
4 33 Basic Test Problems: A Practical Evaluation ofSome Paramodulation StrategiesWilliam McCune1Argonne National Laboratory4.1 IntroductionMany researchers who study the theoretical aspects of inference systems believethat if inference rule A is complete and more restrictive than inference rule B, thenthe use of A will lead more quickly to proofs than will the use of B. The literaturecontains statements of the sort \our rule is complete and it heavily prunes thesearch space; therefore it is e�cient".2 These positions are highly questionableand indicate that the authors have little or no experience with the practical useof automated inference systems. Restrictive rules (1) can block short, easy-to-�ndproofs, (2) can block proofs involving simple clauses, the type of clause on whichmany practical searches focus, (3) can require weakening of redundancy control suchas subsumption and demodulation, and (4) can require the use of complex checksin deciding whether such rules should be applied. The only way to determine thepractical value of inference rules and search strategies is to experiment on problemsin which long-term target users are interested.In this chapter we present a new theorem prover for equational logic, a set of33 equational theorems for evaluating paramodulation strategies, a large set ofexperiments with several paramodulation strategies, and two equational proofs inRobbins algebra. The new theorem prover, EQP, includes associative-commutativeuni�cation and is restricted to equational logic, but in many other ways it is sim-ilar to our production theorem prover Otter[10]. The 33 equational theorems,which are mostly about lattice-like and group-like structures, are taken from a re-cent interdisciplinary study on application of Otter to problems in equational logic[11]. The experiments are with basic paramodulation, blocked paramodulation,ordered-instance paramodulation, functional subsumption, a heuristic for eliminat-ing associative-commutative uni�ers, and methods for directing the search. Thetwo Robbins algebra theorems, which involve the hypotheses 9C9D (C +D = C)1Supported by the Mathematical, Information, and Computational Sciences Division subpro-gram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.2This is a very general statement. We are not referring in particular to the paramodulationstrategies on which we focus in this chapter

2 Chapter 4and 9C9D (n(C +D) = n(C)), were previously known, but we believe the proofswe present here are the �rst equational proofs and the �rst ones found by computer.4.2 The Test ProblemsOur 33 test problems are taken from the recent monograph Automated Deductionin Equational Logic and Cubic Curves [11], which contains a collection of �rst-ordertheorems proved by Otter [10]. The theorems are in a narrow area: from the syn-tactic view, all are equational, in languages with small sets of symbols, and mosthave small sets of small equations; from the semantic view, most are about simplelattice-like algebras and simple group-like algebras. Otter can already prove mostof the theorems, so this work sheds little light on new kinds of theorem (such astheorems involving rich theories or complicated de�nitions) for which the paramod-ulation strategies of these experiments might be useful. Nevertheless, we believethe theorems are a good set for evaluating paramodulation strategies because theyare real and nontrivial theorems that arose in practice when a mathematician (R.Padmanabhan) was studying algebraic structures with equational logic.From the set of theorems in [11], we have excluded those involving the geometryinference rule =(gL)) , those with nonequational hypotheses such as cancellation,those that required extremely specialized strategies to �nd a proof, and most ofthose that were proved by Otter in less than a second or two. Also, many of thetheorems in [11] have multiple goals (nonunit denials), and in those cases we usedonly the most di�cult goal. That left 33 equational theorems3 (each with a unitgoal), of which 13 have at least one associative commutative (AC) operation. Thenames we use here are similar to those in [11], with the minor modi�cation that ifwe use just one goal of a multiple-goal theorem, we append a lower-case letter tothe name: \a" means that we use the �rst goal, \b" the second, and so on.This brings us to a dirty part of these experiments|the max-weight parameter.It is a practical fact that Otter and EQP need a limit on the size of retainedclauses for most nontrivial searches. Otherwise, most retained clauses never enterthe search, wasting memory and wasting the time used trying to rewrite them withnew demodulators. (We assume that most other programs that generate and retaina lot of clauses have the same problem.) When faced with a new conjecture ortheorem, we generally start with no limit or with a limit that was successful for asimilar problem. We usually learn quickly if the limit is a bad choice (the programruns out of tasks to do if the limit is too small, and it runs out of memory if the3The number is a coincidence, really, Larry.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 3limit is too big), and we iterate a few times to �nd a limit that results in a well-behaved search.4 We used this method for the problems in [11], and we simplycopy the limits for these experiments. The danger in doing this is that a good limitfor one strategy is not necessarily acceptable for another strategy; for example, aparamodulation restriction may require the use of a longer clause. Even reorderingthe search with the pick-given-ratio (see 4.5.1, p. 8) parameter may require the use ofa higher limit, for example, if the generation of a greatly-simplifying demodulatoris delayed. Therefore, these experiments are biased somewhat toward a simplestarting strategy.Otter and EQP (without AC uni�cation) use a total order on function and con-stant symbols (which, by the lexicographic recursive path order, induces a partialsimpli�cation order on terms and a total simpli�cation order on ground terms) toorient equations and decide which are to be demodulators. The default symbolorder is constants � high-arity � � � � � binary � unary, and within arity, the lexi-cographic ascii ordering is used. We override the default order for the same casesand in the same ways as in [11]: In two cases (D-BA-2a and SD-2a), the purpose isto unfold de�ned terms, and in the cases MFL-1, MFL-2, and MFL-3, the purposeis to eliminate intuitively undesirable Skolem functions. For the experiments withAC uni�cation, a di�erent term order was used (see 4.5.2, p. 9).When we write \non-AC problems", we mean all 33 problems with ordinaryuni�cation, with AC axioms included for the 13 problems that have AC functionsymbols; and when we write \AC problems", we mean AC uni�cation with the13 problems that have AC function symbols. The test problems are listed in theAppendix, starting on page 33.4.3 Our Paramodulation ParadigmThrough the years, the members of the Argonne's automated reasoning group haveinvented and re�ned many inference rules and strategies for automated deductionin �rst-order logic with equality. In the early days of automated theorem proving,Larry Wos recognized the need for special treatment of equality if the �eld was tobe of practical use to mathematicians. As a result, he invented demodulation [22]and then paramodulation [16]. Larry's continuous emphasis on experimentation4We have attempted to automate the selection of a good limit with Otter's control-memoryag [12]. This ag is part of Otter's autonomous mode, which is used when the user has only onechance to prove a theorem, i.e., in automated theorem proving competitions, in demonstrations,for novice users, or when we're too lazy to make any decisions. For practical work, however, we�nd an appropriate limit by iteration.

4 Chapter 4with nontrivial problems has led the Argonne group to many advances in practicalautomated reasoning.Our \starting"5 paramodulation inference system in both Otter and EQP hasthe following properties.6� A term ordering is used to compare terms. If one side of an equation is greaterthan the other, the equation is arranged so that greater side is on the left, and theequation becomes a demodulator; it is then said to be oriented.� When paramodulating from (respectively into) an oriented equation, we paramod-ulate from (respectively into) the left side only. With nonoriented equations, weparamodulate from and into both sides. We never paramodulate from or into vari-ables.� Paramodulants are demodulated, tested for max-weight and subsumption, and ori-ented if possible; then the variables are renumbered. Oriented equations are addedto the set of demodulators and are used to back demodulate all existing equations(including demodulators). Back-demodulated equations are processed in the sameway as paramodulants.� For this set of experiments, we do not use the set of support restriction.We believe our implementations of this starting inference system are completefor equational theorems when used with an agenda that explores the search spacefairly (see 4.5.1, p. 8). In the literature, most of the restrictions and strategies thatare the focus of this chapter have been proved complete within speci�c settings.However, we have not carefully analyzed for completeness the compatibility of therestrictions with our starting strategy or with each other. Our (extensive) use ofthe max-weight parameter obviously causes incompleteness.4.4 EQP: The New Theorem ProverWe have been working on Otter [10] since 1988. It is a mature and stable program,with perhaps forty serious users. However, it has become di�cult to work onbecause of its size and its many kludges, patches, and extraneous features. When anew capability is to be added, di�cult questions arise such as \how does this a�ect5We would like to write \basic" instead of \starting", but \basic" is used for another purposein this chapter. The (unfortunately named) \basic paramodulation" is one of the strategies weevaluate in this chapter.6This inference system has been in use at Argonne in various forms since about 1977. It issimilar to G. E. Peterson's system [15] and unfailing Knuth-Bendix completion [3].

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 5negative linked superhyperparamodulation, added in 1991, probably not used byanyone, but something I'd like to keep anyway?"In 1992, we started an e�cient implementation of AC uni�cation, and that codehas grown, very slowly, into the new theorem prover EQP. The most importanttwo di�erences from Otter are that EQP includes AC uni�cation and it applies toequational problems only. Also, EQP is much simpler and easier to extend. An earlyversion of EQP was used for several experiments with algorithms for distributedequational reasoning (see, for example, [2]).Similarities between Otter and EQP1. Design philosophy and the C programming language.2. The overall structure of the programs.3. Uni�cation and matching algorithms (excluding AC uni�cation).4. The term and literal indexing algorithms. Both programs (excluding EQP withAC uni�cation) use discrimination tree indexing for retrieval of demodulators andsubsuming clauses, and both use FPA-Path indexing for retrieval of uni�able termsduring paramodulation and instance terms during back demodulation [9].5. Input and output languages.6. Noninteractive use of the programs.7. Performance of the programs.Di�erences between Otter and EQP1. Otter and EQP share very little code.2. Otter uses extensive structure sharing, which decreases memory consumption butcomplicates the algorithms and code. EQP uses simpler nonshared data structuresfor terms.3. EQP has AC uni�cation and matching.4. Otter drives the search with the given clause algorithm; EQP can use either thegiven clause algorithm or the pair algorithm (see 4.5.1, p. 8).5. EQP has many experimental paramodulation strategies (which are the focus of thischapter).6. EQP applies to equational problems only; nonunit clauses are not accepted.

6 Chapter 47. EQP lacks the following Otter features: user-de�ned weight functions, resolutioninference rules, Skolemization and clausi�cation, answer literals, autonomous mode,evaluable operations, the hot list, and back subsumption.The lack of structure sharing was a major concern in the design of EQP. Considera term t that must be indexed for back demodulation (i.e., we must be able to �ndit quickly when it can be rewritten by a newly derived demodulator). Say t has1000 occurrences in our current set of clauses. Without structure sharing, eachoccurrence is indexed and retrieved separately; but with structure sharing, the onephysical copy (to which all containing terms refer) is indexed and retrieved, and allcontaining clauses are then accessed by superterm lists. Indexing a term can requiremore memory than the term itself occupies, so lack of structure sharing causes theindexes to use even more memory than the terms use. However, nonshared termsare smaller, simpler, and faster to build, traverse, and recycle.Table 4.1 compares Otter with EQP on the 33 test problems. The time to proof(seconds on an IBM RS/6000 processor7), proof length, and number of clausesgenerated are listed; \(M)" means that the memory limit of 24 megabytes wasinadequate; \(T)" means that the time limit of 1800 seconds was inadequate; and\(S)" means that the program ran out of inferences to make, usually because theweight limit was too low for the strategy.Both programs used the same simple paramodulation strategy, and they usedsimilar search strategies (with a selection ratio of 4, see the following section),rewriting strategies, and clause-processing strategies. The (perhaps surprising)di�erences between the programs are due mostly to minor di�erences in the order inwhich sets of clauses are generated and retained. For example, say paramodulationof A into B generates ten clauses, and two, C and D, of equal length, are retained.Otter may select C as the next given clause, and EQP may select D|that isall it takes to cause the programs to search di�erent areas of the space. Thedi�erent generation orders are caused by di�erences in term data structures andterm indexing. The counts of generated clauses are a rough measure of the amountof work done and thus can be used to compare the speed of the two programs; manyof the problems indicate that EQP is 10%{20% faster than Otter. Both programswere allowed 24 megabytes for storage of clauses and indexes; problems LT-5, QLT-3, QLT-5, and QLT-6 indicate EQP's larger appetite for memory (which is not aslarge as we had feared).7The RS/6000 processors we used run EQP about three times faster than a SPARC 2 does.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 7Table 4.1Otter vs. EQP Otter EQPProblem time (len.) generated time (len.) generatedCS-2 30 (7) 27368 25 (6) 18608CS-6a 1 (7) 231 1 (7) 256D-BA-1b 9 (28) 10822 (M) (|) 149644D-BA-2a 144 (124) 103327 140 (174) 130998D-BA-5a 27 (84) 33943 30 (93) 39314D-BA-5c 8 (89) 9473 6 (75) 8624D-BA-8a 16 (106) 20731 30 (104) 40046LT-10a 4 (15) 3566 3 (15) 2863LT-2 (T) (|) 2867810 924 (66) 1843691LT-3e 43 (61) 56726 39 (56) 65398LT-4 2 (13) 4011 2 (14) 3092LT-5 (M) (|) 261493 (M) (|) 211985LT-6 67 (97) 28390 46 (110) 30757LT-8 45 (19) 75979 (T) (|) 2530477LT-9b 291 (53) 279260 287 (61) 338618MFL-1 6 (36) 8574 4 (30) 5293MFL-2 7 (29) 9666 1 (34) 2021MFL-3 8 (26) 10789 7 (30) 9194MFL-7 19 (39) 19283 15 (51) 14523QLT-1 3 (47) 2999 3 (45) 3861QLT-2 4 (19) 4372 4 (27) 5390QLT-3 (M) (|) 138808 (M) (|) 106284QLT-4 4 (54) 5022 5 (55) 7029QLT-5 (M) (|) 128442 (M) (|) 84576QLT-6 121 (108) 56904 (M) (|) 92438RBA-2 12 (37) 15910 19 (42) 27709SD-2a 3 (33) 2326 2 (52) 2029SD-3-e1 2 (17) 1941 1 (15) 821SD-3-e2 8 (23) 10277 6 (27) 9484TBA-1-e1 29 (42) 26822 126 (39) 78796TBA-1-e2d 2 (30) 1328 2 (29) 1564WAL-1a 149 (37) 233175 137 (31) 250483WAL-2 8 (19) 14411 7 (16) 15005

