Paramodulants are demodulated, tested for max-weight and subsumption, and ori-
ented if possible; then the variables are renumbered. Oriented equations are added
to the set of demodulators and are used to back demodulate all existing equations
(including demodulators). Back-demodulated equations are processed in the same
way as paramodulants.

For this set of experiments, we do not use the set of support restriction.

We believe our implementations of this starting inference system are complete
for equational theorems when used with an agenda that explores the search space
fairly (see 4.5.1, p. 8). In the literature, most of the restrictions and strategies that
are the focus of this chapter have been proved complete within specific settings.
However, we have not carefully analyzed for completeness the compatibility of the
restrictions with our starting strategy or with each other. Our (extensive) use of
the max-weight parameter obviously causes incompleteness.

4.4 EQP: The New Theorem Prover

We have been working on Otter [10] since 1988. Tt is a mature and stable program,
with perhaps forty serious users. However, 1t has become difficult to work on
because of its size and its many kludges, patches, and extraneous features. When a
new capability is to be added, difficult questions arise such as “how does this affect

5We would like to write “basic” instead of “starting”, but “basic” is used for another purpose
in this chapter. The (unfortunately named) “basic paramodulation” is one of the strategies we
evaluate in this chapter.

6 This inference system has been in use at Argonne in various forms since about 1977. It is
similar to G. E. Peterson’s system [15] and unfailing Knuth-Bendix completion [3].

I N

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 5

negative linked superhyperparamodulation, added in 1991, probably not used by
anyone, but something I’d like to keep anyway?”

In 1992, we started an efficient implementation of AC unification, and that code
has grown, very slowly, into the new theorem prover EQP. The most important
two differences from Otter are that EQP includes AC unification and it applies to
equational problems only. Also, EQP is much simpler and easier to extend. An early
version of EQP was used for several experiments with algorithms for distributed
equational reasoning (see, for example, [2]).

Similarities between Otter and EQP

. Design philosophy and the C programming language.
. The overall structure of the programs.
. Unification and matching algorithms (excluding AC unification).

. The term and literal indexing algorithms. Both programs (excluding EQP with

AC unification) use discrimination tree indexing for retrieval of demodulators and
subsuming clauses, and both use FPA-Path indexing for retrieval of unifiable terms
during paramodulation and instance terms during back demodulation [9].

. Input and output languages.
. Noninteractive use of the programs.

. Performance of the programs.

Differences between Otter and EQP

. Otter and EQP share very little code.

. Otter uses extensive structure sharing, which decreases memory consumption but

complicates the algorithms and code. EQP uses simpler nonshared data structures
for terms.

. EQP has AC unification and matching.
. Otter drives the search with the given clause algorithm; EQP can use either the

given clause algorithm or the pair algorithm (see 4.5.1, p. 8).

. EQP has many experimental paramodulation strategies (which are the focus of this

chapter).

. EQP applies to equational problems only; nonunit clauses are not accepted.

6 Chapter 4

7. EQP lacks the following Otter features: user-defined weight functions, resolution
inference rules, Skolemization and clausification, answer literals, autonomous mode,
evaluable operations, the hot list, and back subsumption.

The lack of structure sharing was a major concern in the design of EQP. Consider
a term ¢ that must be indexed for back demodulation (i.e., we must be able to find
it quickly when it can be rewritten by a newly derived demodulator). Say ¢ has
1000 occurrences in our current set of clauses. Without structure sharing, each
occurrence 1s indexed and retrieved separately; but with structure sharing, the one
physical copy (to which all containing terms refer) is indexed and retrieved, and all
containing clauses are then accessed by superterm lists. Indexing a term can require
more memory than the term itself occupies, so lack of structure sharing causes the
indexes to use even more memory than the terms use. However, nonshared terms
are smaller, simpler, and faster to build, traverse, and recycle.

Table 4.1 compares Otter with EQP on the 33 test problems. The time to proof
(seconds on an IBM RS/6000 processor’), proof length, and number of clauses
generated are listed; “(M)” means that the memory limit of 24 megabytes was
inadequate; “(T)” means that the time limit of 1800 seconds was inadequate; and
“(S)” means that the program ran out of inferences to make, usually because the
weight limit was too low for the strategy.

Both programs used the same simple paramodulation strategy, and they used
similar search strategies (with a selection ratio of 4, see the following section),
rewriting strategies, and clause-processing strategies. The (perhaps surprising)
differences between the programs are due mostly to minor differences in the order in
which sets of clauses are generated and retained. For example, say paramodulation
of A into B generates ten clauses, and two, C' and D, of equal length, are retained.
Otter may select (' as the next given clause, and EQP may select D—that is
all 1t takes to cause the programs to search different areas of the space. The
different generation orders are caused by differences in term data structures and
term indexing. The counts of generated clauses are a rough measure of the amount
of work done and thus can be used to compare the speed of the two programs; many
of the problems indicate that EQP is 10%—20% faster than Otter. Both programs
were allowed 24 megabytes for storage of clauses and indexes; problems LT-5, QLT-
3, QLT-5, and QLT-6 indicate EQP’s larger appetite for memory (which is not as
large as we had feared).

"The RS /6000 processors we used run EQP about three times faster than a SPARC 2 does.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 7

Table 4.1
Otter vs. EQP
Otter EQP
Problem time (len.) generated | time (len.) generated
CS-2 30 (7) 27368 25 (6) 18608
CS-6a 1 (7) 231 1 (7) 256
D-BA-1b 9 (28 10822 | (M) (—) 149644
D-BA-2a 144 (124) 103327 140 (174) 130998
D-BA-ba 27 (84) 33943 30 (93) 39314
D-BA-5¢ 8 (89) 9473 6 (75) 8624
D-BA-8a 16 (106) 20731 30 (104) 40046
LT-10a 4 (15) 3566 3 (15) 2863
LT-2 (T) (—) 2867810 | 924 (66) 1843691
LT-3e 43 (61) 56726 39 (56) 65398
LT-4 2 (13) 011 2 (14) 3092
LT-5 (M) (—) 261493 | (M) (—) 211985
LT-6 67 (97) 28390 46 (110) 30757
LT-8 45 (19) 75979 | (T) (—) 2530477
LT-9b 291 (53) 279260 | 287 (61) 338618
MFL-1 6 (36) 8574 4 (30) 5293
MFL-2 T (29) 9666 | 1 (34) 2021
MFL-3 8 (26) 10789 7 (30) 9194
MFL-7 19 (39) 19283 15 (51) 14523
QLT-1 347 2999 3 (45) 3861
QLT-2 1 (19) 372 4 @0 5390
QLT-3 (M) (—) 138808 | (M) (—) 106284
QLT-4 4 (54) 5022 5 (55) 7029
QLT-5 M) (—) 128442 | (M) (—) 84576
QLT-6 121 (108) 56904 | (M) (—) 92438
RBA-2 12 (37) 15910 19 (42) 27709
SD-2a 3 (39 2326 2 (52) 2029
SD-3-el 2 (17) 1941 | 1 (15) 821
SD-3-e2 8 (23) 10277 6 (27) 9484
TBA-1-el 29 (42) 26822 | 126 (39) 78796
TBA-1e2d | 2 (30) 1328 | 2 (29) 1564
WAL-1a 149 (37) 233175 | 137 (31) 250483
WAL-2 8 (19) 14411 | 7 (16) 15005

8 Chapter 4

4.5 Algorithms and Strategies

This section contains descriptions of the methods that are the focus of the main
body of experiments.

4.5.1 The Given Clause and Pair Algorithms

The most important decision our theorem provers make when searching for proofs
is selection of clauses for application of inference rules. We have considered two
issues for these experiments: (1) the given clause algorithm vs. the pair algorithm,
and (2) the ratio of best-first and breadth-first search.

Both the given clause algorithm and the pair algorithm can be thought of as
simple loops that drive the search for a proof.

Repeat

1. decide on a set S of inferences to make;

2. make all inferences in S and process the results;
until a proof has been found.

The difference between the given clause and the pair algorithms is in the size of
S. The given clause algorithm selects a clause C' (the given clause) and makes
inferences using C' and all clauses previously selected as given clauses. The pair
algorithm selects a pair of clauses (not previously selected) and makes inferences
between those two clauses only.®

Our interest in the pair algorithm arose in 1992 when we started experimenting
with AC unification and matching. Since a pair of terms can have a great number of
most general AC unifiers, the set S in the given clause algorithm can be unmanage-
ably large. Our intuition told us that the smaller granularity of the pair algorithm
would offset somewhat the prolific nature of inference rules using AC unification.

For strictly breadth-first search, one might think that two algorithms should pro-
duce similar results. For example, if the sequence of retained clauses is (1, 2, 3), the
pair algorithm considers the sequence of pairs (1,1),(2,1),(2,2),(3,1),(3,2),(3,3),
and the given clause algorithm considers the sequence (1, {1}), (2, {1,2}), (3,{1,2,3}).
However, the given clause algorithms in Otter and EQP order the set of previous
given clauses in different ways, and neither orders them in increasing order. Such

8 The pair algorithm has been used in many Knuth-Bendix completion systems. Its earliest use
in automated deduction appears to have been by Larry Wos et al in 1964 with the unit preference
strategy [21]. Perhaps the earliest use of the given clause algorithm was by Ross Overbeek in 1970
in the context of hyperresolution[14]. Most automated deduction at Argonne since 1970 has been
with the given clause algorithm.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 9

apparently small differences in the order of generated clauses can have a great effect
on the character and outcome of the search.

The best-first aspects of the searches are based on the lengths of clauses—smaller
is better. The length of a clause is the number of variables, constant, function, and
predicate symbols. A best-first given clause algorithm selects the smallest clause
not yet selected, and a best-first pair algorithm selects the smallest pair not yet
selected, where the length of a pair is the sum of the lengths of its members.

Our experience with previous experiments tells us that a combination of best-first
and breadth-first search, with an emphasis on best-first search, is usually a good
choice. The ratio strategy, introduced in [12], allows the user to specify the ratio of
the two selection methods. In our implementations of the ratio strategy, the user
gives a parameter, the pick-given-ratio, say n, in the range [0, 1, - -], meaning that
through n iterations of the main loop, the best clause or pair is selected, then the
oldest clause or pair, and so on.

Although the ratio strategy was not intended to be a focal point of the exper-
iments, we have included a lot of data on it because it has a great effect on the
search and 1t is not well understood; we hope to find relationships between the ratio
strategy and the various paramodulation strategies. For most of the paramodula-
tion strategies we considered, we ran experiments with ratios 1, 4, 8, and oo (i.e.,
purely best-first). (We used a value of 4 for almost all of the experiments reported

in [11].)
4.5.2 Associative-Commutative (AC) Operations

EQP has AC unification (Stickel’s AC algorithm [17], with Huet’s algorithm [4]
for finding basis solutions) and AC matching (our own algorithm). The AC unifi-
cation algorithm is quite complicated, but our implementation is straightforward.
AC terms are stored as binary terms in canonical form, and they are flattened into
arrays during the unification process. Unifiers are generated incrementally on de-
mand by a backtracking algorithm. We have not implemented Kapur and Zhang’s
check for symmetry among AC unifiers [7], and we do not use any indexing for
finding AC-unifiable terms. Experience continues to show us that the speed of AC
unification is not particularly important, because in practice the percentage of time
spent there is small, but elimination of unnecessary or undesirable AC unifiers is
extremely important.