8 Chapter 44.5 Algorithms and StrategiesThis section contains descriptions of the methods that are the focus of the mainbody of experiments.4.5.1 The Given Clause and Pair AlgorithmsThe most important decision our theorem provers make when searching for proofsis selection of clauses for application of inference rules. We have considered twoissues for these experiments: (1) the given clause algorithm vs. the pair algorithm,and (2) the ratio of best-�rst and breadth-�rst search.Both the given clause algorithm and the pair algorithm can be thought of assimple loops that drive the search for a proof.Repeat1. decide on a set S of inferences to make;2. make all inferences in S and process the results;until a proof has been found.The di�erence between the given clause and the pair algorithms is in the size ofS. The given clause algorithm selects a clause C (the given clause) and makesinferences using C and all clauses previously selected as given clauses. The pairalgorithm selects a pair of clauses (not previously selected) and makes inferencesbetween those two clauses only.8Our interest in the pair algorithm arose in 1992 when we started experimentingwith AC uni�cation and matching. Since a pair of terms can have a great number ofmost general AC uni�ers, the set S in the given clause algorithm can be unmanage-ably large. Our intuition told us that the smaller granularity of the pair algorithmwould o�set somewhat the proli�c nature of inference rules using AC uni�cation.For strictly breadth-�rst search, one might think that two algorithms should pro-duce similar results. For example, if the sequence of retained clauses is h1; 2; 3i, thepair algorithm considers the sequence of pairs (1; 1); (2; 1); (2; 2); (3; 1); (3;2); (3;3),and the given clause algorithmconsiders the sequence (1; f1g); (2; f1; 2g); (3;f1;2;3g).However, the given clause algorithms in Otter and EQP order the set of previousgiven clauses in di�erent ways, and neither orders them in increasing order. Such8The pair algorithm has been used in many Knuth-Bendix completion systems. Its earliest usein automated deduction appears to have been by Larry Wos et al in 1964 with the unit preferencestrategy [21]. Perhaps the earliest use of the given clause algorithmwas by Ross Overbeek in 1970in the context of hyperresolution[14]. Most automated deduction at Argonne since 1970 has beenwith the given clause algorithm.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 9apparently small di�erences in the order of generated clauses can have a great e�ecton the character and outcome of the search.The best-�rst aspects of the searches are based on the lengths of clauses|smalleris better. The length of a clause is the number of variables, constant, function, andpredicate symbols. A best-�rst given clause algorithm selects the smallest clausenot yet selected, and a best-�rst pair algorithm selects the smallest pair not yetselected, where the length of a pair is the sum of the lengths of its members.Our experience with previous experiments tells us that a combination of best-�rstand breadth-�rst search, with an emphasis on best-�rst search, is usually a goodchoice. The ratio strategy, introduced in [12], allows the user to specify the ratio ofthe two selection methods. In our implementations of the ratio strategy, the usergives a parameter, the pick-given-ratio, say n, in the range [0; 1; � � �], meaning thatthrough n iterations of the main loop, the best clause or pair is selected, then theoldest clause or pair, and so on.Although the ratio strategy was not intended to be a focal point of the exper-iments, we have included a lot of data on it because it has a great e�ect on thesearch and it is not well understood; we hope to �nd relationships between the ratiostrategy and the various paramodulation strategies. For most of the paramodula-tion strategies we considered, we ran experiments with ratios 1, 4, 8, and 1 (i.e.,purely best-�rst). (We used a value of 4 for almost all of the experiments reportedin [11].)4.5.2 Associative-Commutative (AC) OperationsEQP has AC uni�cation (Stickel's AC algorithm [17], with Huet's algorithm [4]for �nding basis solutions) and AC matching (our own algorithm). The AC uni�-cation algorithm is quite complicated, but our implementation is straightforward.AC terms are stored as binary terms in canonical form, and they are attened intoarrays during the uni�cation process. Uni�ers are generated incrementally on de-mand by a backtracking algorithm. We have not implemented Kapur and Zhang'scheck for symmetry among AC uni�ers [7], and we do not use any indexing for�nding AC-uni�able terms. Experience continues to show us that the speed of ACuni�cation is not particularly important, because in practice the percentage of timespent there is small, but elimination of unnecessary or undesirable AC uni�ers isextremely important.EQP's AC matching code is separate from its AC uni�cation code. Our imple-mentation, which does not solve Diophantine equations, uses some ideas from RRL[6]. It is a backtracking algorithm that binds variables to all appropriate combi-nations of terms. The speed of AC matching is extremely important, because we

10 Chapter 4�nd that in practice, most of the time is spent rewriting derived clauses. WhenAC terms are present, we use a modi�cation of discrimination tree indexing that�lters AC terms by number of arguments and number of nonvariable arguments;this type of indexing gives us a modest improvement over indexing AC terms bysimply treating them as constants.AC paramodulation requires the use of extensions of equations. Consider � = �in which � has the AC symbol + at its root. Then the equation � + x = � + x,where x is a new variable, must be considered as well. AC paramodulation withextensions is extremely proli�c; Kapur and Zhang have found that many such ACuni�ers are unnecessary, and they advocate delaying the use of extensions. Thisis probably a wise strategy, but we have not yet implemented it. We currentlyparamodulate with extensions right after using the nonextended equations.Term ordering is another problem area for terms with AC operations. For com-pletion problems and for theory, it is useful to have a simpli�cation ordering that istotal for ground terms. This tells us how to orient equations into rewrite rules andguarantees termination of rewriting. Several such orderings have been de�ned forAC terms, but they are complex and we have not implemented any of them. In-stead, we use the following very weak simpli�cation ordering for AC terms: t1 � t2if length(t1) > length(t2) and mvars(t1) �= mvars(t2). (The second conditionmeans that no variable has more occurrences in t2.) A rewrite rule satisfying ourordering always reduces the number of symbols. This ordering was originally imple-mented as a quick hack for testing AC demodulation, but it has been adequate forthis set of experiments. EQP also has some special-purpose polynomial orderings,but they were not used here.4.5.3 Paramodulation StrategiesOrdered-Instance Paramodulation. This strategy applies to non-AC exper-iments. (It applies in general to AC problems, but not in our implementations.)Ordered-instance paramodulation is a restriction that constrains the use of nonori-entable equations. Ordinarily, equations that can be oriented have the larger sideon the left and are added to the set of demodulators, and equations that cannot beoriented are not added to the set of demodulators, and they are stored in both ori-entations. Paramodulation is not allowed from the right side or into the right side ofany equation. The preceding properties hold as well for ordered-instance paramod-ulation. As motivation for ordered-instance paramodulation, consider paramodu-lation from the nonorientable equation � = �, with uni�er � such that �� � ��;that is, the instance used for paramodulation is orientable in the wrong direc-tion. The ordered-instance paramodulation restriction prevents paramodulation in

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 11such cases. Nearly all current theoretical work on paramodulation strategies usesordered-instance paramodulation, but Otter, for example does not. Early work inthis area was in the context of completion [8].Blocked Paramodulation. This strategy applies to non-AC and to AC experi-ments. Blocked paramodulation does not allow a paramodulation inference if anyterm in the uni�er can be rewritten with the current set of demodulators. Thestrategy was discussed by Lankford and proved complete in the context of comple-tion by Kapur, Musser, and Narendran [5]. The justi�cation is that an unblockedinference is composite and thus can be factored into prime inferences, and thatonly prime inferences are needed for completion. See [5] for details. Our implemen-tation of blocked paramodulation in EQP is straightforward|after uni�cation orAC uni�cation has generated a uni�er and before generation of the correspondingparamodulant, each term in the substitution is tested to see if it can be rewrittenwith the current set of demodulators; if so, the paramodulant is not generated.Kapur and Zhang report that preventing unblocked inference gives great speedupson ring commutativity problems [5]. This is a fairly expensive test in our imple-mentation; in the case of AC uni�cation, we believe the test could be incorporatedinto the AC uni�cation routines so that one test would apply to more than oneuni�er, but we have not attempted such a method.Basic Paramodulation. This strategy applies to non-AC and to AC experi-ments. Basic paramodulation [1, 13] is a restriction that prevents paramodulationinto terms that arise solely by instantiation. One way to view this (and a way toimplement it) is to represent clauses as a pair, hskeleton,substitutioni. Input clausesare skeletons with empty substitutions, and paramodulation is done from skeletonsinto skeletons with the uni�er of the inference composed with the substitutions ofthe parents to form the substitution of the paramodulant. The terms that ariseby instantiation alone do not occur in the skeleton and are thus not available forparamodulation (are not basic). Another way to view this (and the way we imple-ment it) is to mark terms that are not available for paramodulation. Input clauseshave no terms marked. During paramodulation when the unifying substitution isapplied to form the paramodulant, as variables are instantiated, the correspondingterms and all subterms are marked as unavailable for subsequent paramodulation;in addition, marks in the parents are inherited by the paramodulant.Completeness of basic paramodulation requires special treatment for subsump-tion and demodulation. In the case of subsumption, consider clause C, with term tthat is not basic (is unavailable for paramodulation); if C subsumes clause D and if

12 Chapter 4the term in D corresponding to t is basic, then t must be made basic. EQP withoutAC uni�cation performs this procedure. EQP with AC uni�cation, because of tech-nical complications (corresponding terms may not be in corresponding positions),simply makes all of C basic; we believe the penalty for this extra allowance is small,because in practice, few clauses do most of the subsuming.Demodulation with basic paramodulation is more problematic. The standardde�nitions of demodulation with basic paramodulation (e.g., [1]) do not allow de-modulation of nonbasic terms. This restriction seems intuitively unwise, becausewe wish to simplify wherever possible; some preliminary experiments (not reportedhere) support our position, so EQP ignores that restriction. Demodulation is neverprevented; and when a rewrite step occurs with � = �, the instance of � and allof its subterms are made basic. This strategy can have the peculiar e�ect of cre-ating nonbasic terms with basic subterms. We have not studied the completenessconsequences of this method.AC-superset-limit. This strategy applies to AC experiments. AC uni�cationhas two distinct e�ects when making terms identical: it permutes arguments andintroduces new variables. We believe that permutation is the more useful e�ectand that introduction of variables is the more proli�c e�ect. (The pair of terms(x+x+x) and (u+v+w+z) has 1,044,569most general AC uni�ers!) We have beenthinking about heuristics for delaying or preventing the introduction of variables,and we have implemented one strategy along those lines. Very briey stated, theAC uni�cation algorithm works as follows to unify two terms with the same ACsymbol at their roots. Arguments in common are removed, a linear Diophantineequation representing equality of the two terms is constructed, a basis of integersolutions is calculated such that all integer solutions are a linear combination of thebasis solutions, then all of the subsets of the basis are considered, and those thatsatisfy certain constraints lead to potential AC uni�ers. For the example above,the basis has 20 solutions, and most of the 220 = 1048576 subsets lead to uni�ers.The EQP parameter ac-superset-limit limits the number of combinations that areconsidered. A value of 0 means that if a subset S leads to a potential uni�er, thenno supersets of S are considered; a value of 1 means to consider supersets of size� jSj+ 1, and so on.9 The strategy is obviously incomplete, because it eliminatesmost-general AC uni�ers.9A method similar to ac-superset-limit=0 has been used in RRL [6].

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 13Functional Subsumption. This strategy applies to non-AC and to AC experi-ments. Functional subsumption is a simple extension of ordinary subsumption. Ittakes into account the substitution property, x = y) f(� � �x � � �) = f(� � � y � � �),of equality. For example, � = � functionally subsumes g(h(t; �)) = g(h(t; �)). Arecursive de�nition for equations is the following.� = � functionally-subsumes = � i�(� = � subsumes = �) or(= � is f(� � � � � � �) = f(� � � � � � �) and � = � functionally-subsumes � = �).The notation f(� � � � � � �) = f(� � � � � � �) means that � and � are in the same argumentposition and everything else in the two terms is identical. The informal justi�cationfor the rule is similar to that for ordinary subsumption: anything useful that canbe done with f(� � �� � � �) = f(� � �� � � �) can be done as well with � = �. Note that if� = � is a demodulator, then it need not be used to check functional subsumption,because demodulation occurs before the subsumption tests. We believe the deletionof functionally subsumed clauses is complete for many equational inference systems.4.6 ExperimentsThis section contains the results of the main body of experiments. Recall thatthere are 33 problems of which 13 have at least one AC function symbol. The �rstpart is without AC uni�cation, with data on all 33 problems (the 13 AC problemsinclude AC axioms). The second part is with AC uni�cation, with data on the 13AC problems.Each paramodulation strategy was run with four di�erent best:breadth ratios forselecting the next unit of work during the search: 1 (1:1), 4 (4:1), 8 (8:1), and n(1:0). These are speci�ed in the names of the strategies (e.g., \block-8-giv") in thetables below. Each paramodulation strategy was also run with the given algorithmand with the pair algorithm, which is speci�ed with \-giv" or \-pair" in the tables.The time (seconds on an IBM RS/6000 processor) to proof and proof length foreach search are listed; \(M)" means that the memory limit of 24 megabytes wasinadequate, \(T)" means that the time limit of 1800 seconds was inadequate, and\(S)" means that the program ran out of inferences to make, usually because theweight limit was too low for the strategy. The smallest time(s) for each problem isset in a box.The proof lengths are listed because there has been recent interest in strategiesfor �nding short proofs [20, 19]. The length includes paramodulation inferencesand steps to ip equations, but it does not include demodulation steps. Thus,

14 Chapter 4comparing lengths on the same theorem can be misleading because paramodulationsteps in one proof can correspond to demodulation proofs in another. Nevertheless,it is usually a good measure of the complexity of proofs, and it can shed light onstrategies that lead to simpler proofs.Experiments were run to evaluate functional subsumption, but the results werenot interesting (see 4.7) and have been omitted.Non-AC Experiments. We list results for �ve paramodulation strategies: thesimple starting strategy (start), ordered-instance paramodulation (ord), blockedparamodulation (block), basic paramodulation (basic), and a combination of ordered-instance, blocked, basic paramodulation with functional subsumption (all). Witheach paramodulation strategy we list results for the four values of the ratio param-eter and given vs. pairs; this gives 40 runs for each of the 33 non-AC problems. Asan example of a strategy name, \block-8-giv" means blocked paramodulation, ratio8, with the given clause algorithm. Tables 4.2 through 4.8 contain the results ofthe non-AC experiments.AC Experiments. These are similar to the non-AC experiments except thatordered-instance paramodulation is omitted and AC superset limit 0 (super0) isincluded. Each of the 13 AC problems was run in 40 ways. Tables 4.9 through4.11, starting on p. 22, contain the results of the AC experiments.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 15Table 4.2Non-AC: Group A D-BA-1b D-BA-2a D-BA-5a D-BA-5c D-BA-8aStrategy time (len.) time (len.) time (len.) time (len.) time (len.)start-1-giv (M) (|) 415 (158) 33 (52) 2 (57) 93 (207)start-4-giv (M) (|) 140 (174) 30 (93) 6 (75) 30 (104)start-8-giv 3 (27) 185 (206) 31 (116) 4 (17) 20 (136)start-n-giv (M) (|) 100 (248) 35 (117) 4 (24) (M) (|)start-1-pair (M) (|) 237 (175) 24 (39) 4 (42) 122 (81)start-4-pair (M) (|) 113 (140) 15 (16) 2 (45) 44 (72)start-8-pair 25 (49) 149 (214) 25 (82) 2 (18) 27 (92)start-n-pair 104 (63) 196 (210) 32 (94) 3 (17) (M) (|)block-1-giv (M) (|) 471 (158) 37 (127) 2 (57) 100 (158)block-4-giv (M) (|) 163 (174) 35 (82) 6 (72) 33 (104)block-8-giv 3 (27) 232 (214) 35 (126) 4 (17) 21 (136)block-n-giv (M) (|) 115 (271) 38 (112) 4 (24) (M) (|)block-1-pair (M) (|) 305 (242) 26 (39) 4 (42) 122 (81)block-4-pair (M) (|) 132 (141) 17 (16) 2 (45) 47 (72)block-8-pair 26 (49) 237 (285) 29 (84) 2 (18) 31 (91)block-n-pair 123 (63) 311 (231) 24 (104) 3 (17) (M) (|)basic-1-giv (M) (|) 118 (228) 12 (83) 7 (24) 25 (80)basic-4-giv 3 (28) 59 (241) 9 (18) 3 (67) 17 (140)basic-8-giv 1 (27) 43 (235) 9 (55) 2 (22) 13 (126)basic-n-giv (M) (|) 38 (195) 11 (84) 2 (23) (M) (|)basic-1-pair (M) (|) 71 (237) 12 (65) 3 (12) 5 (62)basic-4-pair 15 (33) 58 (234) 10 (90) 1 (12) 26 (69)basic-8-pair 10 (38) 52 (339) 11 (118) 1 (18) 16 (71)basic-n-pair 33 (78) 155 (265) 22 (108) 1 (17) (M) (|)ord-1-giv (M) (|) (M) (|) 109 (60) 14 (35) 129 (71)ord-4-giv (M) (|) 142 (164) 37 (59) 6 (75) 46 (80)ord-8-giv 2 (42) 214 (248) 31 (110) 4 (16) 43 (81)ord-n-giv (M) (|) 115 (275) 36 (116) 4 (24) (M) (|)ord-1-pair (M) (|) 236 (175) 24 (39) 4 (42) 122 (81)ord-4-pair (M) (|) 113 (140) 15 (16) 2 (45) 44 (72)ord-8-pair 25 (49) 149 (214) 26 (82) 2 (18) 27 (92)ord-n-pair 101 (63) 194 (210) 33 (94) 3 (17) (M) (|)all-1-giv 27 (60) 218 (276) 37 (118) 6 (24) 32 (106)all-4-giv 2 (26) 92 (320) 14 (76) 3 (65) 18 (129)all-8-giv 5 (46) 63 (225) 12 (127) 2 (22) 26 (75)all-n-giv 8 (151) 99 (258) 10 (63) 2 (23) (M) (|)all-1-pair (M) (|) 188 (259) 12 (74) 3 (12) 5 (62)all-4-pair 14 (33) 135 (253) 9 (96) 1 (12) 24 (59)all-8-pair 10 (42) 64 (287) 11 (110) 1 (18) 17 (66)all-n-pair 21 (74) 86 (182) 11 (97) 2 (17) (M) (|)

16 Chapter 4Table 4.3Non-AC: Group B LT-2 LT-3e LT-4 LT-5 LT-6Strategy time (len.) time (len.) time (len.) time (len.) time (len.)start-1-giv (T) (|) 51 (87) 1 (8) 46 (86) 109 (219)start-4-giv 924 (66) 39 (56) 2 (14) (M) (|) 46 (110)start-8-giv (T) (|) 30 (65) 4 (27) (M) (|) 30 (114)start-n-giv (T) (|) 27 (62) 7 (31) (M) (|) (M) (|)start-1-pair (T) (|) 48 (59) 2 (8) 53 (100) 40 (163)start-4-pair (T) (|) 69 (67) 1 (16) 45 (83) 9 (82)start-8-pair (T) (|) 136 (54) 2 (22) 42 (79) 6 (88)start-n-pair (T) (|) 72 (56) 2 (15) (M) (|) (M) (|)block-1-giv (T) (|) 65 (87) 1 (8) 52 (85) 114 (250)block-4-giv 1223 (66) 47 (55) 2 (14) (M) (|) 50 (95)block-8-giv (T) (|) 37 (65) 5 (27) (M) (|) 32 (114)block-n-giv (T) (|) 34 (62) 8 (28) (M) (|) (M) (|)block-1-pair (T) (|) 55 (59) 2 (8) 58 (100) 40 (158)block-4-pair (T) (|) 82 (67) 2 (16) 51 (83) 9 (83)block-8-pair (T) (|) 159 (54) 2 (22) 46 (79) 6 (88)block-n-pair (T) (|) 88 (56) 2 (15) (M) (|) (M) (|)basic-1-giv 189 (25) (T) (|) 0 (8) 26 (85) 73 (131)basic-4-giv 855 (41) 20 (73) 1 (13) 6 (57) 43 (66)basic-8-giv (T) (|) 14 (101) 2 (20) (M) (|) 30 (107)basic-n-giv (T) (|) 25 (58) 3 (17) (M) (|) (M) (|)basic-1-pair (T) (|) 18 (83) 0 (8) 15 (81) 34 (262)basic-4-pair (T) (|) 22 (77) 1 (17) (M) (|) 44 (135)basic-8-pair (T) (|) 46 (70) 1 (17) 24 (70) 18 (126)basic-n-pair (T) (|) 108 (58) 1 (14) (M) (|) (M) (|)ord-1-giv (T) (|) 70 (82) 1 (8) 44 (77) 108 (282)ord-4-giv (T) (|) 43 (65) 2 (14) (M) (|) 48 (109)ord-8-giv (T) (|) 34 (68) 5 (27) (M) (|) 30 (107)ord-n-giv (T) (|) 38 (96) 7 (18) (M) (|) (M) (|)ord-1-pair (T) (|) 48 (59) 2 (8) 53 (100) 40 (163)ord-4-pair (T) (|) 68 (67) 1 (16) 44 (83) 9 (82)ord-8-pair (T) (|) 134 (54) 2 (22) 41 (79) 6 (88)ord-n-pair (T) (|) 71 (56) 2 (15) (M) (|) (M) (|)all-1-giv (T) (|) 229 (134) 1 (8) 36 (67) 72 (244)all-4-giv (T) (|) 23 (112) 1 (13) 6 (68) 39 (73)all-8-giv (T) (|) 10 (83) 3 (18) (M) (|) 30 (102)all-n-giv (T) (|) 44 (79) 4 (8) (M) (|) (M) (|)all-1-pair (T) (|) 38 (68) 1 (8) 15 (74) 40 (197)all-4-pair (T) (|) 34 (56) 1 (22) 27 (99) 49 (90)all-8-pair (T) (|) 43 (75) 1 (22) 24 (91) 41 (237)all-n-pair (T) (|) 106 (58) 1 (14) (M) (|) (M) (|)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 17Table 4.4Non-AC: Group C LT-8 LT-9b LT-10a CS-2 CS-6aStrategy time (len.) time (len.) time (len.) time (len.) time (len.)start-1-giv (T) (|) 203 (46) 32 (16) 19 (6) 1 (5)start-4-giv (T) (|) 287 (61) 3 (15) 25 (6) 1 (7)start-8-giv (T) (|) 296 (51) 1 (14) 22 (6) 1 (8)start-n-giv (T) (|) (M) (|) 1 (14) 22 (6) 4 (7)start-1-pair 31 (18) 68 (40) 4 (18) 12 (7) 0 (3)start-4-pair 16 (21) 245 (37) 1 (15) 34 (7) 0 (6)start-8-pair 14 (21) 393 (45) 1 (13) 33 (8) 0 (6)start-n-pair 11 (21) 270 (40) 0 (16) 34 (10) 6 (7)block-1-giv (T) (|) 243 (46) 35 (16) 20 (7) 1 (5)block-4-giv (T) (|) 353 (61) 3 (15) 27 (7) 1 (7)block-8-giv (T) (|) 361 (51) 2 (14) 23 (7) 1 (8)block-n-giv (T) (|) (M) (|) 1 (14) 23 (7) 4 (7)block-1-pair 37 (18) 82 (40) 4 (18) 13 (7) 0 (3)block-4-pair 20 (21) 291 (37) 1 (15) 36 (7) 1 (6)block-8-pair 17 (21) 479 (45) 1 (13) 35 (8) 1 (6)block-n-pair 14 (21) 339 (40) 0 (16) 36 (10) 7 (7)basic-1-giv (T) (|) 71 (68) 3 (26) 17 (6) 1 (5)basic-4-giv (T) (|) 28 (70) 1 (36) 21 (6) 1 (7)basic-8-giv (T) (|) 37 (80) 1 (49) 18 (6) 1 (8)basic-n-giv (T) (|) 111 (83) 1 (40) 18 (6) 4 (7)basic-1-pair (T) (|) 19 (43) 1 (36) 10 (7) 0 (3)basic-4-pair (T) (|) 256 (50) 1 (41) 27 (7) 1 (6)basic-8-pair (T) (|) 148 (47) 0 (41) 27 (8) 1 (6)basic-n-pair 17 (15) 98 (50) 0 (40) 29 (10) 6 (7)ord-1-giv (T) (|) 192 (48) 30 (16) 20 (6) 1 (8)ord-4-giv (T) (|) 295 (64) 3 (15) 27 (6) 0 (3)ord-8-giv (T) (|) 302 (85) 1 (14) 23 (6) 1 (3)ord-n-giv (T) (|) (M) (|) 1 (14) 23 (6) 4 (7)ord-1-pair 31 (18) 67 (40) 4 (18) 12 (7) 0 (3)ord-4-pair 16 (21) 243 (37) 1 (15) 34 (7) 1 (6)ord-8-pair 14 (21) 388 (45) 1 (13) 33 (8) 1 (6)ord-n-pair 11 (21) 269 (40) 0 (16) 34 (10) 6 (7)all-1-giv (T) (|) 89 (64) 4 (26) 17 (7) 1 (8)all-4-giv (T) (|) 38 (76) 1 (37) 14 (7) 0 (3)all-8-giv (T) (|) 49 (87) 1 (41) 11 (7) 1 (3)all-n-giv (T) (|) 135 (134) 1 (41) 11 (7) 4 (7)all-1-pair (T) (|) 23 (43) 1 (36) 8 (7) 0 (3)all-4-pair (T) (|) 224 (50) 1 (41) 24 (7) 1 (6)all-8-pair (T) (|) 172 (47) 1 (41) 46 (7) 1 (6)all-n-pair 17 (15) 111 (50) 0 (40) 55 (11) 7 (7)