EQP’s AC matching code is separate from its AC unification code. Our imple-
mentation, which does not solve Diophantine equations, uses some ideas from RRL
[6]. Tt is a backtracking algorithm that binds variables to all appropriate combi-
nations of terms. The speed of AC matching is extremely important, because we

10 Chapter 4

find that in practice, most of the time is spent rewriting derived clauses. When
AC terms are present, we use a modification of discrimination tree indexing that
filters AC terms by number of arguments and number of nonvariable arguments;
this type of indexing gives us a modest improvement over indexing AC terms by
simply treating them as constants.

AC paramodulation requires the use of extensions of equations. Consider oo = 3
in which « has the AC symbol + at its root. Then the equation o + 2 = § + =z,
where z i1s a new variable, must be considered as well. AC paramodulation with
extensions is extremely prolific; Kapur and Zhang have found that many such AC
unifiers are unnecessary, and they advocate delaying the use of extensions. This
is probably a wise strategy, but we have not yet implemented it. We currently
paramodulate with extensions right after using the nonextended equations.

Term ordering is another problem area for terms with AC operations. For com-
pletion problems and for theory, it is useful to have a simplification ordering that is
total for ground terms. This tells us how to orient equations into rewrite rules and
guarantees termination of rewriting. Several such orderings have been defined for
AC terms, but they are complex and we have not implemented any of them. In-
stead, we use the following very weak simplification ordering for AC terms: ¢; = t5
if length(t1) > length(t2) and mvars(t;) >= mvars(tz). (The second condition
means that no variable has more occurrences in ¢2.) A rewrite rule satisfying our
ordering always reduces the number of symbols. This ordering was originally imple-
mented as a quick hack for testing AC demodulation, but it has been adequate for
this set of experiments. EQP also has some special-purpose polynomial orderings,
but they were not used here.

4.5.3 Paramodulation Strategies

Ordered-Instance Paramodulation. This strategy applies to non-AC exper-
iments. (Tt applies in general to AC problems, but not in our implementations.)
Ordered-instance paramodulation is a restriction that constrains the use of nonori-
entable equations. Ordinarily, equations that can be oriented have the larger side
on the left and are added to the set of demodulators, and equations that cannot be
oriented are not added to the set of demodulators, and they are stored in both ori-
entations. Paramodulation is not allowed from the right side or into the right side of
any equation. The preceding properties hold as well for ordered-instance paramod-
ulation. As motivation for ordered-instance paramodulation, consider paramodu-
lation from the nonorientable equation o = 3, with unifier o such that aoc < Go;
that is, the instance used for paramodulation is orientable in the wrong direc-
tion. The ordered-instance paramodulation restriction prevents paramodulation in

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 11

such cases. Nearly all current theoretical work on paramodulation strategies uses
ordered-instance paramodulation, but Otter, for example does not. Early work in
this area was in the context of completion [8].

Blocked Paramodulation. This strategy applies to non-AC and to AC experi-
ments. Blocked paramodulation does not allow a paramodulation inference if any
term in the unifier can be rewritten with the current set of demodulators. The
strategy was discussed by Lankford and proved complete in the context of comple-
tion by Kapur, Musser, and Narendran [5]. The justification is that an unblocked
inference is composite and thus can be factored into prime inferences, and that
only prime inferences are needed for completion. See [5] for details. Our implemen-
tation of blocked paramodulation in EQP is straightforward—after unification or
AC unification has generated a unifier and before generation of the corresponding
paramodulant, each term in the substitution is tested to see if it can be rewritten
with the current set of demodulators; if so, the paramodulant is not generated.
Kapur and Zhang report that preventing unblocked inference gives great speedups
on ring commutativity problems [5]. This is a fairly expensive test in our imple-
mentation; in the case of AC unification, we believe the test could be incorporated
into the AC unification routines so that one test would apply to more than one
unifier, but we have not attempted such a method.

Basic Paramodulation. This strategy applies to non-AC and to AC experi-
ments. Basic paramodulation [1, 13] is a restriction that prevents paramodulation
into terms that arise solely by instantiation. One way to view this (and a way to
implement it) is to represent clauses as a pair, (skeleton,substitution). Input clauses
are skeletons with empty substitutions, and paramodulation is done from skeletons
into skeletons with the unifier of the inference composed with the substitutions of
the parents to form the substitution of the paramodulant. The terms that arise
by instantiation alone do not occur in the skeleton and are thus not available for
paramodulation (are not basic). Another way to view this (and the way we imple-
ment it) is to mark terms that are not available for paramodulation. Input clauses
have no terms marked. During paramodulation when the unifying substitution is
applied to form the paramodulant, as variables are instantiated, the corresponding
terms and all subterms are marked as unavailable for subsequent paramodulation;
in addition, marks in the parents are inherited by the paramodulant.
Completeness of basic paramodulation requires special treatment for subsump-
tion and demodulation. In the case of subsumption, consider clause C', with term ¢
that is not basic (is unavailable for paramodulation); if C' subsumes clause D and if

12 Chapter 4

the term in D corresponding to ¢ is basic, then ¢ must be made basic. EQP without
AC unification performs this procedure. EQP with AC unification, because of tech-
nical complications (corresponding terms may not be in corresponding positions),
simply makes all of C' basic; we believe the penalty for this extra allowance is small,
because in practice, few clauses do most of the subsuming.

Demodulation with basic paramodulation is more problematic. The standard
definitions of demodulation with basic paramodulation (e.g., [1]) do not allow de-
modulation of nonbasic terms. This restriction seems intuitively unwise, because
we wish to simplify wherever possible; some preliminary experiments (not reported
here) support our position, so EQP ignores that restriction. Demodulation is never
prevented; and when a rewrite step occurs with o = 3, the instance of 3 and all
of its subterms are made basic. This strategy can have the peculiar effect of cre-
ating nonbasic terms with basic subterms. We have not studied the completeness
consequences of this method.

AC-superset-limit. This strategy applies to AC experiments. AC unification
has two distinct effects when making terms identical: it permutes arguments and
introduces new variables. We believe that permutation is the more useful effect
and that introduction of variables is the more prolific effect. (The pair of terms
(z+z+2) and (u+v+w+z) has 1,044,569 most general AC unifiers!) We have been
thinking about heuristics for delaying or preventing the introduction of variables,
and we have implemented one strategy along those lines. Very briefly stated, the
AC unification algorithm works as follows to unify two terms with the same AC
symbol at their roots. Arguments in common are removed, a linear Diophantine
equation representing equality of the two terms is constructed, a basis of integer
solutions 1s calculated such that all integer solutions are a linear combination of the
basis solutions, then all of the subsets of the basis are considered, and those that
satisfy certain constraints lead to potential AC unifiers. For the example above,
the basis has 20 solutions, and most of the 229 = 1048576 subsets lead to unifiers.
The EQP parameter ac-superset-limit limits the number of combinations that are
considered. A value of 0 means that if a subset .S leads to a potential unifier, then
no supersets of S are considered; a value of 1 means to consider supersets of size
< |S|+ 1, and so on.? The strategy is obviously incomplete, because it eliminates
most-general AC unifiers.

® A method similar to ac-superset-limit=0 has been used in RRL [6].

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 13

Functional Subsumption. This strategy applies to non-AC and to AC experi-
ments. Functional subsumption is a simple extension of ordinary subsumption. It
takes into account the substitution property, x = y = f(---z--) = f(---y--),
of equality. For example, & = 3 functionally subsumes g(h(t,a)) = g(h(t,5)). A
recursive definition for equations is the following.

a = 3 functionally-subsumes v = § iff
(a = 8 subsumes v = §) or
(y=dis f(---¢--)y=f(---n--) and o = 3 functionally-subsumes ¢ = n).

The notation f(---¢---) = f(---n---) means that ¢ and 5 are in the same argument
position and everything else in the two terms is identical. The informal justification
for the rule is similar to that for ordinary subsumption: anything useful that can
be done with f(---a---) = f(--- 5 ---) can be done as well with o = 3. Note that if
a = 3 1s a demodulator, then it need not be used to check functional subsumption,
because demodulation occurs before the subsumption tests. We believe the deletion
of functionally subsumed clauses is complete for many equational inference systems.

4.6 Experiments

This section contains the results of the main body of experiments. Recall that
there are 33 problems of which 13 have at least one AC function symbol. The first
part is without AC unification, with data on all 33 problems (the 13 AC problems
include AC axioms). The second part is with AC unification, with data on the 13
AC problems.

Each paramodulation strategy was run with four different best:breadth ratios for
selecting the next unit of work during the search: 1 (1:1), 4 (4:1), 8 (8:1), and n
(1:0). These are specified in the names of the strategies (e.g., “block-8-giv”) in the
tables below. Each paramodulation strategy was also run with the given algorithm
and with the pair algorithm, which is specified with “-giv” or “-pair” in the tables.

The time (seconds on an IBM RS/6000 processor) to proof and proof length for
each search are listed; “(M)” means that the memory limit of 24 megabytes was
inadequate, “(T)” means that the time limit of 1800 seconds was inadequate, and
“(S)” means that the program ran out of inferences to make, usually because the
weight limit was too low for the strategy. The smallest time(s) for each problem is
set in a box.

The proof lengths are listed because there has been recent interest in strategies
for finding short proofs [20, 19]. The length includes paramodulation inferences
and steps to flip equations, but it does not include demodulation steps. Thus,

14 Chapter 4

comparing lengths on the same theorem can be misleading because paramodulation
steps in one proof can correspond to demodulation proofs in another. Nevertheless,
it is usually a good measure of the complexity of proofs, and it can shed light on
strategies that lead to simpler proofs.

Experiments were run to evaluate functional subsumption, but the results were
not interesting (see 4.7) and have been omitted.

Non-AC Experiments. We list results for five paramodulation strategies: the

simple starting strategy (start), ordered-instance paramodulation (ord), blocked

paramodulation (block), basic paramodulation (basic), and a combination of ordered-
instance, blocked, basic paramodulation with functional subsumption (all). With

each paramodulation strategy we list results for the four values of the ratio param-

eter and given vs. pairs; this gives 40 runs for each of the 33 non-AC problems. As

an example of a strategy name, “block-8-giv” means blocked paramodulation, ratio

8, with the given clause algorithm. Tables 4.2 through 4.8 contain the results of

the non-AC experiments.