18 Chapter 4Table 4.5Non-AC: Group D QLT-1 QLT-2 QLT-3 QLT-4 QLT-5Strategy time (len.) time (len.) time (len.) time (len.) time (len.)start-1-giv 4 (23) 6 (25) (M) (|) 10 (66) (M) (|)start-4-giv 3 (45) 4 (27) (M) (|) 5 (55) (M) (|)start-8-giv 4 (42) 3 (27) (M) (|) 7 (53) (M) (|)start-n-giv 5 (55) 17 (64) (M) (|) 45 (46) (M) (|)start-1-pair 6 (39) 5 (23) (M) (|) 2 (23) 168 (122)start-4-pair 3 (36) 3 (17) (M) (|) 4 (23) 100 (52)start-8-pair 3 (50) 7 (39) (M) (|) 3 (21) 97 (62)start-n-pair 13 (44) 13 (49) (M) (|) 6 (30) (M) (|)block-1-giv 5 (23) 6 (25) (M) (|) 11 (66) (M) (|)block-4-giv 3 (45) 5 (27) (M) (|) 6 (55) (M) (|)block-8-giv 4 (42) 4 (27) (M) (|) 7 (53) (M) (|)block-n-giv 6 (55) 18 (64) (M) (|) 51 (46) (M) (|)block-1-pair 6 (39) 5 (23) (M) (|) 2 (23) 178 (122)block-4-pair 3 (36) 4 (17) (M) (|) 5 (23) 105 (52)block-8-pair 3 (50) 7 (39) (M) (|) 4 (21) 104 (62)block-n-pair 15 (44) 15 (49) (M) (|) 6 (30) (M) (|)basic-1-giv 2 (24) 1 (29) (M) (|) 10 (56) 149 (52)basic-4-giv 2 (45) 2 (28) (M) (|) 6 (52) (M) (|)basic-8-giv 3 (45) 2 (29) (M) (|) 5 (51) (M) (|)basic-n-giv 3 (51) 12 (53) (M) (|) 30 (46) (M) (|)basic-1-pair 4 (36) 3 (18) (M) (|) 2 (22) 150 (142)basic-4-pair 3 (39) 3 (17) (M) (|) 3 (24) 91 (110)basic-8-pair 3 (52) 6 (16) (M) (|) 2 (21) 89 (104)basic-n-pair 9 (20) 19 (114) (M) (|) 4 (30) (M) (|)ord-1-giv 4 (23) 7 (23) (M) (|) 13 (92) (M) (|)ord-4-giv 3 (34) 5 (28) (M) (|) 6 (79) (M) (|)ord-8-giv 4 (32) 4 (18) (M) (|) 7 (115) (M) (|)ord-n-giv 5 (38) 19 (50) (M) (|) 48 (96) (M) (|)ord-1-pair 6 (39) 5 (23) (M) (|) 2 (23) 169 (122)ord-4-pair 3 (36) 3 (17) (M) (|) 4 (23) 100 (52)ord-8-pair 3 (50) 6 (39) (M) (|) 3 (21) 96 (62)ord-n-pair 13 (44) 13 (49) (M) (|) 6 (30) (M) (|)all-1-giv 2 (30) 2 (36) (M) (|) 8 (69) (M) (|)all-4-giv 3 (60) 2 (32) (M) (|) 6 (64) (M) (|)all-8-giv 3 (66) 2 (28) (M) (|) 5 (80) (M) (|)all-n-giv 10 (51) 6 (49) (M) (|) 15 (81) (M) (|)all-1-pair 3 (33) 3 (18) (M) (|) 1 (22) 71 (44)all-4-pair 2 (33) 3 (17) (M) (|) 2 (24) 119 (71)all-8-pair 3 (53) 5 (16) (M) (|) 2 (20) 58 (109)all-n-pair 9 (20) 14 (127) (M) (|) 4 (39) 317 (101)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 19Table 4.6Non-AC: Group E QLT-6 MFL-1 MFL-2 MFL-3 MFL-7Strategy time (len.) time (len.) time (len.) time (len.) time (len.)start-1-giv (M) (|) 2 (23) 3 (29) 8 (28) 24 (57)start-4-giv (M) (|) 4 (30) 1 (34) 7 (30) 15 (51)start-8-giv (M) (|) 10 (32) 4 (34) 8 (40) 13 (55)start-n-giv (M) (|) 9 (46) 10 (77) 8 (60) 9 (51)start-1-pair 146 (41) 5 (38) 4 (28) 4 (20) 8 (40)start-4-pair 116 (46) 3 (52) 2 (32) 3 (30) 5 (44)start-8-pair 100 (57) 3 (37) 3 (30) 2 (30) 5 (42)start-n-pair 133 (368) 3 (43) 3 (33) 3 (81) 4 (57)block-1-giv (M) (|) 2 (23) 14 (33) 8 (28) 18 (58)block-4-giv 186 (113) 9 (28) 7 (34) 8 (31) 14 (51)block-8-giv (M) (|) 13 (31) 12 (35) 8 (38) 13 (55)block-n-giv (M) (|) 12 (37) 11 (77) 9 (60) 10 (51)block-1-pair 154 (41) 5 (38) 5 (28) 4 (20) 8 (40)block-4-pair 120 (46) 3 (49) 3 (32) 3 (33) 5 (47)block-8-pair 103 (57) 3 (35) 3 (30) 2 (30) 5 (44)block-n-pair 133 (328) 3 (46) 3 (33) 4 (83) 4 (59)basic-1-giv 152 (72) 1 (38) 8 (37) 4 (27) 15 (58)basic-4-giv (M) (|) 7 (42) 5 (31) 3 (37) 8 (58)basic-8-giv (M) (|) 6 (33) 5 (52) 11 (55) 22 (75)basic-n-giv (M) (|) 7 (38) 8 (109) 6 (78) 20 (72)basic-1-pair 179 (55) 4 (34) 3 (31) 2 (27) 7 (53)basic-4-pair 131 (52) 3 (30) 2 (31) 2 (28) 5 (42)basic-8-pair 120 (56) 2 (43) 2 (39) 1 (33) 4 (42)basic-n-pair 168 (263) 2 (72) 2 (67) 1 (69) 3 (42)ord-1-giv (M) (|) 2 (23) 3 (29) 8 (28) 25 (57)ord-4-giv (M) (|) 4 (30) 1 (34) 7 (30) 15 (51)ord-8-giv (M) (|) 10 (32) 4 (34) 8 (40) 13 (55)ord-n-giv (M) (|) 8 (42) 11 (78) 8 (60) 9 (51)ord-1-pair 146 (41) 4 (38) 4 (28) 4 (20) 8 (40)ord-4-pair 116 (46) 3 (52) 3 (32) 3 (30) 5 (44)ord-8-pair 100 (57) 2 (37) 2 (30) 2 (30) 5 (42)ord-n-pair 132 (368) 3 (43) 3 (33) 4 (81) 4 (57)all-1-giv 138 (113) 6 (34) 7 (37) 5 (26) 27 (47)all-4-giv (M) (|) 10 (51) 5 (33) 9 (46) 11 (50)all-8-giv (M) (|) 6 (33) 7 (34) 4 (49) 25 (102)all-n-giv (M) (|) 9 (33) 7 (100) 9 (109) 25 (77)all-1-pair 145 (55) 4 (34) 3 (31) 2 (30) 6 (53)all-4-pair 93 (190) 3 (31) 2 (31) 2 (31) 6 (45)all-8-pair 88 (75) 2 (44) 2 (39) 2 (33) 5 (45)all-n-pair 89 (58) 2 (72) 2 (68) 2 (69) 3 (45)