AC Experiments. These are similar to the non-AC experiments except that
ordered-instance paramodulation is omitted and AC superset limit 0 (super0) is
included. Each of the 13 AC problems was run in 40 ways. Tables 4.9 through
4.11, starting on p. 22, contain the results of the AC experiments.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 15

Table 4.2
Non-AC: Group A

D-BA-1b D-BA-2a D-BA-5a D-BA-5¢ D-BA-8a
Strategy time (len.) time (len.) time (len.) time (len.) time (len.)
start-1-giv | (M) (—) 415 (158) 33 (52) 2 (57) 93 (207)
start-4-giv | (M) (—) 140 (174) 30 (93) 6 (75) 30 (104)
start-8-giv 3 (27) 185 (206) 31 (116) 4 (17) 20 (136)
start-n-giv (M) (—) 100 (248) 5 (117) 4 (24) (M) (—)
start-1-pair (M) (—) 237 (175) 24 (39) 4 (42) 122 (81)
start-4-pair (M) (—) 113 (140) 15 (16) 2 (45) 44 (72)
start-Spair | 25 (49) 149 (214) 25 (82) 2 (18) 27 (92)
start-n-pair 104 (63) 196 (210) 32 (94) 3 (17) (M) (—)
block-1-giv_ | (M) (—) 471 (158) 37 (127) 2 (57) 100 (158)
block-4-giv | (M) (—) 163 (174) 35 (82) 6 (72) 33 (104)
block-8-giv 3 (27) 232 (214) 35 (126) 4 (17) 21 (136)
block-n-giv (M) (—) 115 (271) 8 (112) 4 (24) (M) (—)
block-1-pair | (M) (—) 305 (242) 26 (39) 4 (42) 122 (81)
block-4-pair | (M) (—) 132 (141) 7 (16) 2 (45) 47 (72)
block-8-pair | 26 (49) 237 (285) 29 (84) 2 (18) 31 (91)
block-n-pair | 123 (63) 311 (231) 24 (104) 3 (17) (M) (—)
basic-1-giv_ | (M) (—) 118 (228) 12 (83) 7 (24) 25 (80)
basic-4-giv 3 (28) 59 (241) [9] (18) 3 (67) 17 (140)
basic-8-giv (27) 43 (235) [9] (55) 2 (22) 13 (126)
basic-n-giv (M) (—) [38](195) 11 (84) 2 (23) (M) (—)
basic-1-pair (M) (—) 71(237) 12 (65) 3 (12) (62)
basic-4-pair | 15 (33) 58 (234) 10 (90) (12) 26 (69)
basic-8-pair | 10 (38) 52 (339) 11 (118) (18) 16 (71)
basic-n-pair 33 (78) 155 (265) 2 (108) 17y M) (—)
ord-1-giv ™M) (—) M) (—) 109 (60) 14 (35) 129 (71)
ord-4-giv (M) (—) 142 (164) 37 (59) 6 (75) 46 (80)
ord-8-giv 2 (42) 214 (248) 31 (110) 4 (16) 43 (81)
ord-n-giv (M) (—) 115 (275) 6 (116) 4 (24) (M) (—)
ord-lpair | (M) (—) 236 (175) 24 (39) 4 (42) 122 (81)
ord-4pair | (M) (—) 113 (140) 15 (16) 2 (45) 44 (72)
ord-8-pair 25 (49) 149 (214) 26 (82) 2 (18) 27 (92)
ord-n-pair 101 (63) 194 (210) 33 (94) 3 (17) (M) (—)
all 1-giv 27 (60) 218 (276) 37 (118) 6 (24) 32 (106)
all-4-giv 2 (26) 92 (320) 14 (76) 3 (65) 18 (129)
all-8-giv 5 (46) 63 (225) 12 (127) 2 (22) 26 (75)
all-n-giv 8 (151) 99 (258) 10 (63) 2 (23) (M) (—)
all-1-pair (M) (—) 188 (259) 12 (74) 3 (12) (62)
all-4-pair 14 (33) 135 (253) @ (96) (12) 24 (59)
all-8-pair 10 (42) 64 (287) 11 (110) (18) 17 (66)
all-n-pair 21 (74) 86 (182) 11 (97) 2 (17) (M) (—)

16 Chapter 4

Table 4.3
Non-AC: Group B

LT-2 LT-3e LT-4 LT-5 LT-6
Strategy time (len.) time (len.) time (len.) time (len.) time (len.)
start-1-giv | (1) (—) 5L (87) 1 (8) 46 (36) 109 (219)
start-4-giv | 924 (66) 39 (56) 2 (14) (M) (—) 46 (110)
start-8-giv (T) (—) 30 (65) 4 (27) (M) (—) 30 (114)
start-n-giv (T) (—) 27 (62) 7 (31) (M) (—) (M) (—)
start-1-pair | (T) (—) 48 (59) 2 (8) 53 (100) 40 (163)
start-4-pair (T) (—) 69 (67) 1 (16) 45 (83) 9 (82)
start-8-pair (T) (—) 136 (54) 2 (22) 42 (79) @ (88)
start-n-pair (T) (—) 72 (56) 2 (15) (M) (—) M) (—)
block L-giv | (T) (—) 65 (87) 1 (8) 52 (35) 114 (250)
block-4-giv | 1223 (66) 47 (55) 2 (14) (M) (—) 50 (95)
block-8-giv (T) (—) 37 (65) 5 (27) (M) (—) 32(114)
block-n-giv (T) (—) 34 (62) 8 (28) (M) (—) (M) (—)
block-1-pair | (T) (—) 55 (59) 2 (8) 58 (100) 40 (158)
block-4-pair | (T) (—) 82 (67) 2 (16) 51 (83) 9 (83)
block-8-pair | (T) (—) 159 (54) 2 (22) 46 (79) [6] (88)
block-n-pair (T) (—) 88 (56) 2 (15) (M) (—) M) (—)
basic-1giv_ | [189] (25) (T) (—) [0] (5) 26 (85) 73 (131)
basic-d-giv. | 855 (41) 20 (73) 1 (13) [6] (57) 43 (66)
basic-8-giv (T) (—) 14 (101) 2 (200 (M) (—) 30(107)
basic-n-giv (T) (—) 25 (58) 3 (17 (M) (—) M) (—)
basic-1-pair (T) (—) 18 (83) @ (8) 15 (81) 34 (262)
basic-4-pair (T) (—) 22 (77) 1 (17) M) (—) 44 (135)
basic-8-pair (T) (—) 46 (70) 1 (17) 24 (70) 18 (126)
basic-n-pair (T) (—) 108 (58) 1 (1) M) (—) M) (—)
ord-1-giv (T) (—) 70 (82) 1 (3) 44 (77) 108 (282)
ord-4-giv (T) (—) 43 (65) 2 (14) (M) (—) 48 (109)
ord-8-giv (T) (—) 34 (68) 5 (27) (M) (—) 30 (107)
odngiv | (T) () 38 (96) 7 (1) (M) (—) (M) ()
ord-1-pair (T) (—) 48 (59) 2 (8) 53 (100) 40 (163)
ord-4-pair (T) (—) 68 (67) 1 (16) 44 (33) 9 (82)
ord-8-pair (T) (—) 134 (54) 2 (22) 41 (79) [6] (s8)
ordnpaic | (T) (—) 71 (56) 2 (15) (M) (—) (M) ()
all 1-giv (T) () 229 (131) 1 (3) 36 (67) 72 (244)
all-4-giv (T) (—) 23(112) 1 (13) [6] (68) 39 (73)
all-8-giv (T) (—) (83) 3 (18) (M) (—) 30 (102)
dlng | (T) () 44 (79) 4 (8 (M) (—) O (—)
all-1-pair (T) (—) 38 (68) 1 (8) 15 (74) 40 (197)
all-4-pair (T) (—) 34 (56) 1 (22) 27 (99) 49 (90)
all-8-pair (T) (—) 43 (75) 1 (22) 24 (91) 41 (237)
all-n-pair (T) (—) 106 (58) 1 (14) M) (—) M) (—)

17

[Py [P A A Ay [e [SRR [U e [

NSNS NSNS NN NSNS NN

e e [e [e | | —|

N N N S N e e N N e N e e e D N N e e e D N N e e S e N N N N N N e

(1
(
(
(1
(1

] e [[e | | —|

e e e e e e e e [e e e e e e [N N N e e e e e N D D

] e [e e [e [e [~ —

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies

Non-AC: Group C

Table 4.4

m465 IR R R R =R =] M OH FH O - 00 00 < O |SH O 0 MM O O - 00 N S o
e T2 0o LTI 2L ILIR T2 LTI FTLEenFrTn
= =
6376)8530331)219918719688252)738998953421
QX FT S FARIT RO VL QAN =TRD FHEROF ©F Q0 D0 F Dy~
=RE I N B [Bar I I E BoP R B N — o~ — &N o AN — N =
=
] g S S S g S S S S S S SRS S S sy P S S
IR RS A == =~ A PR P R P R = A R B == =~ A R PR R P =
T — NN XN — NN XN Al L BN o | Al
gLlllizaayl izl Lol iyl LD D2
=

Ul|lr—~r—~r—~—~ = O <f NSNS SN O~ -~ © e e N e N e N TNl
EEEEE R R IgcEEE R RS EEEEEEEREEEE R R Ig)JEEEEEEE S
ECzC i S i P) e i i i
=

.5 .5 5.8 .5 .5 SIS

> r iz s R EEEEE SRR EEEE2EREG TR

I -~ e el K R N o R < = - e L
Ol L dob &L oh AT TO S T Hl b g hob g[B0ERENE A S o e 88 SR
= T N L L R R I I I TR TR RN R e =R e B = I A A T T T R
Rl E T EECEC vV UTUYU UTOTU YlEemem s s s em a0 0 0 0 0 T0 — <f 0 o — < o0 &
ZIEE2S22 8883209925220 2)83383c3¢c TR CERERAaa2asA
NERZTETETET TR 20000 0000|0333 3000@ R d@dd@R?R R

Chapter 4

PP A Sy [Y [A SRy [

gl lasgl|lllllagg gl llss3)l 11agg |l 13IE&5
sLlllasg Ll lasg s LLls2s Ll las8 JLLLL3IES85
£ 2 2 =2 2 =2
Vlr—~r—~r—~—~ 0 O~ N~~~ NN~ O -~~~ — 00 O N~~~ - I~
EISS55€8555555KES5|8555R35%335558885|3553F 28z
Ep=222 S22 22 22222 S22 22 22222
NI I I I
O N N A O T O N < O O
D N NN NN MO O 0NN Nm

S S e e S| S N S S e S S S

057524361671254606502324367824368655!224
— =t — o) — o — e —

A s s e [s e e s s s | e s s s s o [s s s s s s | o s s s s s
B N N N N N N o N N N N
P S N S e N s L N N Ve W N e N L N e N U e N S e N S e S e L S S N e e
R R R N N N N S AN S S S S S
e e e in ettt T b e T e e T e T T e T T T T e T T L T T D e T o T

N N N D N e N N N N D N e N N N N D e e N N e e e e e e | N N e e e e

] | e e e e e | e e e e | i e e e e | e =

N e e e N NN D N e e e N NN N N N D D

Non-AC: Group D

18
Table 4.5

[T T 5 .5.5.5 = .58 .5
> e > PR ERREEREEEERRERRE TR R R e e o4 b
- N e NI I ol il I - -] [I
o R RV SRR N AR A ot Kt i [3= = T
L Rl A b s s s e s e R == RIS s A i e | R SRR
Hld @ 8 8 8 @ &« ®8|©0 © O O O O O QO|l¥W ¥ Wy Wy W Wy WY TTT T OO O, L L Lo LT
2S5 5 5 80 85 8080 Sl ==m=m= === 8 8 & ® ® ® ®© B|Z & & & & & & S22 =209949 404 =2=
Nl mw w v nuwrw a/llooooo0o0o000000000 000 000 0|d @ & @ & @& & &

19

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies

Table 4.6

Non-AC: Group E

e e L e e e |

NSNS NN AN

NI NSNS AN

N N N N

—
— SRR
R P ey)
~— ~
oo oo Yo oM
S2XS2B3270

N e N N e N e e

N e N N N N T

NSNS NSNS LN

S e e S S S e

e N D N e e

N N N D

N NN N D

N NN

N e e e e

NSNS NSNS NN

[L L i)

ttttttttt

S
s
s
s
s
s
s
s
s

giv
giv
giv
giv
pair
pair
pair
pair

1
4
8
n
1
4
8
n

—_ = = — — —

b
b
b
b
b
b
b
b

................

ba:

bas
bas
bas
bas
bas
bas
bas

pair
pair
pair
pair

ord
ord
ord
ord
ord
ord
ord
ord

— o o o o — —
/=== === =

Chapter 4

TBA-1-e2d

TBA-1-el

| | e e e s | e e | | e =]

g2l lllEm2eal bl 8888l llz2=z=l 1118881 1
T AR ASNPNPLY A NN NG ANPINLPLD A e NP UL AN
=
] T 7 2072) R N 223 77) 1723 el el] R 320 B N N2 (2SR P N2
g LLL L L L LI L LL
=

| e e e s | e e e | | e =]

= M = OO MM O = 7 O M M O N O~ 0 o~ M 2O oMM O oW O 0
T M M N O oM M o0 HIon N AN M M M F|O © I~ 00 00 O~ OIS mH M H M O FNo © © 0 W0 - - ©
Lo NS N D N N N e N S e e N N S [N e S D D e S [N N S S N N e e N e S e e
=

VIQIx b O ™M = I-100 M = 0 O I R[] 00 00 = &1 o - 1 O M 0 O = ~c v o o
m TN O TN N0 AN HD D DO M MO I~ 0 m M < NI N M- N|O O OO 0
Sl o~ B M AN N N H N A — == — N B ™M NN N N~ N
=

e b e D D e v T en b Ton Do D e e T en Don L T s D e D e e D Ton D an e e on e Ton e o Tan Don Do
5O N = s MO M AN M 00 M A NN N 00| OO0 0Mm
m M HF N NN MO S S F0 - D N N N M O N M SN N MM MM NN N O
S e I I e i N R =y
=

time
5
2
2
4
2
5
4
4
4
5
37
17
2
2
5
3
2
4
2
6
3
2
2
3

e e e D o Lo e o e e e Do Hon s L N e e S e e T e Do Lo R L e Do T
.097i2557397725577i97024i2977255iii570257
m533 =+ Mmoo < M m <+ M o™ el =+ Mo n M m =+ Mmoo < <+ o
R N N NN N NN NN LN N N I N N R N NN N N N N PN
=

Voo © I~ —m [~ ™M o —~ O 1 O ~—~~I~ ~<f = I~ "~ I~ I~ —~<f —~ |~~~ —~ 1 <H oo
m627M03EM836M13IMMMZM521M927M03EMMM4M529M
S = Lol — = Lol Lol — = Lol Lol Lol
= ~ ~ ~ ~— ~ ~ e ~
e P e i L e o v o e e e o v v o D e L R e Do e e o v Lo et v D v e
.32442158324421589839i0231529215852282848
m54474443544744434446 F o FO P F D P N[N N M F A
S N B N e e N L S N L L F e Rl
= NI —
VMmO H DS O NN O NN O MO0 DN FSTF NN O
g~ o ¥ 2 450 A8 FANA AN AFSTOABFANOD T A ~ZD- TN N DO
= — —] S o ™M — — © < T ®
=

Non-AC: Group F

20
Table 4.7

= = =B =5 25 T
P22 E R S EEEEZREEE = EER D TR
> BB BB £ o o AR B0 R0 A A e 2B B EE & A A Sk 2 22 EE R R b oSSR
Ol b g ob g TR LT T OGS Fod oo g|BEEE A A s s 8RR R
R R R R e e R E A i R R R T] o i v Al LR TIP Y SRR
rMMMMMMMMOOOOOOOOSSSSSSSS.d.d.d.d.d.d.d.d________
gl - SRS G- SRS SRS RS- S P J-/ S/ RGP 1 8 &8 8@ 8@ & ® ® B|J & £ & & & & 5= /49494
NEEETETEE LR clBlcc 0000000000000 RRAeR ® R AR

21

SD-3-el SD-3-e2

SD-2a
time (len.) time (len.) time (len.)

e e i T Tan e T en bon e Drn Lanbrn T Ten Tan) o Don mn R R L e e e T T e D R Tk T L Ton e T e L T
NI~ =0 FI-I-(MI~ 0 40 FI-I-l- O OO0~ O OO0 IO = <t O
NN N FH A NN M N A0 MEAN NN AP OM AN MM AN Mmoo <

N NN e N NN N N N NN

6004033386842565352 589503440334467 691
m [SaERYs} — — - M oan — = o~ 4! <+ N M e — = | 4! —

e o o L L e e e o e Vo e e L T o D D U U Vo e Yo Yo o o U e Y P o U e T o T
10 10 0 O = M A0 10D OO = M0 M OO O F AT I O = MM MmO MM
N = A = 0w < AN~ = =00 AN NAMNMMN OO MM~ 001 AN NNMmON <M

N e e e N [N e e e D N N N D D N N e e e D D N N N N N D

411125215111353222112632711@252112146221
0 — —

e T T D T s e e e T D D L ben o D D Ten e Den Do L L e Do e Do D e Ten | o R ok R Ten e T T
A AN MM M AN NN MM NN M OO MM PO MMM MM — 0~ O QO
M IO 0 © M O F I |M 10 10 © M © F WMo I~ M © 0 W0 0 W~ © © M © F 10|, W0 O W I <H O <

N D) D D N e D D D e e D D D N D e e

m_!!6544%m_!!7655%53!6866wH436544%%H3M534N

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies
Strategy

Non-AC: Group G

Table 4.8

start-1-pair
start-4-pair
start-8-pair
start-n-pair
block-1-giv

basic-1-pair
basic-4-pair
basic-8-pair
basic-n-pair

start-1-giv
start-4-giv
start-8-giv
start-n-giv
block-4-giv
block-8-giv
block-n-giv
block-1-pair
block-4-pair
block-8-pair
block-n-pair
basic-1-giv
basic-4-giv
basic-8-giv
basic-n-giv
ord-1-giv
ord-4-giv
ord-8-giv
ord-n-giv
ord-1-pair
ord-4-pair
ord-8-pair
ord-n-pair
all-1-giv
all-4-giv
all-8-giv
all-n-giv
all-1-pair
all-4-pair
all-8-pair
all-n-pair

22
Table 4.9
AC: Group A

LT-2 LT-5 LT-6 LT-8
Strategy time (len.) time (len.) time (len.) time (len.)
start-1-giv 202 (10) 13 (10) 615 (5) 816 (6)
start-4-giv 165 (9) 90 (10) (T) (—) 164 (6)
start-8-giv 384 (9) 834 (20) (T) (—) 51 (6)
start-n-giv %0 (9) (T) (—) (T) (—) 21 (6)
start-1-pair 803 (10) 6 (10) 112 (5) 602 (5)
start-4-pair 748 (8) 18 (15) 438 (14) 137 (5)
start-8-pair 896 (8) 31 (19) 788 (14) 114 (5)
start-n-pair 1463 (7) (T) (—) (T) (—) 20 (5)
block 1-giv 308 (10) 10 (10) 529 (5) 1392 (6)
block-4-giv 255 (9) 181 (10) (T) (—) 282 (6)
block-8-giv 5499 (9) (T) (—) (T) (—) 85 (6)
block-n-giv 1314 (9) (T) (—) (T) (—) 25 (6)
block-1-pair | 1218 (10) 6 (10) 85 (5) 1056 (5)
block-4-pair | 1033 (8) 10 (15) 225 (14) 239 (5)
block-8-pair | 1197 (8) 28 (19) 582 (14) 223 (5)
block-n-pair 1659 (7) (T) (—) (T) (—) 22 (5)
basic-1-giv 172 (10) — (—) 598 (5) 416 (6)
basic-4-giv 136 (9) 192 (11) 1821 (19) 91 (6)
basic-8-giv 312 (9) 157 (13) (T) (—) 33 (6)
basic-n-giv 6% (9) (T) (—) (T) (—) 10 (6)
basic-1-pair 662 (10) (T) (—) 112 (5) 477 (6)
basic-4-pair | 606 (8) 36 (30) 295 (14) 141 (6)
basic-8-pair | 683 (8) 25 (18) 510 (14) 118 (6)
basic-n-pair 1086 (7) (T) (—) (T) (—) 39 (6)
super0-1-giv 45 (10) 16 (15) 32 (12) 35 (6)
super0O-4-giv 22 (9) 26 (21) 164 (20) 8 (6)
super0-8-giv 61 (9) 75 (21) 1672 (24) 6 (6)
super0-n-giv 34 (9) (T) (—) (T) (—) 4 (6)
super0-1-pair 278 (10) 4 (15) (9) 26 (5)
super0-4-pair 280 (8) (18) 25 (15) 7 (5)
super0-8-pair 311 (8) 7 (16) 48 (14) 6 (5
super0-n-pair 709 (7) 1421 (43) (T) (—) 4 (5
all 1-giv 4 (10) 23 (14) 29 (12) 12 (6
all-4-giv (9) (5) 147 (20) 4 (6)
all-8-giv 54 (9) 18 (8) 719 (13) (6)
Alln-giv 299 (9) (T) (4) (T) () (6)
all-1-pair 290 (10) 4 (15) (9) 27 (6)
all-4-pair 269 (8) (18) 21 (15) 5 (6)
all-8-pair 269 (8) 6 (15) 37 (14) 4 (6)
all-n-pair 607 (7) 737 (66) 1482 (29) (6)

Chapter 4

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 23

Table 4.10
AC: Group B

QLT-1 QILT2 QIT3 QLT-4
Strategy time (len.) time (len.) time (len.) time (len.)
start-1-giv 3 (11) 5 (12) 1296 (68) 17 (6)
start-4-giv 134 (11) 62 (13) 165 (51) 19 (9)
start-8-giv 134 (11) 63 (13) 193 (62) 19 (9)
start-n-giv 55 (11) 57 (12) (T) (—) 19 (9)
start-1-pair 6 (11) 19 (11) 854 (52) 3 (6)
start-4-pair 18 (11) 35 (13) (T) (—) 4 (6)
start-8-pair 23 (11) 56 (18) (T) (—) 10 (6)
start-n-pair 207 (23) 54 (18) (T) (—) 77 (20)
block-1-giv 2 (11) (12) 392 (83) 7 (6)
block-4-giv 66 (12) 67 (15) 228 (52) 8 (9)
block-8-giv 6 (12) 66 (17) 219 (60) 8 (9)
block-n-giv 83 (12) 61 (17) (T) (—) 8 (9)
block-1-pair 2 (12) 6 (11) 484 (52) (6)
block-4-pair 4 (12) 7 (13) 900 (90) 2 (6)
block-8-pair 4 (12) 11 (21) 1511 (120) 2 (6)
block-n-pair 97 (24) 10 (21) (T) (—) 18 (16)
basic-1-giv 3 (11) 5 (12) 1224 (68) 17 (6)
basic-4-giv 131 (11) 62 (13) 160 (51) 19 (9)
basic-8-giv 132 (11) 63 (13) 185 (62) 19 (9)
basic-n-giv 54 (11) 57 (12) (T) (—) 19 (9)
basic-1-pair (T) (—) 20 (11) 816 (52) 4 (6)
basic-4-pair 18 (11) 35 (13) (T) (—) 5 (6)
basic-8-pair 23 (11) 56 (18) (T) (—) 10 (6)
basic-n-pair 209 (23) 54 (18) (T) (—) 77 (20)
super0-1-giv (11) 11 (14) 162 (83) 2 (6)
super0O-4-giv 4 (12) 6 (14) 43 (75) 2 (9)
super0-8-giv 2 (12) 6 (14) 41 (63) 2 (9)
super0-n-giv 7 (12) (149 (T) (—) 2 (9
super0-1-pair 4 (7 7 (9) 72 (65) (6)
super0-4-pair 2 (7) 5 (17) 120 (55) (6)
super0-8-pair 2 (7) (17) 149 (89) (6)
super0-n-pair 13 (21) 17y (T) (—) 7 (12)
all-1-giv (1) 11 (9) 122 (73) 2 (6)
all-4-giv 4 (12) 6 (16) (41) 2 (9)
all-8-giv 2 (12) 6 (16) 37 (58) 2 (9)
all-n-giv 6 (12) (16) (T) (—) 2 (9
all-1-pair 15 (3) 7 (9 52 (59) (6)
all-4-pair 12 (9) 5 (36) 83 (55) (6)
all-8-pair 11 (9) (26) 139 (90) (6)
all-n-pair 7 (21) (26) (T) (—) 6 (12)