20 Chapter 4Table 4.7Non-AC: Group F RBA-2 TBA-1-e1 TBA-1-e2d WAL-1a WAL-2Strategy time (len.) time (len.) time (len.) time (len.) time (len.)start-1-giv 53 (53) 168 (50) 5 (42) 140 (33) 7 (17)start-4-giv 19 (42) 126 (39) 2 (29) 137 (31) 7 (16)start-8-giv 13 (44) 177 (37) 2 (32) 187 (29) 7 (17)start-n-giv 104 (74) (M) (|) 4 (42) 1343 (60) 6 (17)start-1-pair 43 (42) 103 (42) 1 (31) 330 (35) (S) (|)start-4-pair 19 (41) 32 (35) 1 (28) 233 (33) (S) (|)start-8-pair 15 (45) 14 (35) 1 (37) 281 (33) (S) (|)start-n-pair 10 (38) (M) (|) 2 (38) 227 (40) (S) (|)block-1-giv 62 (53) 187 (43) 5 (33) 178 (33) 9 (17)block-4-giv 23 (42) 133 (39) 4 (46) 183 (31) 9 (16)block-8-giv 16 (44) 168 (37) 4 (43) 251 (29) 9 (17)block-n-giv 122 (74) (M) (|) 4 (42) (T) (|) 8 (17)block-1-pair 49 (42) 110 (42) 1 (42) 409 (35) (S) (|)block-4-pair 22 (41) 35 (35) 1 (44) 300 (33) (S) (|)block-8-pair 16 (45) 16 (35) 1 (47) 367 (33) (S) (|)block-n-pair 12 (38) (M) (|) 5 (43) 299 (40) (S) (|)basic-1-giv 23 (49) (M) (|) 37 (81) 69 (62) (S) (|)basic-4-giv 31 (48) (M) (|) 17 (74) 33 (62) 1 (30)basic-8-giv 26 (43) 127 (39) 2 (38) 52 (70) 1 (36)basic-n-giv 247 (69) (M) (|) 2 (39) 38 (81) 1 (30)basic-1-pair (M) (|) 54 (40) 1 (33) 68 (88) 2 (26)basic-4-pair 609 (140) 21 (32) 1 (32) 71 (68) (S) (|)basic-8-pair 523 (142) 17 (24) 1 (31) 182 (77) (S) (|)basic-n-pair 350 (143) (M) (|) 1 (62) 152 (64) (S) (|)ord-1-giv 46 (61) 193 (52) 5 (42) 135 (43) 7 (17)ord-4-giv 20 (45) 127 (39) 3 (32) 147 (31) 7 (16)ord-8-giv 29 (42) 177 (37) 2 (35) 224 (36) 7 (17)ord-n-giv 107 (59) (M) (|) 4 (42) 1370 (54) 6 (17)ord-1-pair 43 (42) 104 (42) 1 (31) 325 (35) (S) (|)ord-4-pair 19 (41) 31 (35) 1 (28) 233 (33) (S) (|)ord-8-pair 14 (45) 14 (35) 1 (37) 278 (33) (S) (|)ord-n-pair 10 (38) (M) (|) 2 (38) 226 (40) (S) (|)all-1-giv 14 (35) (M) (|) 6 (34) 104 (58) (S) (|)all-4-giv 23 (32) (M) (|) 3 (36) 44 (60) (S) (|)all-8-giv 34 (32) 149 (45) 2 (36) 67 (65) 2 (36)all-n-giv 122 (58) (M) (|) 2 (54) 50 (85) 2 (30)all-1-pair 641 (142) 55 (40) 1 (28) 215 (89) 2 (26)all-4-pair 491 (148) 24 (32) 1 (27) 190 (75) (S) (|)all-8-pair 496 (124) 198 (45) 1 (28) 209 (78) (S) (|)all-n-pair 301 (128) (M) (|) 3 (63) 184 (64) (S) (|)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 21Table 4.8Non-AC: Group G SD-2a SD-3-e1 SD-3-e2Strategy time (len.) time (len.) time (len.)start-1-giv 2 (34) 4 (32) 2 (23)start-4-giv 2 (52) 1 (15) 6 (27)start-8-giv 2 (52) 1 (15) 30 (29)start-n-giv 6 (63) 1 (15) 50 (41)start-1-pair 5 (33) 52 (89) 4 (19)start-4-pair 4 (63) 5 (51) 10 (24)start-8-pair 4 (44) 2 (43) 13 (37)start-n-pair 23 (53) 1 (17) 13 (37)block-1-giv 2 (34) 5 (32) 3 (23)block-4-giv 2 (52) 1 (15) 8 (27)block-8-giv 2 (52) 1 (15) 36 (29)block-n-giv 7 (63) 1 (15) 58 (41)block-1-pair 6 (33) 53 (89) 4 (19)block-4-pair 5 (63) 5 (51) 12 (24)block-8-pair 5 (44) 3 (43) 15 (37)block-n-pair 26 (53) 2 (17) 16 (37)basic-1-giv 5 (55) 12 (38) 15 (27)basic-4-giv 3 (73) 2 (23) 3 (26)basic-8-giv 2 (39) 1 (30) 5 (29)basic-n-giv 6 (68) 1 (30) 42 (32)basic-1-pair 8 (80) 12 (60) 2 (21)basic-4-pair 6 (83) 6 (74) 5 (24)basic-8-pair 6 (83) 3 (61) 8 (31)basic-n-pair 15 (54) 2 (35) 9 (40)ord-1-giv 11 (74) 7 (34) 45 (39)ord-4-giv 4 (76) 1 (15) 30 (32)ord-8-giv 3 (63) 1 (15) 33 (29)ord-n-giv 6 (68) 0 (15) 54 (40)ord-1-pair 5 (33) 52 (89) 4 (19)ord-4-pair 4 (63) 5 (51) 10 (24)ord-8-pair 4 (44) 2 (43) 13 (37)ord-n-pair 23 (53) 1 (17) 13 (37)all-1-giv 26 (93) 11 (33) 14 (32)all-4-giv 12 (81) 2 (25) 4 (26)all-8-giv 3 (65) 1 (31) 6 (29)all-n-giv 14 (51) 4 (23) 47 (32)all-1-pair 5 (70) 16 (43) 2 (21)all-4-pair 3 (48) 2 (49) 6 (24)all-8-pair 4 (91) 2 (33) 9 (31)all-n-pair 17 (46) 1 (33) 11 (40)

22 Chapter 4Table 4.9AC: Group A LT-2 LT-5 LT-6 LT-8Strategy time (len.) time (len.) time (len.) time (len.)start-1-giv 202 (10) 13 (10) 615 (5) 816 (6)start-4-giv 165 (9) 90 (10) (T) (|) 164 (6)start-8-giv 384 (9) 834 (20) (T) (|) 51 (6)start-n-giv 960 (9) (T) (|) (T) (|) 21 (6)start-1-pair 803 (10) 6 (10) 112 (5) 602 (5)start-4-pair 748 (8) 18 (15) 438 (14) 137 (5)start-8-pair 896 (8) 31 (19) 788 (14) 114 (5)start-n-pair 1463 (7) (T) (|) (T) (|) 20 (5)block-1-giv 308 (10) 10 (10) 529 (5) 1392 (6)block-4-giv 255 (9) 181 (10) (T) (|) 282 (6)block-8-giv 549 (9) (T) (|) (T) (|) 85 (6)block-n-giv 1314 (9) (T) (|) (T) (|) 25 (6)block-1-pair 1218 (10) 6 (10) 85 (5) 1056 (5)block-4-pair 1033 (8) 10 (15) 225 (14) 239 (5)block-8-pair 1197 (8) 28 (19) 582 (14) 223 (5)block-n-pair 1659 (7) (T) (|) (T) (|) 22 (5)basic-1-giv 172 (10) | (|) 598 (5) 416 (6)basic-4-giv 136 (9) 192 (11) 1821 (19) 91 (6)basic-8-giv 312 (9) 157 (13) (T) (|) 33 (6)basic-n-giv 696 (9) (T) (|) (T) (|) 10 (6)basic-1-pair 662 (10) (T) (|) 112 (5) 477 (6)basic-4-pair 606 (8) 36 (30) 295 (14) 141 (6)basic-8-pair 683 (8) 25 (18) 510 (14) 118 (6)basic-n-pair 1086 (7) (T) (|) (T) (|) 39 (6)super0-1-giv 45 (10) 16 (15) 32 (12) 35 (6)super0-4-giv 22 (9) 26 (21) 164 (20) 8 (6)super0-8-giv 61 (9) 75 (21) 1672 (24) 6 (6)super0-n-giv 354 (9) (T) (|) (T) (|) 4 (6)super0-1-pair 278 (10) 4 (15) 11 (9) 26 (5)super0-4-pair 280 (8) 3 (18) 25 (15) 7 (5)super0-8-pair 311 (8) 7 (16) 48 (14) 6 (5)super0-n-pair 709 (7) 1421 (43) (T) (|) 4 (5)all-1-giv 44 (10) 23 (14) 29 (12) 12 (6)all-4-giv 19 (9) 3 (5) 147 (20) 4 (6)all-8-giv 54 (9) 18 (8) 719 (13) 2 (6)all-n-giv 299 (9) (T) (|) (T) (|) 2 (6)all-1-pair 290 (10) 4 (15) 11 (9) 27 (6)all-4-pair 269 (8) 3 (18) 21 (15) 5 (6)all-8-pair 269 (8) 6 (15) 37 (14) 4 (6)all-n-pair 607 (7) 737 (66) 1482 (29) 2 (6)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 23Table 4.10AC: Group B QLT-1 QLT-2 QLT-3 QLT-4Strategy time (len.) time (len.) time (len.) time (len.)start-1-giv 3 (11) 5 (12) 1296 (68) 17 (6)start-4-giv 134 (11) 62 (13) 165 (51) 19 (9)start-8-giv 134 (11) 63 (13) 193 (62) 19 (9)start-n-giv 55 (11) 57 (12) (T) (|) 19 (9)start-1-pair 6 (11) 19 (11) 854 (52) 3 (6)start-4-pair 18 (11) 35 (13) (T) (|) 4 (6)start-8-pair 23 (11) 56 (18) (T) (|) 10 (6)start-n-pair 207 (23) 54 (18) (T) (|) 77 (20)block-1-giv 2 (11) 4 (12) 392 (83) 7 (6)block-4-giv 66 (12) 67 (15) 228 (52) 8 (9)block-8-giv 6 (12) 66 (17) 219 (60) 8 (9)block-n-giv 83 (12) 61 (17) (T) (|) 8 (9)block-1-pair 2 (12) 6 (11) 484 (52) 1 (6)block-4-pair 4 (12) 7 (13) 900 (90) 2 (6)block-8-pair 4 (12) 11 (21) 1511 (120) 2 (6)block-n-pair 97 (24) 10 (21) (T) (|) 18 (16)basic-1-giv 3 (11) 5 (12) 1224 (68) 17 (6)basic-4-giv 131 (11) 62 (13) 160 (51) 19 (9)basic-8-giv 132 (11) 63 (13) 185 (62) 19 (9)basic-n-giv 54 (11) 57 (12) (T) (|) 19 (9)basic-1-pair (T) (|) 20 (11) 816 (52) 4 (6)basic-4-pair 18 (11) 35 (13) (T) (|) 5 (6)basic-8-pair 23 (11) 56 (18) (T) (|) 10 (6)basic-n-pair 209 (23) 54 (18) (T) (|) 77 (20)super0-1-giv 1 (11) 11 (14) 162 (83) 2 (6)super0-4-giv 4 (12) 6 (14) 43 (75) 2 (9)super0-8-giv 2 (12) 6 (14) 41 (63) 2 (9)super0-n-giv 7 (12) 4 (14) (T) (|) 2 (9)super0-1-pair 4 (7) 7 (9) 72 (65) 1 (6)super0-4-pair 2 (7) 5 (17) 120 (55) 1 (6)super0-8-pair 2 (7) 4 (17) 149 (89) 1 (6)super0-n-pair 13 (21) 4 (17) (T) (|) 7 (12)all-1-giv 1 (11) 11 (9) 122 (73) 2 (6)all-4-giv 4 (12) 6 (16) 23 (41) 2 (9)all-8-giv 2 (12) 6 (16) 37 (58) 2 (9)all-n-giv 6 (12) 4 (16) (T) (|) 2 (9)all-1-pair 15 (3) 7 (9) 52 (59) 1 (6)all-4-pair 12 (9) 5 (36) 83 (55) 1 (6)all-8-pair 11 (9) 4 (26) 139 (90) 1 (6)all-n-pair 7 (21) 4 (26) (T) (|) 6 (12)