24 Chapter 4

Table 4.11
AC: Group C

QLT-5 QLT-6 RBA-2 D-BA-5a D-BA-5¢
Strategy time (len.) time (len.) time (len.) time (len.) time (len.)
start-1-giv 206 (11) 293 (8) 44 (21) 24 (7) 61 (6)
start-4-giv 237 (31) 177 (31) 16 (22) 59 (8) 59 (11)
start-8-giv 387 (11) 178 (31) 792 (25) 59 (8) 59 (11)
start-n-giv (T) (—) 169 (31) 17 (25) 60 (8) 60 (11)
start-1-pair 119 (21) 431 (5) 19 (19) 5 (7) 13 (18)
start-4-pair 79 (22) 713 (40) 8 (17) 7 (7 9 (14)
start-8-pair 76 (20) 833 (50) 5 (16) 11 (7) 12 (14)
start-n-pair (T) (—) (T) (—) 4 (16) 9 (7) 10 (10)
block 1-giv 253 (11) 356 (8) 40 (21) 197 (7) 235 (6)
block-4-giv 360 (11) 212 (31) 15 (22) 118 (8) 119 (11)
block-8-giv 415 (11) 221 (31) 15 (25) 118 (8) 119 (11)
block-n-giv (T) (—) 208 (31) 7 (25) 118 (8) 119 (11)
block-1-pair | 255 (21) 171 (56) 18 (19) 6 (7) 13 (18)
block-4-pair 33 (22) 274 (42) 7 (17) 5 (7) 6 (14)
block-8-pair 27 (20) 293 (33) 4 (16) 6 (7) 7 (14)
block-n-pair | 1519 (89) 548 (14) 3 (16) 5 (7) 6 (10)
basic-1-giv 201 (11) 269 (8) 11 (22) 19 (7) 1056 ()
basic-4-giv 236 (32) 173 (31) 7 (22) 26 (8) 27 (11)
basic-8-giv 243 (32) 173 (31) 778 (25) 26 (8) 27 (11)
basic-n-giv (T) (—) 164 (31) 10 (25) 26 (8) 27 (11)
basic-1-pair | 240 (28) 411 (5) 6 (16) 4 (7) 10 (14)
basic-4-pair 78 (22) 701 (42) 5 (16) 7 (7 9 (14)
basic-8-pair 75 (20) (T) (—) 4 (16) 11 (7) 12 (14)
basic-n-pair (T) (—) (T) (—) 4 (16) 9 (7) 10 (10)
super0-1-giv 25 (11) 37 (8) 30 (23) 6 (7) 6 (5)
super0O-4-giv 58 (11) 26 (7) 14 (21) 35 (22) (6)
super0-8-giv 69 (11) 26 (7) 12 (21) 21 (22) (6)
super0-n-giv (T) (—) 26 (7) 7 (24) 15 (22) (6)
super0-1-pair 36 (7)) 32 (5) 13 (18) 114 (14) 51 (27)
super0-4-pair 89 (7) 62 (6) 5 (17) 40 (14) 5 (7)
super0-8-pair 82 (23) 77 (23) 3 (16) 29 (14) 3 (7
super0-n-pair 107 (58) 89 (95) 2 (16) 21 (23) (7)
all-1-giv (11) 29 (8) 6 (22) M 2] (5)
all-4-giv 53 (11) (7y 6 (21) 45 (7) 5 (6)
all-8-giv 63 (11) (7)y 5 (21) 111 (7) 5 (7)
all-n-giv (T) (—) 25 (7) 3 (21) 164 (58) 5 (7)
all-1-pair 20 (7) 26 (5) 4 (16) 58 (14) 39 (7)
all-4-pair 56 (25) 53 (5) 2 (16) 12 (22) 7 (7)
all-8-pair 60 (23) 56 (22) 2 (16) 27 (9 5 (7)
all-n-pair 89 (65) 53 (8) (16) 16 (15) 3 (7)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 25

4.7 Strategy Comparisons

The data in this section are based on the ten tables (4.2-4.11) in the preceding
section. The non-AC and AC experiments are considered separately, and for most
comparisons, the given and pair algorithms are considered separately. For each
comparison, the strategy with the lowest proof time wins for that problem. An n-
way tie counts as 1/n win. The numbers of wins for each strategy are listed in the
tables. Although this is a crude measure (the wins are not weighted by difficulty
of problem or magnitude of the win), it gives some indication of the more useful
strategies.

Given vs. Pair Algorithm. Table 4.12 is a comparison of the given clause
algorithm and the pair algorithm. The non-AC and AC strategies were run with
both algorithms, and the number of wins is listed. Before this work, we believed
that for problems without AC unification, the given clause algorithm is nearly
always better and that for problems with AC unification, the pair algorithm is
nearly always better. This belief was based on intuition (see 4.5.1, p. 8), and a
few (unpublished) experiments with earlier versions of EQP. However, the table
indicates that the pair algorithm is somewhat better, on average, for both types of
problem.

Table 4.12
Winning Selection Method

Non-AC AC
given | 259.5 (39%) | 105.5 (40%)
pair 400.5 (61%) | 154.5 (60%)

Best-first : Breadth-first Ratio. For each paramodulation strategy and se-
lection algorithm, we have data for ratios n:1, for n= 1, 4, 8, and oco. In Table
4.13, we show the number of wins, separated into non-AC and AC cases, for each
value of the ratio. Note that for a given ratio and unification type, there appears
to be a correlation between the given and pair algorithms. This is surprising to
us because the given and pair algorithms are quite different in ordering the search.
We expected more of a correlation among the ratios for a given unification type
and selection algorithm.

For many years we used pure best-first search (n = oo), and lately we have used
n = 4 with good results for non-AC problems. Therefore the good performance

26 Chapter 4

Table 4.13
Winning Ratios
Non-AC AC
Ratio given pair given pair

1 40.3 (24%) 43.4 (26%) | 29.5 (45%) 30.7 (47%)
4 48.8 (30%) 32.9 (20%) | 14.2 (22%) 11.7 (18%)
8 49.3 (30%) 52.4 (32%) | 6.7 (10%) 7.2 (11%)
00 26.5 (16%) 36.3 (22%) | 14.7 (23%) 15.5 (24%)

of smaller ratios surprises us. This is especially so for the AC problems, where
we assumed that focusing on small clauses would be better because of the prolific
nature of AC inference.

AC Axioms vs. AC Unification. Table 4.14 compares AC axioms with AC
unification for the 13 problems that have AC function symbols. Strategy “ord”
is excluded from the AC axioms searches, and strategy “super(” is excluded from
the AC unification searches, but the “all” strategies (which include “ord” for AC
axioms and “super0” for AC unification) are compared. Thus there are 208 (= 13
[problems] x 4 [ratios] x 4 [paramodulation strategies]) comparisons.

Table 4.14
Winning AC Strategy
given pair
AC axioms 87.5 (42%) 100.0 (48%)

AC unification | 120.5 (58%) 108.0 (52%)

Functional Subsumption. Weran all 368 (=(33 [non-AC] + 13 [AC]) x 4 [ratio]
x 2 [selection]) experiments with functional subsumption, but we have omitted the
results, because of lack of space, and because the results are less interesting than the
results of the other strategies. In summary, functional subsumption, when added to
the starting strategy, had very little effect on the proof times for the AC problems.
For the non-AC problems, it had, on average, a slightly positive effect; for several
problems (QLT-5, QLT-6, RBA-2, WAL-1a), the effect was very positive, and for
one (TBA-1-el) the effect was very negative.

For the paramodulation strategies named “all” | we included functional subsump-
tion as well as the other paramodulation strategies.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 27

Starting, Basic, Blocked, Ordered-Instance, and Super-0 Strategies. Ta-
ble 4.15 shows one of the most important results of this work. The table lists the
number of wins for each paramodulation strategy. It does not include the “all”

Table 4.15
Winning Paramodulation Strategies
Non-AC AC
given pair given pair

start | 24.8 (19%) 20.0 (15%) start 1.0 (2%) 0.5 (1%)
block | 10.9 (8%) 8.0 (6%) block 3.5 (7%) 8.0 (15%)
basic | 81.9 (62%) 79.5 (60%) basic 4.0 (8%) 4.0 (8%)
ord 14.4 (11%) 24.5 (19%) super(Q | 43.5 (83%) 39.5(76%)

paramodulation strategies because we wish to compare the individual paramodu-
lation strategies with the starting strategy. The most obvious indications from the
table are that basic paramodulation is widely useful for non-AC problems and that
the superset limit, although incomplete, is widely useful for AC problems.

Overall Winning Strategies. Table 4.16 uses the proof times in Tables 4.2
through 4.11 to rank the 40 strategies by number of problems on which each strategy
won. Here we have included the “all” paramodulation strategies. As one might
expect, the “all” strategy frequently performed better than the best individual
strategy. A scan of Tables 4.2 through 4.11 shows also that the “all” strategy
sometimes inherits the bad properties of the worst individual strategy. For example,
in problem RBA-2 in Table 4.7, basic paramodulation with the pair algorithm seems
to delay proofs, and in problem D-BA-ba in Table 4.11, blocked paramodulation
with the given clause algorithm seems to delay proofs.

Other Comments on the Experiments. We discuss here several properties
that are not apparent in the preceding tables of winning strategies.

Ordered-instance paramodulation had little effect on the searches. This property
can be seen by comparing the “start” searches with the “ord” searches in Tables
4.2 through 4.8. We believe the reason is that with our 33 test problems most
of the input and derived equations are orientable. Also, this leads us to believe
that ordered-instance demodulation (using nonorientable equations as demodula-
tors when the instance for the rewrite 1s orientable, also called lex-dependent de-
modulation) would have a small effect on the searches.

28 Chapter 4

Table 4.16
Overall Winning Strategies
Non-AC AC
basic-1-giv. 3.7 (11%) | all-4-giv 0.6 || all-4-giv 2.8 (22%)
all-1-pair 3.0 start-1-giv 0.4 || all-1-giv 2.7
basic-1-pair 2.5 block-8-pair 0.3 || all-n-pair 1.4
basic-4-giv. 2.4 basic-4-pair 0.2 || all-8-giv 0.8
all-8-pair 2.2 all-1-giv 0.2 || super0-1-pair 0.6
basic-8-giv. = 1.8 start-1-pair 0.1 || all-1-pair 0.6
basic-n-pair 1.4 start-4-pair 0.1 || super0O-1-giv 0.5
basic-n-giv. 1.3 ord-1-pair 0.1 || all-n-giv 0.4
start-n-pair 1.1 block-1-pair 0.1 || super0-4-pair 0.4
ord-n-pair 1.1 block-n-pair 0.1 || all-4-pair 0.4
start-8-pair 1.0 start-8-giv 0.1 || super0-n-pair 0.3
ord-n-giv 1.0 block-1-giv. 0.1 || superO-n-giv. 0.3
all-8-giv 1.0 block-4-giv. 0.1 || super0-8-pair 0.2
basic-8-pair 0.9 block-8-giv 0.1 || all-8-pair 0.2
ord-8-pair 0.8 ord-4-pair 0.1 || super0-4-giv. = 0.2
all-4-pair 0.8 block-4-pair 0.1 || super0-8-giv 0.2
all-n-pair 0.6 all others 0.0 || block-1-pair 0.1
start-4-giv 0.6 block-1-giv 0.1
ord-4-giv 0.6 all others 0.0

e Blocked paramodulation usually had little effect for the non-AC problems.'® In
many cases the blocked search was slightly slower than the corresponding starting
search, probably because of the time required for checking substitutions for re-
ducibility. For the AC problems, blocked paramodulation had greater effects, both
positive and negative, when compared with the starting strategy. These results
were unexpected because Kapur and Zhang [7] report excellent results for blocked
AC-paramodulation on ring problems.

4.8 Robbins Algebra

In this section we present two results in Robbins algebra obtained with EQP’s AC
unification and matching, then present a small case study on the easier result and
one experiment on the more difficult result. The Robbins problem, whether every

10 A similar observation was made by Kapur, Musser, and Narendran in [5].

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 29

associative-commutative algebra satisfying the Robbins axiom is also a Boolean
algebra, was posed in the 1930s and is still open. In working on the problem, Steve
Winker proved by hand two difficult lemmas [18] suggested by Larry Wos. The
first is that a Robbins algebra satisfying 3C'3D, C'+ D = ¢ must be Boolean, and
the second is that a Robbins algebra satisfying 3C3D, n(C' + D) = n(C') must be
Boolean. (Problem RBA-2, from the main body of experiments, is the much simpler
lemma that a Robbins algebra satisfying 3C,C + C' = C, must be Boolean.) In
November 1992, an early version of EQP proved the first lemma (in a few hours),
and in February 1996, EQP proved the second lemma (in 12 days). Winker’s proofs
are higher order in the sense that they use induction, so EQP’s proofs are seen as
the first equational proofs of the lemmas. As far as we know, no other program has
proved either of these lemmas. The first lemma was proved by refuting the set

n(n(n(z) +y) +n(z+y) =y
C+D=C (denial of first Robbins lemma)
r4+z#x

and the second by refuting the set

n(n(n(z) +y) +n(z+y) =y
n(C + D) =n(C) (denial of second Robbins lemma).
r+y#e

In both cases, 4+ is an AC function symbol, and C' and D are constants. Qur proofs
of these two lemmas have not been previously published, and we present them in
Appendix B, starting on page 40. The two Robbins lemmas are much more difficult
than any of the 33 test problems, so they were not included in the main body of
experiments.

Experiments with the First Robbins Lemma. For the first Robbins lemma,
we specified a time limit of 4 hours and max-weight=30 (the same as in the first
successful search); otherwise, the strategies are the same as in the other AC ex-
periments. Table 4.17 contains the results (in seconds on an RS/6000 processor).
How closely does this problem follow the trends apparent in the main body of
experiments on the 33 test problems? Answer: not closely.

. The main body of experiments indicates that the “super()” and “all” strategies
are best for AC problems, but they are clearly the worst for the first Robbins
lemma. We don’t have an explanation for this disparity. The reason is not the
incompleteness of the “super0” strategy (which is part of the “all” strategy) because
it does not prevent all proofs in this case.

30 Chapter 4

Table 4.17
First Robbins Lemma Results
Given Pair
start-1-giv (T) | start-1-pair (T)
start-4-giv (T) | start-4-pair 8437
start-8-giv (T) | start-8-pair 6675
start-n-giv (T) | start-n-pair 4400
block-1-giv (T) | block-1-pair (T)
block-4-giv (T) | block-4-pair 7625
block-8-giv (T) | block-8-pair 6130
block-n-giv (T) | block-n-pair 4311
basic-1-giv 3052 | basic-1-pair 8054
basic-4-giv (T) | basic-4-pair 3123
basic-8-giv 11397 | basic-8-pair 2427
basic-n-giv 6593 | basic-n-pair 1902
super0-1-giv (T) | super0-1-pair (T)
super(-4-giv (T) | super0-4-pair (T)
super(-8-giv (T) | super0-8-pair 9325
super(Q-n-giv (T) | super0O-n-pair (T)
all-1-giv (T) | all-1-pair (T)
all-4-giv (T) | all-4-pair (T)
all-8-giv 9484 | all-8-pair 14193
all-n-giv 4972 | all-n-pair 12888

. The main body of experiments indicates that the “basic” strategy is not particularly
powerful for AC problems, but it is clearly the winner for the first Robbins lemma.

. The main body of experiments indicates that lower ratios (more breadth-first) are
generally better for AC problems, but higher ratios, especially pure best-first, are
clearly best for the first Robbins lemma.

. As in the main body of experiments, the pair algorithm is clearly better than the
given clause algorithm.

. Many previous (unpublished) experiments on the first Robbins lemma by the author
and by Larry Wos show that proofs are much more difficult to find with AC axioms
than with AC unification. These results are consistent with the main body of
experiments.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 31

Experiments with the Second Robbins Lemma. Our ounly previous proof of
the second Robbins lemma was with an earlier version of EQP and required 12.5
days on a 486DX2/66 processor (estimated 7.5 days on an RS/6000) with a strategy
similar to “start-n-pair” with max-weight=34. Our computing environment was not
stable enough to run many multi-day jobs during the period we had to run new
experiments on this lemma, but we were able to obtain one meaningful comparison.
The lemma was run on an RS/6000 with strategy “start-n-pair”, max-weight=34,
and a proof was found in 7.04 days. Then the winning strategy for the first Robbins
lemma, “basic-n-pair”, was run on the second lemma; the job ran for about 7 days
without finding a proof, then the computer had to be shut down. Thus we conclude
that, although “basic-n-pair” is twice as good as “start-n-pair” for the first lemma,
it is no better (and possibly much worse) for the second lemma.

4.9 Conclusion

The 33 test problems come from a study in a few areas of equational logic and
are mostly about lattice-like algebras and group-like algebras. The statements of
the theorems are characterized mostly by small sets of small equations. We don’t
know how well our results and conclusions will apply to other areas such as ring-like
algebras, nonequational theories, and theorems involving defined concepts.

The following results on the 33 test problems are consistent with our previous
experience and beliefs about paramodulation strategies for equational logic.

No winning strategies exist. The strategies that win in most cases are sometimes
the worst strategy, and each strategy wins in some cases. This supports our long-
held position that users of automated deduction systems need a variety of strategies
with which to experiment.

Basic paramodulation is widely useful for non-AC problems and is also powerful
for the first Robbins lemma with AC unification.

Although incomplete, the superset limit on AC unifiers (strategy “super0”) is widely
useful for AC problems.

The tables in Section 4.6 include data on proof length. We found substantial
variations in proof length, but we have not been able to draw any conclusions
about which strategies lead to short proofs. We advise users seeking short proofs
to consult Larry Wos’s recent work [20, 19] and to experiment with a variety of
strategies.

The following results are surprising to us.

32 Chapter 4

For selecting the next unit of work, we had previously assumed that the given clause
algorithm is much better for non-AC problems and that the pair algorithm is much
better for AC problems. But for this set of problems, paramodulation strategies,
and selection ratios, the pair algorithm wins about 60% of the contests for both
non-AC and AC problems. The good performance of the given clause algorithm on
the AC problems was just as surprising as the very good performance of the pair
algorithm on the non-AC problems.

For the 13 problems with AC function symbols, AC axioms perform nearly as well
as AC unification. However, we now believe that these 13 problems may be biased
toward AC axioms because they all are about lattice-like structures and because
they are not particularly difficult problems. Our experience with difficult Robbins
algebra theorems (e.g., the two Robbins lemmas in the preceding section) and the
experience of others with ring problems indicate that AC unification 1s much better
than AC axioms for those areas.

The lower selection ratios (which are closer to equal parts of best-first and breadth-
first search) perform very well, especially for AC problems, where 1:1 is the winner.
This observation leads us to believe that we should experiment with ratios that
emphasize breadth-first search. (Experiments with pure breadth-first search have
shown it to be useful in very few cases.)

The set of results on the main body of experiments is not a good indicator for the
performance of the various strategies on the first Robbins lemma, and the results
on the first Robbins lemma are not a good indicator for the second Robbins lemma.

The superset restriction for AC unifiers (strategy “super0”) is incomplete, but it did
not block all proofs for any of the problems to which it was applied. Although this
behavior surprises us, it supports our long-held position that incomplete restrictions
are extremely valuable in automated deduction.

We have several World Wide Web pages associated with this work. They are
accessible from the page

http://wuw.mcs.anl.gov/home/mccune/ar/33-basic-test-problems/

and include (1) the source code of the version of EQP used for these experiments,
(2) all of the input files for the 33 test problems in both Otter and EQP format,
(3) the database of search results (in Prolog format) from which all of the tables in
this chapter were generated, and (4) proofs of the first and second Robbins algebra
lemmas.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 33

Appendix A: Denials of the 33 Theorems

We present here the denials of the 33 theorems in clause form. A short description is
given for each theorem; see [11] for further details. Variables are distinguished from
constants by starting with a member of {u, v, w, z,y, z}. If “max-weight” is listed,
it was used for all experiments; otherwise no limit was used in any experiment. If a
symbol order is listed, 1t was used for all experiments; otherwise the default order
was used.

CS-2. Support for Padmanabhan’s conjecture on cancellative semigroups.
Max-weight=31.

(z*y)xz=o*(y*2)
AxB+AxB+xAxBx A+« B#A+xAxAxA+«B+xBxBxB

CS-6a. Support for Padmanabhan’s conjecture on cancellative semigroups.
Max-weight=31.

(z*y)xz=o*(y*2)
THYKZHUKV =Y+ 22X UKVK D

AxB+AxB+xAxBx A+« B#A+xAxAxA+«B+xBxBxB

D-BA-1b. An independent self-dual 6-basis for Boolean algebra.
(Name abbreviated from DUAL-BA-1b.)

(z+y)*xy=y, (xxy)+y=y
zx(y+z)=(y*xx)+(z*z), s+ (y*xz)=(y+2z)*(z+2)
1‘—|—1‘/:17 zxz =0

(A« B)*C # Ax(B=«(C)

D-BA-2a. A basis for Boolean algebra.
(Name abbreviated from DUATL-BA-2a.) Symbol order: 1 < A < B < C <+ <+ <' < p.
Max-weight=28.

(z+y)ry=uy, ple,z,y) =y
vx(y+z)=(vxy)+ (v+*2), p(e,y,y) =
l‘+1'/:17 p(x,y,x)zfﬁ

p(@,y,2) = (@ xy) + ((2+2) + (¥ * 2))
A+(B*C)# (A+B)x (A+C)

34 Chapter 4

D-BA-5a. A self-dual 2-basis for Boolean algebra.
(Name abbreviated from DUAL-BA-5a.) Max-weight=23.

y+(zx(y*z)) =y, yr(z+(y+z2)=y
((zxy)+(y*2))+y=y, ((z+y)x(y+2))ry=y
(z+y)*(z+y) =g, (zxy)+(z*y)==
r+y=y+uz, THkY=Y*xT
(z+y)+z=2+(y+2), (z*y)xz=ox*(y*2)

(A+ B)+(A+C)# Ax (B+C)

D-BA-5c¢c. A self-dual 2-basis for Boolean algebra.
(Name abbreviated from DUAL-BA-5c.) Max-weight=23.

y+(zx(y*z)) =y, yr(z+(y+2))=y
(zxy)+(yr2))+y=y, (e+y)*(y+2))rxy=y
(z+y)*x(z+y) ==, (z+xy)+(zxy) ==
r+y=y+uz, TxkY=Y*xT

(z+y)+z=z+(y+2), (zry)*xz=x*(y*z)
B4+ B £A4 A

D-BA-8a. A self-dual 3-basis for Boolean algebra.
(Name abbreviated from DUAL-BA-8a.) Max-weight=23.

y+(z*(y*2)) =y, y*x(z+(y+2)=y
(+xy)+(y*z)+y=y, (+y)*xy+z))*xy=y
(x—l—x')*y:y, (x*x')—l—y:y
x—l—x':l, zxzx' =0

(z+y)+z=z+(y+2), (zry)*xz=x*(y*z)
(xy)+ ((y*r2)+(zx2))=(x+y)*((y+2)* (2 +2))
(A% B)+(A*C) # Ax (B+C)

LT-10a. An absorption 3-basis for lattice theory.

yA(@V(yVz) =y
(@Ay)V(yAz)Vy=y
(yva)A(yvz)Ay=y
BV(AA(BAC))#B

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies

LT-2. An equational version of SAM’s lemma.
Max-weight=15.