24 Chapter 4Table 4.11AC: Group C QLT-5 QLT-6 RBA-2 D-BA-5a D-BA-5cStrategy time (len.) time (len.) time (len.) time (len.) time (len.)start-1-giv 206 (11) 293 (8) 44 (21) 24 (7) 61 (6)start-4-giv 237 (31) 177 (31) 16 (22) 59 (8) 59 (11)start-8-giv 387 (11) 178 (31) 792 (25) 59 (8) 59 (11)start-n-giv (T) (|) 169 (31) 17 (25) 60 (8) 60 (11)start-1-pair 119 (21) 431 (5) 19 (19) 5 (7) 13 (18)start-4-pair 79 (22) 713 (40) 8 (17) 7 (7) 9 (14)start-8-pair 76 (20) 833 (50) 5 (16) 11 (7) 12 (14)start-n-pair (T) (|) (T) (|) 4 (16) 9 (7) 10 (10)block-1-giv 253 (11) 356 (8) 40 (21) 197 (7) 235 (6)block-4-giv 360 (11) 212 (31) 15 (22) 118 (8) 119 (11)block-8-giv 415 (11) 221 (31) 15 (25) 118 (8) 119 (11)block-n-giv (T) (|) 208 (31) 7 (25) 118 (8) 119 (11)block-1-pair 255 (21) 171 (56) 18 (19) 6 (7) 13 (18)block-4-pair 33 (22) 274 (42) 7 (17) 5 (7) 6 (14)block-8-pair 27 (20) 293 (33) 4 (16) 6 (7) 7 (14)block-n-pair 1519 (89) 548 (14) 3 (16) 5 (7) 6 (10)basic-1-giv 201 (11) 269 (8) 11 (22) 19 (7) 1056 (5)basic-4-giv 236 (32) 173 (31) 7 (22) 26 (8) 27 (11)basic-8-giv 243 (32) 173 (31) 778 (25) 26 (8) 27 (11)basic-n-giv (T) (|) 164 (31) 10 (25) 26 (8) 27 (11)basic-1-pair 240 (28) 411 (5) 6 (16) 4 (7) 10 (14)basic-4-pair 78 (22) 701 (42) 5 (16) 7 (7) 9 (14)basic-8-pair 75 (20) (T) (|) 4 (16) 11 (7) 12 (14)basic-n-pair (T) (|) (T) (|) 4 (16) 9 (7) 10 (10)super0-1-giv 25 (11) 37 (8) 30 (23) 6 (7) 6 (5)super0-4-giv 58 (11) 26 (7) 14 (21) 35 (22) 2 (6)super0-8-giv 69 (11) 26 (7) 12 (21) 21 (22) 2 (6)super0-n-giv (T) (|) 26 (7) 7 (24) 15 (22) 2 (6)super0-1-pair 36 (7) 32 (5) 13 (18) 114 (14) 51 (27)super0-4-pair 89 (7) 62 (6) 5 (17) 40 (14) 5 (7)super0-8-pair 82 (23) 77 (23) 3 (16) 29 (14) 3 (7)super0-n-pair 107 (58) 89 (95) 2 (16) 21 (23) 2 (7)all-1-giv 23 (11) 29 (8) 6 (22) 2 (7) 2 (5)all-4-giv 53 (11) 24 (7) 6 (21) 45 (7) 5 (6)all-8-giv 63 (11) 24 (7) 5 (21) 111 (7) 5 (7)all-n-giv (T) (|) 25 (7) 3 (21) 164 (58) 5 (7)all-1-pair 29 (7) 26 (5) 4 (16) 58 (14) 39 (7)all-4-pair 56 (25) 53 (5) 2 (16) 12 (22) 7 (7)all-8-pair 60 (23) 56 (22) 2 (16) 27 (9) 5 (7)all-n-pair 89 (65) 53 (8) 1 (16) 16 (15) 3 (7)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 254.7 Strategy ComparisonsThe data in this section are based on the ten tables (4.2{4.11) in the precedingsection. The non-AC and AC experiments are considered separately, and for mostcomparisons, the given and pair algorithms are considered separately. For eachcomparison, the strategy with the lowest proof time wins for that problem. An n-way tie counts as 1=n win. The numbers of wins for each strategy are listed in thetables. Although this is a crude measure (the wins are not weighted by di�cultyof problem or magnitude of the win), it gives some indication of the more usefulstrategies.Given vs. Pair Algorithm. Table 4.12 is a comparison of the given clausealgorithm and the pair algorithm. The non-AC and AC strategies were run withboth algorithms, and the number of wins is listed. Before this work, we believedthat for problems without AC uni�cation, the given clause algorithm is nearlyalways better and that for problems with AC uni�cation, the pair algorithm isnearly always better. This belief was based on intuition (see 4.5.1, p. 8), and afew (unpublished) experiments with earlier versions of EQP. However, the tableindicates that the pair algorithm is somewhat better, on average, for both types ofproblem.Table 4.12Winning Selection MethodNon-AC ACgiven 259.5 (39%) 105.5 (40%)pair 400.5 (61%) 154.5 (60%)Best-�rst : Breadth-�rst Ratio. For each paramodulation strategy and se-lection algorithm, we have data for ratios n:1, for n= 1, 4, 8, and 1. In Table4.13, we show the number of wins, separated into non-AC and AC cases, for eachvalue of the ratio. Note that for a given ratio and uni�cation type, there appearsto be a correlation between the given and pair algorithms. This is surprising tous because the given and pair algorithms are quite di�erent in ordering the search.We expected more of a correlation among the ratios for a given uni�cation typeand selection algorithm.For many years we used pure best-�rst search (n =1), and lately we have usedn = 4 with good results for non-AC problems. Therefore the good performance

26 Chapter 4Table 4.13Winning Ratios Non-AC ACRatio given pair given pair1 40.3 (24%) 43.4 (26%) 29.5 (45%) 30.7 (47%)4 48.8 (30%) 32.9 (20%) 14.2 (22%) 11.7 (18%)8 49.3 (30%) 52.4 (32%) 6.7 (10%) 7.2 (11%)1 26.5 (16%) 36.3 (22%) 14.7 (23%) 15.5 (24%)of smaller ratios surprises us. This is especially so for the AC problems, wherewe assumed that focusing on small clauses would be better because of the proli�cnature of AC inference.AC Axioms vs. AC Uni�cation. Table 4.14 compares AC axioms with ACuni�cation for the 13 problems that have AC function symbols. Strategy \ord"is excluded from the AC axioms searches, and strategy \super0" is excluded fromthe AC uni�cation searches, but the \all" strategies (which include \ord" for ACaxioms and \super0" for AC uni�cation) are compared. Thus there are 208 (= 13[problems] � 4 [ratios] � 4 [paramodulation strategies]) comparisons.Table 4.14Winning AC Strategy given pairAC axioms 87.5 (42%) 100.0 (48%)AC uni�cation 120.5 (58%) 108.0 (52%)Functional Subsumption. We ran all 368 (=(33 [non-AC] + 13 [AC])� 4 [ratio]� 2 [selection]) experiments with functional subsumption, but we have omitted theresults, because of lack of space, and because the results are less interesting than theresults of the other strategies. In summary, functional subsumption, when added tothe starting strategy, had very little e�ect on the proof times for the AC problems.For the non-AC problems, it had, on average, a slightly positive e�ect; for severalproblems (QLT-5, QLT-6, RBA-2, WAL-1a), the e�ect was very positive, and forone (TBA-1-e1) the e�ect was very negative.For the paramodulation strategies named \all", we included functional subsump-tion as well as the other paramodulation strategies.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 27Starting, Basic, Blocked, Ordered-Instance, and Super-0 Strategies. Ta-ble 4.15 shows one of the most important results of this work. The table lists thenumber of wins for each paramodulation strategy. It does not include the \all"Table 4.15Winning Paramodulation StrategiesNon-ACgiven pairstart 24.8 (19%) 20.0 (15%)block 10.9 (8%) 8.0 (6%)basic 81.9 (62%) 79.5 (60%)ord 14.4 (11%) 24.5 (19%) ACgiven pairstart 1.0 (2%) 0.5 (1%)block 3.5 (7%) 8.0 (15%)basic 4.0 (8%) 4.0 (8%)super0 43.5 (83%) 39.5(76%)paramodulation strategies because we wish to compare the individual paramodu-lation strategies with the starting strategy. The most obvious indications from thetable are that basic paramodulation is widely useful for non-AC problems and thatthe superset limit, although incomplete, is widely useful for AC problems.Overall Winning Strategies. Table 4.16 uses the proof times in Tables 4.2through 4.11 to rank the 40 strategies by number of problems on which each strategywon. Here we have included the \all" paramodulation strategies. As one mightexpect, the \all" strategy frequently performed better than the best individualstrategy. A scan of Tables 4.2 through 4.11 shows also that the \all" strategysometimes inherits the bad properties of the worst individual strategy. For example,in problemRBA-2 in Table 4.7, basic paramodulationwith the pair algorithm seemsto delay proofs, and in problem D-BA-5a in Table 4.11, blocked paramodulationwith the given clause algorithm seems to delay proofs.Other Comments on the Experiments. We discuss here several propertiesthat are not apparent in the preceding tables of winning strategies.� Ordered-instance paramodulation had little e�ect on the searches. This propertycan be seen by comparing the \start" searches with the \ord" searches in Tables4.2 through 4.8. We believe the reason is that with our 33 test problems mostof the input and derived equations are orientable. Also, this leads us to believethat ordered-instance demodulation (using nonorientable equations as demodula-tors when the instance for the rewrite is orientable, also called lex-dependent de-modulation) would have a small e�ect on the searches.

28 Chapter 4Table 4.16Overall Winning StrategiesNon-AC ACbasic-1-giv 3.7 (11%) all-4-giv 0.6 all-4-giv 2.8 (22%)all-1-pair 3.0 start-1-giv 0.4 all-1-giv 2.7basic-1-pair 2.5 block-8-pair 0.3 all-n-pair 1.4basic-4-giv 2.4 basic-4-pair 0.2 all-8-giv 0.8all-8-pair 2.2 all-1-giv 0.2 super0-1-pair 0.6basic-8-giv 1.8 start-1-pair 0.1 all-1-pair 0.6basic-n-pair 1.4 start-4-pair 0.1 super0-1-giv 0.5basic-n-giv 1.3 ord-1-pair 0.1 all-n-giv 0.4start-n-pair 1.1 block-1-pair 0.1 super0-4-pair 0.4ord-n-pair 1.1 block-n-pair 0.1 all-4-pair 0.4start-8-pair 1.0 start-8-giv 0.1 super0-n-pair 0.3ord-n-giv 1.0 block-1-giv 0.1 super0-n-giv 0.3all-8-giv 1.0 block-4-giv 0.1 super0-8-pair 0.2basic-8-pair 0.9 block-8-giv 0.1 all-8-pair 0.2ord-8-pair 0.8 ord-4-pair 0.1 super0-4-giv 0.2all-4-pair 0.8 block-4-pair 0.1 super0-8-giv 0.2all-n-pair 0.6 all others 0.0 block-1-pair 0.1start-4-giv 0.6 block-1-giv 0.1ord-4-giv 0.6 all others 0.0� Blocked paramodulation usually had little e�ect for the non-AC problems.10 Inmany cases the blocked search was slightly slower than the corresponding startingsearch, probably because of the time required for checking substitutions for re-ducibility. For the AC problems, blocked paramodulation had greater e�ects, bothpositive and negative, when compared with the starting strategy. These resultswere unexpected because Kapur and Zhang [7] report excellent results for blockedAC-paramodulation on ring problems.4.8 Robbins AlgebraIn this section we present two results in Robbins algebra obtained with EQP's ACuni�cation and matching, then present a small case study on the easier result andone experiment on the more di�cult result. The Robbins problem, whether every10A similar observation was made by Kapur, Musser, and Narendran in [5].

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 29associative-commutative algebra satisfying the Robbins axiom is also a Booleanalgebra, was posed in the 1930s and is still open. In working on the problem, SteveWinker proved by hand two di�cult lemmas [18] suggested by Larry Wos. The�rst is that a Robbins algebra satisfying 9C9D;C +D = C must be Boolean, andthe second is that a Robbins algebra satisfying 9C9D;n(C +D) = n(C) must beBoolean. (Problem RBA-2, from the main body of experiments, is the much simplerlemma that a Robbins algebra satisfying 9C;C + C = C, must be Boolean.) InNovember 1992, an early version of EQP proved the �rst lemma (in a few hours),and in February 1996, EQP proved the second lemma (in 12 days). Winker's proofsare higher order in the sense that they use induction, so EQP's proofs are seen asthe �rst equational proofs of the lemmas. As far as we know, no other program hasproved either of these lemmas. The �rst lemma was proved by refuting the set8<: n(n(n(x) + y) + n(x+ y)) = yC +D = Cx+ x 6= x 9=; (denial of �rst Robbins lemma)and the second by refuting the set8<: n(n(n(x) + y) + n(x+ y)) = yn(C +D) = n(C)x+ y 6= x 9=; (denial of second Robbins lemma).In both cases, + is an AC function symbol, and C and D are constants. Our proofsof these two lemmas have not been previously published, and we present them inAppendix B, starting on page 40. The two Robbins lemmas are much more di�cultthan any of the 33 test problems, so they were not included in the main body ofexperiments.Experiments with the First Robbins Lemma. For the �rst Robbins lemma,we speci�ed a time limit of 4 hours and max-weight=30 (the same as in the �rstsuccessful search); otherwise, the strategies are the same as in the other AC ex-periments. Table 4.17 contains the results (in seconds on an RS/6000 processor).How closely does this problem follow the trends apparent in the main body ofexperiments on the 33 test problems? Answer: not closely.1. The main body of experiments indicates that the \super0" and \all" strategiesare best for AC problems, but they are clearly the worst for the �rst Robbinslemma. We don't have an explanation for this disparity. The reason is not theincompleteness of the \super0" strategy (which is part of the \all" strategy) becauseit does not prevent all proofs in this case.

30 Chapter 4Table 4.17First Robbins Lemma ResultsGiven Pairstart-1-giv (T) start-1-pair (T)start-4-giv (T) start-4-pair 8437start-8-giv (T) start-8-pair 6675start-n-giv (T) start-n-pair 4400block-1-giv (T) block-1-pair (T)block-4-giv (T) block-4-pair 7625block-8-giv (T) block-8-pair 6130block-n-giv (T) block-n-pair 4311basic-1-giv 3052 basic-1-pair 8054basic-4-giv (T) basic-4-pair 3123basic-8-giv 11397 basic-8-pair 2427basic-n-giv 6593 basic-n-pair 1902super0-1-giv (T) super0-1-pair (T)super0-4-giv (T) super0-4-pair (T)super0-8-giv (T) super0-8-pair 9325super0-n-giv (T) super0-n-pair (T)all-1-giv (T) all-1-pair (T)all-4-giv (T) all-4-pair (T)all-8-giv 9484 all-8-pair 14193all-n-giv 4972 all-n-pair 128882. The main body of experiments indicates that the \basic" strategy is not particularlypowerful for AC problems, but it is clearly the winner for the �rst Robbins lemma.3. The main body of experiments indicates that lower ratios (more breadth-�rst) aregenerally better for AC problems, but higher ratios, especially pure best-�rst, areclearly best for the �rst Robbins lemma.4. As in the main body of experiments, the pair algorithm is clearly better than thegiven clause algorithm.5. Many previous (unpublished) experiments on the �rst Robbins lemmaby the authorand by Larry Wos show that proofs are much more di�cult to �nd with AC axiomsthan with AC uni�cation. These results are consistent with the main body ofexperiments.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 31Experiments with the Second Robbins Lemma. Our only previous proof ofthe second Robbins lemma was with an earlier version of EQP and required 12.5days on a 486DX2/66 processor (estimated 7.5 days on an RS/6000) with a strategysimilar to \start-n-pair" with max-weight=34. Our computing environment was notstable enough to run many multi-day jobs during the period we had to run newexperiments on this lemma, but we were able to obtain one meaningful comparison.The lemma was run on an RS/6000 with strategy \start-n-pair", max-weight=34,and a proof was found in 7.04 days. Then the winning strategy for the �rst Robbinslemma, \basic-n-pair", was run on the second lemma; the job ran for about 7 dayswithout �nding a proof, then the computer had to be shut down. Thus we concludethat, although \basic-n-pair" is twice as good as \start-n-pair" for the �rst lemma,it is no better (and possibly much worse) for the second lemma.4.9 ConclusionThe 33 test problems come from a study in a few areas of equational logic andare mostly about lattice-like algebras and group-like algebras. The statements ofthe theorems are characterized mostly by small sets of small equations. We don'tknow how well our results and conclusions will apply to other areas such as ring-likealgebras, nonequational theories, and theorems involving de�ned concepts.The following results on the 33 test problems are consistent with our previousexperience and beliefs about paramodulation strategies for equational logic.� No winning strategies exist. The strategies that win in most cases are sometimesthe worst strategy, and each strategy wins in some cases. This supports our long-held position that users of automated deduction systems need a variety of strategieswith which to experiment.� Basic paramodulation is widely useful for non-AC problems and is also powerfulfor the �rst Robbins lemma with AC uni�cation.� Although incomplete, the superset limit on AC uni�ers (strategy \super0") is widelyuseful for AC problems.� The tables in Section 4.6 include data on proof length. We found substantialvariations in proof length, but we have not been able to draw any conclusionsabout which strategies lead to short proofs. We advise users seeking short proofsto consult Larry Wos's recent work [20, 19] and to experiment with a variety ofstrategies.The following results are surprising to us.

32 Chapter 4� For selecting the next unit of work, we had previously assumed that the given clausealgorithm is much better for non-AC problems and that the pair algorithm is muchbetter for AC problems. But for this set of problems, paramodulation strategies,and selection ratios, the pair algorithm wins about 60% of the contests for bothnon-AC and AC problems. The good performance of the given clause algorithm onthe AC problems was just as surprising as the very good performance of the pairalgorithm on the non-AC problems.� For the 13 problems with AC function symbols, AC axioms perform nearly as wellas AC uni�cation. However, we now believe that these 13 problems may be biasedtoward AC axioms because they all are about lattice-like structures and becausethey are not particularly di�cult problems. Our experience with di�cult Robbinsalgebra theorems (e.g., the two Robbins lemmas in the preceding section) and theexperience of others with ring problems indicate that AC uni�cation is much betterthan AC axioms for those areas.� The lower selection ratios (which are closer to equal parts of best-�rst and breadth-�rst search) perform very well, especially for AC problems, where 1:1 is the winner.This observation leads us to believe that we should experiment with ratios thatemphasize breadth-�rst search. (Experiments with pure breadth-�rst search haveshown it to be useful in very few cases.)� The set of results on the main body of experiments is not a good indicator for theperformance of the various strategies on the �rst Robbins lemma, and the resultson the �rst Robbins lemma are not a good indicator for the second Robbins lemma.� The superset restriction for AC uni�ers (strategy \super0") is incomplete, but it didnot block all proofs for any of the problems to which it was applied. Although thisbehavior surprises us, it supports our long-held position that incomplete restrictionsare extremely valuable in automated deduction.We have several World Wide Web pages associated with this work. They areaccessible from the pagehttp://www.mcs.anl.gov/home/mccune/ar/33-basic-test-problems/and include (1) the source code of the version of EQP used for these experiments,(2) all of the input �les for the 33 test problems in both Otter and EQP format,(3) the database of search results (in Prolog format) from which all of the tables inthis chapter were generated, and (4) proofs of the �rst and second Robbins algebralemmas.

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 33Appendix A: Denials of the 33 TheoremsWe present here the denials of the 33 theorems in clause form. A short description isgiven for each theorem; see [11] for further details. Variables are distinguished fromconstants by starting with a member of fu; v; w; x; y; zg. If \max-weight" is listed,it was used for all experiments; otherwise no limit was used in any experiment. If asymbol order is listed, it was used for all experiments; otherwise the default orderwas used.CS-2. Support for Padmanabhan's conjecture on cancellative semigroups.Max-weight=31.((x � y) � z = x � (y � z)x � (y � y) = y � (y � x)A �B �A � B � A � B � A � B 6= A � A �A �A �B � B � B � B)CS-6a. Support for Padmanabhan's conjecture on cancellative semigroups.Max-weight=31.((x � y) � z = x � (y � z)x � y � z � u � v = y � z � u � v � xA �B �A � B � A � B � A � B 6= A � A �A �A �B � B � B � B)D-BA-1b. An independent self-dual 6-basis for Boolean algebra.(Name abbreviated from DUAL-BA-1b.)8><>: (x+ y) � y = y; (x � y) + y = yx � (y+ z) = (y � x) + (z � x); x+ (y � z) = (y + x) � (z + x)x+ x0 = 1; x � x0 = 0(A � B) � C 6= A � (B �C) 9>=>;D-BA-2a. A basis for Boolean algebra.(Name abbreviated from DUAL-BA-2a.) Symbol order: 1 � A � B � C � � � + � 0 � p.Max-weight=28.8>>><>>>: (x+ y) � y = y; p(x; x; y) = yx � (y+ z) = (x � y) + (x � z); p(x; y; y) = xx+ x0 = 1; p(x; y; x) = xp(x; y; z) = (x � y0) + ((x � z) + (y0 � z))A+ (B � C) 6= (A+B) � (A+C) 9>>>=>>>;

34 Chapter 4D-BA-5a. A self-dual 2-basis for Boolean algebra.(Name abbreviated from DUAL-BA-5a.) Max-weight=23.8>>>>><>>>>>: y + (x � (y � z)) = y; y � (x+ (y + z)) = y((x � y) + (y � z)) + y = y; ((x+ y) � (y + z)) � y = y(x+ y) � (x+ y0) = x; (x � y) + (x � y0) = xx+ y = y + x; x � y = y � x(x+ y) + z = x+ (y + z); (x � y) � z = x � (y � z)(A � B) + (A �C) 6= A � (B + C) 9>>>>>=>>>>>;D-BA-5c. A self-dual 2-basis for Boolean algebra.(Name abbreviated from DUAL-BA-5c.) Max-weight=23.8>>>>><>>>>>: y + (x � (y � z)) = y; y � (x+ (y + z)) = y((x � y) + (y � z)) + y = y; ((x+ y) � (y + z)) � y = y(x+ y) � (x+ y0) = x; (x � y) + (x � y0) = xx+ y = y + x; x � y = y � x(x+ y) + z = x+ (y + z); (x � y) � z = x � (y � z)B + B0 6= A+ A0 9>>>>>=>>>>>;D-BA-8a. A self-dual 3-basis for Boolean algebra.(Name abbreviated from DUAL-BA-8a.) Max-weight=23.8>>>>>><>>>>>>: y + (x � (y � z)) = y; y � (x+ (y + z)) = y((x � y) + (y � z)) + y = y; ((x+ y) � (y + z)) � y = y(x+ x0) � y = y; (x � x0) + y = yx+ x0 = 1; x � x0 = 0(x+ y) + z = x+ (y + z); (x � y) � z = x � (y � z)(x � y) + ((y � z) + (z � x)) = (x+ y) � ((y + z) � (z + x))(A � B) + (A �C) 6= A � (B + C) 9>>>>>>=>>>>>>;LT-10a. An absorption 3-basis for lattice theory.8><>: y ^ (x _ (y _ z)) = y((x ^ y) _ (y ^ z)) _ y = y((y _ x) ^ (y _ z)) ^ y = yB _ (A ^ (B ^C)) 6= B 9>=>;

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 35LT-2. An equational version of SAM's lemma.Max-weight=15.8>>>>>>>>>>>>>><>>>>>>>>>>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)x ^ (x _ y) = x; x _ (x ^ y) = x0 ^ x = 0; 0 _ x = x1 ^ x = x; 1 _ x = 1x ^ x = x; x _ x = x(x ^ y) _ (x ^ z) = x ^ (y _ (x ^ z))C1 _ (A _B) = 1; C2 _ (A ^ B) = 1C1 ^ (A _B) = 0; C2 ^ (A ^ B) = 0(C1 _ (A ^C2)) ^ (C1 _ (B ^C2)) 6= C1 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;LT-3e. Sholander's basis for distributive lattices.Max-weight=19.(x ^ (x _ y) = xx ^ (y _ z) = (z ^ x) _ (y ^ x)(A _B) _C 6= A _ (B _C))LT-4. The distributive law implies its dual in lattice theory.Max-weight=17.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)x ^ (x _ y) = x; x _ (x ^ y) = xx ^ (y _ z) = (x ^ y) _ (x ^ z)A _ (B ^C) 6= (A _B) ^ (A _C) 9>>>>>=>>>>>;LT-5. A new self-dual form of distributivity for lattice theory.Max-weight=23.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)x ^ (x _ y) = x; x _ (x ^ y) = x(((x ^ y) _ z) ^ y) _ (z ^ x) = (((x _ y) ^ z) _ y) ^ (z _ x)A ^ (B _C) 6= (A ^B) _ (A ^C) 9>>>>>=>>>>>;