T NT =x, rVr=uzx

T Ny=yANuwz, rVy=yVvVax
(xAyY)ANz=zA(yAz), (zVvy)Vz=zV(yVz)
zA(zVy) =g, zV(zAy) ==z
0Nz =0, OVe=x

1Ny ==, I1Ve=1

T NT =x, rVr=uzx
(zAyY)V(zAz)=zA(yV(zAz))

Civ(AvB)=1, C2v(AAB)=1
Ci1An(AVB)=0, C2AN(AAB)=0
(CIV(AANC2)A(C1V (BAC2))#£C1

LT-3e. Sholander’s basis for distributive lattices.
Max-weight=19.

zA(zVy) =z
{ zA(yVz)=(zAz)V(yAz) }
(AvB)VC #£AvV(BVC()

LT-4. The distributive law implies its dual in lattice theory.
Max-weight=17.

T NT =x, rVr=x

T Ny=yANuwz, rVy=yVuxw
(xAyY)ANz=zA(yAz), (xVy)Vz=xzV(yVz)
zA(zVy) =g, zV(zAhy)==z

zA(yVz)=(xAy)V(zAz)
AV(BAC)# (AVB)A(AVO)

LT-5. A new self-dual form of distributivity for lattice theory.
Max-weight=23.

T NT =x, rVr=x

T Ny=yANuwz, rVy=yVuxw
(xAyY)ANz=zA(yAz), (xVy)Vz=xzV(yVz)
zA(zVy) =g, zV(zAhy)==z

(((zry) V) Ay V(zAz)=(((zVy) Az)Vy) A2V T)
AN(BVC)#£(AANB)V(AANC)

35

36

LT-6. McKenzie’s basis for the lattice variety generated by Ns.
Max-weight=35.

T NT =x, rVr=uzx

T Ny=yANuwz, rVy=yVvVax

(xAyyAz=zA(yAz), (zVy)Vz=zV(yVz)

zA(zVy) =g, zV(zAy) ==z
zA(yVizA(zVu))=(@A(yV(eAz))V(zA((zAy)V(zAuw))

(
PV WAV @AW) = (@V (A (VDAY (@ V) A (Y)
(V@A) AEV(@AY)= (=AY (YA2)V(EA(yV=2)
AN({(BVCO)AN(BV D)) #
(AN(BVO)A(BVDY)YA(AAN(BV(CAD)))V((AANC)V (AAND)))

LT-8. Uniqueness of the meet operation in lattice theory.
Max-weight=17.

T NT =x, rVr=uzx

T Ny=yANuwz, rVy=yVvVax
(xAyyAz=zA(yAz), (zVy)Vz=zV(yVz)
zA(zVy) =g, zV(zAy) ==z

T*T =1

THY=Y*T
(z*y)xz=xx*(y*2)
zx(zVy)=2
zV(r*y)=2
ANB#A+B

LT-9b. McKenzie’s absorption basis for lattice theory.
Max-weight=21.

yV(@AyAz)=y
yA(@V(yVz) =y
((xAy)V(yAz)V
((@Vy)A(yVz))A

y=y
y=y
(AANB)AC#AAN(BAC

)

MFL-1. Moufang-1 = Moufang-2 in loops.
Symbol order: A < B <C <1 <x<R<L</<\. Max-weight=17.

lxx ==, rxl=ux

z* (z\y) =y, z\(z*y) =y
(@/y) xy ==, (zry)fy==
zx R(z) =1, Lz)*z=1

(A« B)*C)* B# Ax(Bx*(C* B))

Chapter 4

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies

MFL-2. Moufang-2 = Moufang-3 in loops.
Symbol order: A < B <C <1 <x<R<L</<\. Max-weight=17.

lxx ==, rxl==x

z* (z\y) =y, z\(z*y)=y
(x/y)*y ==z, (z*xy)/y==2
zx R(z) =1, Lz)*z=1

(AxB)* Ay« C # Ax (B (Ax())

MFL-3. Moufang-3 = Moufang-1 in loops.
Symbol order: A < B <C <1 <x<R<L</<\. Max-weight=17.

lxx ==, rxl==x

z* (z\y) =y, z\(z*y)=y
(x/y)*y ==z, (z*xy)/y==2
zx R(z) =1, Lz)*z=1

(Ax(BxC))* A% (A B)* (Cx A)

MFL-7. Simple basis with Moufang-3.
Max-weight=21.

lxx ==
' xzr=1
(A« B)*C)* B# Ax(Bx*(C* B))

QLT-1. A form of distributivity for quasilattices.
Max-weight=19.

T NT =x, rVr=x
T Ny=yANuwz, rVy=yVuxw
(xAyY)ANz=zA(yAz), (xVy)Vz=zV(yVz)

(A(yVz)Vi(eny)=zA(yVz), (V(yAz)A(zVy)=xV(yAz)
zA(yVzAz)=zA(yVz)
AN(BVC)#£(AANB)V(AANC)

37

38 Chapter 4

QLT-2. The distributive law implies its dual in quasilattices.
Max-weight=19.

T NT =x, rVr==zx
rAy=yAux, rVYy=yVvae
(xAyY)ANz=zA(yAz), (xVy)Vz=zV(yVz)

(A(yVz)Vi{zAny)=zA(yVz), (V(yAz)A(zVy)=xV(yAz)
zA(yVz)=(xAy)V(zAz)
AV(BAC)# (AVB)A(AVO)

QLT-3. A self-dual form of distributivity for quasilattices.
Max-weight=24.

T NT =x, rVr=x
T Ny=yANuwz, rVy=yVuxw
(xAyY)ANz=zA(yAz), (xVy)Vz=zV(yVz)

(zA(yVz) Vi{zrny)=zA(yVz), (V(yAz)A(zVy)=xV(yAz)
(((zry) V) Ay V(zAz)=(((zVy) Az)Vy) A2V T)
AN(BVC)#£(AANB)V(AANC)

QLT-4. Bowden’s inequality gives distributivity in quasilattices.
Max-weight=19.

T NT =x, rVr=x
rAy=yAux, rVYy=yVvae
(xAyY)ANz=zA(yAz), (xVy)Vz=zV(yVz)

(A (yVz) Vi{zny)=zA(yVz), (V(yAz)A(zVy)=xV(yAz)
(2V(yA)V((aVy)Az)=aV(yAz)
AN(BVC)#£(AANB)V(AANC)

QLT-5. Self-dual modularity axiom for quasilattices.
Max-weight=23.

T NT =x, rVr=x
T Ny=yANuwz, rVy=yVuxw
(xAyY)ANz=zA(yAz), (xVy)Vz=zV(yVz)

(zA(yvz)V(zAy)=xsA(yVz), (tVyrz)A(zVy)=zV(yAz)
(zAy)V(zA(zVy)) = (xVy) Az V(s Ay))
AN(BV(ANC))#(AAB)V(ANC)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies

QLT-6. A modularity axiom for quasilattices.
Max-weight=23.

T NT =x, rVr=x

T Ny=yANuwz, rVy=yVuxw
(xAyY)ANz=zA(yAz), (xVy)Vz=zV(yVz)
(zA(yVvz) Vi{zAy)=zA(yVz), (V(yAz)A(zVy)=xV(yAz)

(x
((zvynz)Vy=((zVy)Az)Vy
AN(BV(ANC))#(AAB)V(ANC)

RBA-2. A Robbins algebra with an idempotent element is Boolean.
Max-weight=21.

rt+y=y+x

@4y +2=a+(y+2)
n(n(n(z)+y)+nz+y)=y
c+c=c

n(A+ n(B)) + n(n(A) +n(B)) # B

SD-2a. Intersection in terms of set difference.
Symbol order: A < B < (' < — < *. Max-weight=23.

—(y—z)=ux
r—(r—y)=y—(y—=)
(@-—y)—z=(—-2)—(y—2)
zxy=z—(v—y)

(A« B)*C # Ax(B=«(C)

SD-3-el. A simple basis for set difference.

—(y—2)=c
e—(r—y)=y—(y—2)

(@ —y)—z=(r—=2)—(y—=2)
(A-C)=B#(A-B)-C

SD-3-e2. A simple basis for set difference.
Max-weight=23.

—(y—2)=c
e—(r—y)=y—(y—2)
(@—y)—z=(r—2)—y
(A=B)-C#(A-C)=(B-0)

39

40 Chapter 4

TBA-1-el. A short single axiom for ternary Boolean algebra.
Max-weight=26.

f(f(v,w,z), y7 flv,w,2)) = f(v,w, f(z,y,2))

[y, =, y5)

f(@,y,9(y))_l“

flo,z,y) ==

flaly) r)=1w

ff(A, (), B),g(f(f(C,D,E),F, f(C,D,Q))), f(D, (G, F,E),C)) # B

TBA-1-e2d. A short single axiom for ternary Boolean algebra.
Max-weight=>50.

{ F(f(w,9(x),), g(F(f(z 0, 0), w, f(z,u,06))), f(u, f(v6,w,v),2)) =y }
F(AAB) £ A

WAL-1la. A relationship between lattices and weakly associative lattices.
Max-weight=17.

T NT =x, rVr=uzx

TAYy=yAu, rVy=yVze
((zVvz)A(yVz)Ahz=2, ((zAz)V(yAz))Vz=2z
zA(yV(zVvz)==z

(AAB)AC #AN(BAC)

WAL-2. Uniqueness of the meet operation in weakly associative lattices.
Max-weight=17.

T NT =x, rVr=uzx

T Ny=yANuwz, rVy=yVvVax
((zVvz)A(yVz))Ahz=2, ((xAz)V(yAz)Vz=2z
T*xT =%

THY=y*o
((zVvz)*(yVz))*xz=z
((z*2)V(y*xz))Vz=z
ANB#A+B

Appendix B: Proofs of the Two Robbins Lemmas

We present here proofs of the two Robbins algebra lemmas discussed in Section 4.8.
The first lemma was proved in 1992 with an early version of EQP on a SPARC
2 with a strategy similar to our starting strategy, with the pair algorithm, pure

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 41

best-first pair selection, and max-weight=30; the proof was found in about 2 hours
and used 8 megabytes of memory.'' The second lemma was proved with a similar
strategy (max-weight=34) in 1996 with a recent version of EQP on a 486/DX2-66
(Linux); the proof was found in about 12.5 days and used 6 megabytes.'?

Each derived equation in the proofs below has a justification. The notation
“m — n” indicates paramodulation from the left side of m into the left side of n,
“:4,4,k, -+ indicates rewriting with the demodulators 4, j, k, - - -, and “n’” indicates
the extension of n.

First Robbins Lemma

r+y=y+=zx

4y +e=at(u+2)
n(n(n(z) +y) +n(e+y) =y
3C3AD (C+ D =C)

= Jz(r+ 2 =)

Proof (found on cosmo.mcs.anl.gov at 7801.45 seconds, Nov. 17, 1992).

1 C+D=C
2 n(n(n(z) +y) +n(z +y)) =
4 r+xF£x

11 n(n(C) +n(D +n(C))) =D [1— 2]
17 nn(C+z+y)+nD+n(C+z)+y)=D+y 17 — 2]
29 n(D + n(C + n(D 4+ n(C)))) = n(D + n(C)) [11 — 2]
36 n(n(n(n(z) +y)+n(z+y)+2)+n(z+y) = [2 — 2]
37 n(n(n(n(x) +y) + = +y) +y) = n(n(x) +y) [2 — 2]
76 n(n(C) +n(D +n(C +n(x))+n(C+2)))=D [1 — 36]
160 n(n(D +n(C+n(D+n(C))+z)+n(n(D+n(C))+=z)) =2 [29 — 2]
161 n(n(C+n(D+n(C))+n(D+n(C)))=D [29 — 2 :1]
203 n(n(C+n(C+n(D+nr(C))) +n(C+n(D+nr(C))=C [1" — 160 :1,1,1]
206 n(D+n(D+n(C)+n(C+n(D+n(C))))) =n(C+n(D+n(C))) [161 — 2]
302 n(D+n(n(C)+n(n(D+n(C)) +n(x)) + n(n(D+n(C)) +))) =n(C)

[11 — 36]
304 n(n(n(n(n(z) +y) +z+y)+z+y)+nnn(@) +y)+2) == [37 = 2]
465 n(C +n(D +n(C))) = n(C) [1 — 302 :1,11,206]
466 n(n(C)+n(C+n(C)))=C [203 :465,465]
470 n(n(C+z)+n(n(C)+n(C+n(C))+z)) ==z [466 — 2]
516 n(n(C+C+n(C+n(C)))+n(C+n(C))=C [466 — 37 :466]
585 n(C 4+ n(C+n(C)+n(C+ C+n(C+n(C0))))) =n(C+C+n(C+n(C)))

11 The SPARC 2 runs EQP about 0.34 as fast as the RS/6000 processors used for the main body
of experiments.
12The 486 runs EQP about 0.57 as fast as the RS/6000 processors.

42 Chapter 4

[516 — 2]
1432 n(C 4 C +n(C +n(C))) = n(C) [466 — 304 :585]
1452 D +n(C +n(C)) =D [1432 — 17 :76]
1472 C +n(C +n(C)) = C [1452" — 1’ :1]
1531 n(C+n(C)+v =2 [1472 — 2 :470]
1532 O [1531,4]
Second Robbins Lemma
r+y=y+=zx
(49 +2=a+(+2) .
nn(n(e) +9) +n(a+y) =y [UEV=Y)
AC3D (n(D + C) = n(C))
Proof (found on gyro.mcs.anl.gov at 1081324.76 seconds, Feb. 18, 1996).
2 T+y £y
4 n(D + C)=n(C)
5 n(n(n(z) +y) +nlz+y)) =y
7 nn(D+C+z)+nn(C)+zx))= [4 — 5]
8 n(n(C) +n(D +n(C))) =D [4 — 5]
10 n(n(D+z)+nn(C)+n(D+n(C)+z))=2 [8 — 5]
12 n(D + n(C + n(D 4+ n(C)))) = n(D + n(C)) [8 — 5]
21 n(n(n(n(z) +y) + = +y) +y) = n(n(z) +y) [5 — 5]
28 n(n(D+C+n(n(C)+z)+2z)+2)=n(n(C)+z) [4 — 21 :4]
38 n(n(n(D+C +o) +n(n(C) + 1) +y) + (s +) =y 7 - 5]
67 n(n(D+n(C))+n(D+C+n(D+n(C))))=D [12 — 5]
144 n(n(n(n(z) +y) +o+y+y)+nn@)+y) =y [21 — 5]
S n(n(n(n(x) £9) £0(e) 4nly+3) 4 2)) <l 4 [5 - 21 5]
173 n(D+n(D 4+ n(C)+ n(D + C+ n(D+n(C))))) =n(D 4+ C +n(D + n(C)))
[67 — 5]
290 n(n(n(n(n(e) +y) + 2 +y+y) +nln(e) +y) +2)+nly+2)) = (144 — 5]
301 n(D+4+C+n(D+n(0)))=n(C) [8 — 38 8 ,173]
829 n(n(D +n(0)) +n(D + n(D + n(C)) + n(n(C) + n(z)) + n(n(C) + z))) =
[8 — 148 8]
1237 n(n(n(n(n(z)+y)+nlz+y)+nly+2z)+2z)+z4+u)+nnly+z)+u)) =u
[148 — 5]
1478 n(D+ D+ C+ n(D+n(C))) = n(C) [28 — 10 :290]
1501 n(n(D+ D+ C+n(D+n(0))+n(n(C)+z)+2z)+2)=n(n(C)+z)

[1478 — 21 :1478]
3321 n(D+4+n(D+n(C)+n(D+ n(D 4+ n(C)) + n(n(C) + n(z)) + n(n(C) + x)))) =
n(C) [8 — 1237]
3710 n(D 4+ n(D + n(C)) + n(n(C) 4+ n(z)) + n(n(C) + z)) = n(C)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 43

[829 — 38 :301,8,3321
3711 n(D 4+ n(D+n(C))+ n(D 4+ C 4+ n(C)) + n(n(C) + n(C))) = n(C) [4 — 3710
3736 D+ n(D+ n(C))+ n(n(C) + n(C)) = n(n(C) + n(C)) [3711 — 5 :1501
3737 O [3736,2

[l W e WY

References

[1] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superpo-
sition. In D. Kapur, editor, Proceedings of the 11th International Conference on Automated
Deduction, Lecture Notes in Artificial Intelligence, Vol. 607, pages 462—476. Springer-Verlag,
1992.

[2] M. Bonacina and W. McCune. Distributed theorem proving by Peers. In A. Bundy, editor,
Proceedings of the 12th International Conference on Automated Deduction, Lecture Notes in
Artificial Intelligence, Vol 814, pages 841-845. Springer-Verlag, 1994. Extended abstract.

[3] J. Hsiang and M. Rusinowitch. On word problems in equational theories. In T. Ottmann,
editor, Proceedings of 14th ICALP, Lecture Notes in Computer Science, Vol. 267, pages
54-71. Springer-Verlag, 1987.

[4] G.Huet. An algorithm to generate the basis of solutions to homogeneous linear Diophantine
equations. Information Processing Letters, 7:144-147, 1978.

[5] D. Kapur, D. Musser, and P Narendran. Only prime superpositions need be considered in
the Knuth-Bendix completion procedure. J. Symbolic Computation, 6:19-36, 1988.

[6] D. Kapur and H. Zhang. RRL: Rewrite rule laboratory user’s manual. Technical Report
89-03, Department of Computer Science, University of lowa, 1989.

[7] D. Kapur and H. Zhang. A case study of the completion procedure: Proving ring commu-
tativity problems. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in
Honor of Alan Robinson, chapter 10, pages 360-394. MIT Press, 1991.

[8] D. Lankford. Canonical inference. Tech. Report ATP-32, Dept. of Mathematics, University
of Texas at Austin, 1975.

[9] W. McCune. Experiments with discrimination tree indexing and path indexing for term
retrieval. Journal of Automated Reasoning, 9(2):147-167, 1992. Invited paper.

[10] W. McCune. OTTER 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, Argonne
National Laboratory, Argonne, 1L, 1994.

[11] W. McCune and R. Padmanabhan. Automated Deduction in Equational Logic and Cubic
Curves, volume 1095 of Lecture Notes in Computer Science (Al subseries). Springer-Verlag,
Berlin, 1996.

[12] W. McCune and L. Wos. Experiments in automated deduction with condensed detach-
ment. In D. Kapur, editor, Proceedings of the 11th International Conference on Automated
Deduction, Lecture Notes in Artificial Intelligence, Vol. 607, pages 209-223, Berlin, 1992.
Springer-Verlag.

[13] R. Niewenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Briickner, edi-
tor, Proceedings of the European Symposium on Programming, Lecture Notes in Computer
Science, Vol. 582, pages 371-389, Berlin, 1992. Springer-Verlag.

[14] R. Overbeek. A new class of automated theorem-proving algorithms. PhD thesis, Pennsyl-
vania State University, 1971.

[15] G. E. Peterson. A technique for establishing completeness results in theorem proving with
equality. SIAM J. Computing, 12(1):82-100, 1983.

(16]

[17]
[15]
[19]
[20]
[21]

(22]

G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order theories with
equality. In D. Michie and R. Meltzer, editors, Machine Intelligence, Vol. IV, pages 135—-150.
Edinburgh University Press, 1969.

M. Stickel. A unification algorithm for associative-commutative functions. J. ACM,
28(3):423-434, 1981.
S. Winker. Robbins algebra: Conditions that make a near-Boolean algebra Boolean. Journal

of Automated Reasoning, 6(4):465-489, 1990.

L. Wos. Automating the search for elegant proofs. J. Automated Reasoning, 1996. To
Appear.

L. Wos. The Automation of Reasoning: An Erperimenter’s Notebook with Otter Tutorial.
Academic Press, New York, 1996.

L. Wos, D. Carson, and G. Robinson. The unit preference strategy in theorem proving. In
AFIPS Proceedings 26, pages 615—621. Spartan Books, 1964.

L. Wos, G. Robinson, D. Carson, and L. Shalla. The concept of demodulation in theorem
proving. J. ACM, 14(4):698-709, 1967.

Index

associative-commutative unification
experiments, 26, 27
extended equations, 10
in EQP, 5, 8,9

superset limit, 12

basic paramodulation
description, 11
experiments, 27
best-first search, 8
blocked paramodulation
description, 11
experiments, 27, 28
Boolean algebra test problem, 33, 34
breadth-first search, 8

cancellative semigroup test problem, 33
completeness, inference rules, 1

EQP theorem prover
associative-commutative unification, 9
description, 4
experiments, 1
Robbins algebra proofs, 40
structure sharing, 6

equational logic, 2

equational theorems, 2

experiments
associative-commutative, 14
comparison, 25
non-AC, 14
paramodulation, 1

functional subsumption
description, 12
experiments, 26

given clause algorithm
description, 8
experiments, 25

group theory problems, 2

Huet, G.

associative-commutative unification, 9

indexing of terms, 6

inference rules
completeness, 1
paramodulation, 1

Kapur, D.
associative-commutative unification, 9
blocked paramodulation, 11
prime superposition, 11

lattice problems, 2
lattice theory test problem, 34-36

max-weight parameter, 2
Moufang loop test problem, 36, 37
Musser, D.

prime superposition, 11

Narendran, P.
prime superposition, 11

ordered paramodulation
description, 10
experiments, 27
ordering of terms, 10
ordering on terms, 3, 4
Otter theorem prover
autonomous mode, 3
comparison with EQP, 4

Padmanabhan, R., 2
pair algorithm
description, 8
experiments, 25
paramodulation
Argonne paradigm, 3
basic, 11
blocked, 11
completeness, 4
experiments, 1
ordered, 10
strategies, 10
winning strategies, 27
Peterson, G.
paramodulation, 4
pick-given-ratio
description, 8
experiments, 25
reordering search, 3
proof length, 13

quasilattice test problem, 37-39

Robbins algebra
lemmas, 28
proofs of lemmas, 40
test problem, 39
web pages, 32

RRL theorem prover, 9

set difference test problem, 39
Stickel, M.

associative-commutative unification, 9
structure sharing, 6

46

ternary Boolean algebra test problem, 40
test problems

33 denials, 33

description, 2

weakly associative lattice test problem, 40
web pages
paramodulation experiments, 32
Robbins algebra, 32
Winker, S.
Robbins algebra, 29
Wos, Larry
demodulation, 3
experiments, 3
paramodulation, 3
Robbins algebra, 29

Zhang, H.
associative-commutative unification, 9
blocked paramodulation, 11

Index