36 Chapter 4LT-6. McKenzie's basis for the lattice variety generated by N5.Max-weight=35.8>>>>>>>>>><>>>>>>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)x ^ (x _ y) = x; x _ (x ^ y) = xx ^ (y _ (z ^ (x _ u))) = (x ^ (y _ (x ^ z))) _ (x ^ ((x ^ y) _ (z ^ u)))x _ (y ^ (z _ (x ^ u))) = (x _ (y ^ (x _ z))) ^ (x _ ((x _ y) ^ (z _ u)))(x _ (y ^ z)) ^ (z _ (x ^ y)) = (z ^ ((x _ (y ^ z)))) _ (x ^ (y _ z))A ^ ((B _ C) ^ (B _D)) 6=(A ^ ((B _ C) ^ (B _D))) ^ ((A ^ (B _ (C ^D))) _ ((A ^C) _ (A ^D))) 9>>>>>>>>>>=>>>>>>>>>>;LT-8. Uniqueness of the meet operation in lattice theory.Max-weight=17.8>>>>>>>>>>>><>>>>>>>>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)x ^ (x _ y) = x; x _ (x ^ y) = xx � x = xx � y = y � x(x � y) � z = x � (y � z)x � (x _ y) = xx _ (x � y) = xA ^B 6= A �B 9>>>>>>>>>>>>=>>>>>>>>>>>>;LT-9b. McKenzie's absorption basis for lattice theory.Max-weight=21.8>>><>>>: y _ (x ^ (y ^ z)) = yy ^ (x _ (y _ z)) = y((x ^ y) _ (y ^ z)) _ y = y((x _ y) ^ (y _ z)) ^ y = y(A ^B) ^ C 6= A ^ (B ^C) 9>>>=>>>;MFL-1. Moufang-1) Moufang-2 in loops.Symbol order: A � B � C � 1 � � � R � L � = � n. Max-weight=17.8>>>>><>>>>>: 1 � x = x; x � 1 = xx � (xny) = y; xn(x � y) = y(x=y) � y = x; (x � y)=y = xx � R(x) = 1; L(x) � x = 1(x � (y � z)) � x = (x � y) � (z � x)((A � B) � C) � B 6= A � (B � (C � B)) 9>>>>>=>>>>>;

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 37MFL-2. Moufang-2) Moufang-3 in loops.Symbol order: A � B � C � 1 � � � R � L � = � n. Max-weight=17.8>>>>><>>>>>: 1 � x = x; x � 1 = xx � (xny) = y; xn(x � y) = y(x=y) � y = x; (x � y)=y = xx � R(x) = 1; L(x) � x = 1((x � y) � z) � y = x � (y � (z � y))((A � B) � A) � C 6= A � (B � (A � C)) 9>>>>>=>>>>>;MFL-3. Moufang-3) Moufang-1 in loops.Symbol order: A � B � C � 1 � � � R � L � = � n. Max-weight=17.8>>>>><>>>>>: 1 � x = x; x � 1 = xx � (xny) = y; xn(x � y) = y(x=y) � y = x; (x � y)=y = xx � R(x) = 1; L(x) � x = 1((x � y) � x) � z = x � (y � (x � z))(A � (B � C)) � A 6= (A � B) � (C �A) 9>>>>>=>>>>>;MFL-7. Simple basis with Moufang-3.Max-weight=21.8><>: 1 � x = xx0 � x = 1((x � y) � x) � z = x � (y � (x � z))((A � B) � C) � B 6= A � (B � (C � B)) 9>=>;QLT-1. A form of distributivity for quasilattices.Max-weight=19.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)(x ^ (y _ z)) _ (x ^ y) = x ^ (y _ z); (x _ (y ^ z)) ^ (x _ y) = x _ (y ^ z)x ^ (y _ (x ^ z)) = x ^ (y _ z)A ^ (B _C) 6= (A ^B) _ (A ^C) 9>>>>>=>>>>>;

38 Chapter 4QLT-2. The distributive law implies its dual in quasilattices.Max-weight=19.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)(x ^ (y _ z)) _ (x ^ y) = x ^ (y _ z); (x _ (y ^ z)) ^ (x _ y) = x _ (y ^ z)x ^ (y _ z) = (x ^ y) _ (x ^ z)A _ (B ^C) 6= (A _B) ^ (A _C) 9>>>>>=>>>>>;QLT-3. A self-dual form of distributivity for quasilattices.Max-weight=24.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)(x ^ (y _ z)) _ (x ^ y) = x ^ (y _ z); (x _ (y ^ z)) ^ (x _ y) = x _ (y ^ z)(((x ^ y) _ z) ^ y) _ (z ^ x) = (((x _ y) ^ z) _ y) ^ (z _ x)A ^ (B _C) 6= (A ^B) _ (A ^C) 9>>>>>=>>>>>;QLT-4. Bowden's inequality gives distributivity in quasilattices.Max-weight=19.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)(x ^ (y _ z)) _ (x ^ y) = x ^ (y _ z); (x _ (y ^ z)) ^ (x _ y) = x _ (y ^ z)(x _ (y ^ z)) _ ((x _ y) ^ z) = x _ (y ^ z)A ^ (B _C) 6= (A ^B) _ (A ^C) 9>>>>>=>>>>>;QLT-5. Self-dual modularity axiom for quasilattices.Max-weight=23.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)(x ^ (y _ z)) _ (x ^ y) = x ^ (y _ z); (x _ (y ^ z)) ^ (x _ y) = x _ (y ^ z)(x ^ y) _ (z ^ (x _ y)) = (x _ y) ^ (z _ (x ^ y))A ^ (B _ (A ^C)) 6= (A ^ B) _ (A ^C) 9>>>>>=>>>>>;

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 39QLT-6. A modularity axiom for quasilattices.Max-weight=23.8>>>>><>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x(x ^ y) ^ z = x ^ (y ^ z); (x _ y) _ z = x _ (y _ z)(x ^ (y _ z)) _ (x ^ y) = x ^ (y _ z); (x _ (y ^ z)) ^ (x _ y) = x _ (y ^ z)((x _ y) ^ z) _ y = ((z _ y) ^ x) _ yA ^ (B _ (A ^C)) 6= (A ^ B) _ (A ^C) 9>>>>>=>>>>>;RBA-2. A Robbins algebra with an idempotent element is Boolean.Max-weight=21.8>>><>>>: x+ y = y + x(x+ y) + z = x+ (y + z)n(n(n(x) + y) + n(x+ y)) = yc+ c = cn(A+ n(B)) + n(n(A) + n(B)) 6= B 9>>>=>>>;SD-2a. Intersection in terms of set di�erence.Symbol order: A � B � C � � � �. Max-weight=23.8>>><>>>: x� (y � x) = xx� (x� y) = y � (y� x)(x� y) � z = (x� z)� (y � z)x � y = x� (x� y)(A � B) � C 6= A � (B �C) 9>>>=>>>;SD-3-e1. A simple basis for set di�erence.8><>: x� (y � x) = xx� (x� y) = y � (y� x)(x� y) � z = (x� z)� (y � z)(A�C) �B 6= (A�B)� C 9>=>;SD-3-e2. A simple basis for set di�erence.Max-weight=23.8><>: x� (y � x) = xx� (x� y) = y � (y� x)(x� y) � z = (x� z)� y(A�B) �C 6= (A�C) � (B � C) 9>=>;

40 Chapter 4TBA-1-e1. A short single axiom for ternary Boolean algebra.Max-weight=26.8>>>>><>>>>>: f(f(v;w; x); y; f(v;w; z)) = f(v;w; f(x;y; z))f(y; x; x) = xf(x;y; g(y)) = xf(x;x; y) = xf(g(y); y; x) = xf(f(A;g(A); B); g(f(f(C;D;E); F; f(C;D;G))); f(D;f(G;F;E); C)) 6= B 9>>>>>=>>>>>;TBA-1-e2d. A short single axiom for ternary Boolean algebra.Max-weight=50.� f(f(x;g(x); y); g(f(f(z;u; v); w; f(z;u; v6))); f(u; f(v6; w;v); z)) = yf(A;A;B) 6= A �WAL-1a. A relationship between lattices and weakly associative lattices.Max-weight=17.8>>><>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x((x _ z) ^ (y _ z)) ^ z = z; ((x ^ z) _ (y ^ z))_ z = zx ^ (y _ (x _ z)) = x(A ^B) ^ C 6= A ^ (B ^C) 9>>>=>>>;WAL-2. Uniqueness of the meet operation in weakly associative lattices.Max-weight=17.8>>>>>>>><>>>>>>>>: x ^ x = x; x _ x = xx ^ y = y ^ x; x _ y = y _ x((x _ z) ^ (y _ z)) ^ z = z; ((x ^ z)_ (y ^ z)) _ z = zx � x = xx � y = y � x((x _ z) � (y _ z)) � z = z((x � z) _ (y � z)) _ z = zA ^B 6= A �B 9>>>>>>>>=>>>>>>>>;Appendix B: Proofs of the Two Robbins LemmasWe present here proofs of the two Robbins algebra lemmas discussed in Section 4.8.The �rst lemma was proved in 1992 with an early version of EQP on a SPARC2 with a strategy similar to our starting strategy, with the pair algorithm, pure

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 41best-�rst pair selection, and max-weight=30; the proof was found in about 2 hoursand used 8 megabytes of memory.11 The second lemma was proved with a similarstrategy (max-weight=34) in 1996 with a recent version of EQP on a 486/DX2-66(Linux); the proof was found in about 12.5 days and used 6 megabytes.12Each derived equation in the proofs below has a justi�cation. The notation\m ! n" indicates paramodulation from the left side of m into the left side of n,\: i; j; k; � � �" indicates rewriting with the demodulators i; j; k; � � �, and \n0" indicatesthe extension of n.First Robbins Lemma8>><>>: x+ y = y + x(x+ y) + z = x+ (y + z)n(n(n(x) + y) + n(x+ y)) = y9C9D (C +D = C) 9>>=>>;) 9x(x+ x = x)Proof (found on cosmo.mcs.anl.gov at 7801.45 seconds, Nov. 17, 1992).1 C +D = C2 n(n(n(x) + y) + n(x+ y)) = y4 x+ x 6= x11 n(n(C) + n(D + n(C))) = D [1 ! 2]17 n(n(C + x+ y) + n(D + n(C + x) + y)) = D+ y [10 ! 2]29 n(D + n(C + n(D+ n(C)))) = n(D+ n(C)) [11 ! 2]36 n(n(n(n(x) + y) + n(x+ y) + z) + n(z + y)) = z [2 ! 2]37 n(n(n(n(x) + y) + x+ y) + y) = n(n(x) + y) [2 ! 2]76 n(n(C) + n(D + n(C + n(x)) + n(C + x))) = D [1 ! 36]160 n(n(D + n(C + n(D + n(C))) + x) + n(n(D + n(C)) + x)) = x [29 ! 2]161 n(n(C + n(D + n(C))) + n(D+ n(C))) = D [29 ! 2 :1]203 n(n(C + n(C + n(D+ n(C)))) + n(C + n(D + n(C)))) = C [10 ! 160 :1,1,1]206 n(D + n(D+ n(C) + n(C + n(D+ n(C))))) = n(C + n(D+ n(C))) [161 ! 2]302 n(D + n(n(C) + n(n(D + n(C)) + n(x)) + n(n(D+ n(C)) + x))) = n(C)[11 ! 36]304 n(n(n(n(n(x) + y) + x+ y) + z + y) + n(n(n(x) + y) + z)) = z [37 ! 2]465 n(C + n(D + n(C))) = n(C) [10 ! 302 :1,11,206]466 n(n(C) + n(C + n(C))) = C [203 :465,465]470 n(n(C + x) + n(n(C) + n(C + n(C)) + x)) = x [466 ! 2]516 n(n(C +C + n(C + n(C))) + n(C + n(C))) = C [466 ! 37 :466]585 n(C + n(C + n(C) + n(C + C + n(C + n(C))))) = n(C + C + n(C + n(C)))11The SPARC 2 runs EQP about 0.34 as fast as the RS/6000 processors used for the main bodyof experiments.12The 486 runs EQP about 0.57 as fast as the RS/6000 processors.

42 Chapter 4[516 ! 2]1432 n(C +C + n(C + n(C))) = n(C) [466 ! 304 :585]1452 D + n(C + n(C)) = D [1432 ! 17 :76]1472 C + n(C + n(C)) = C [14520 ! 10 :1]1531 n(C + n(C)) + x = x [14720 ! 2 :470]1532 2 [1531,4]Second Robbins Lemma8>><>>: x+ y = y + x(x+ y) + z = x+ (y + z)n(n(n(x) + y) + n(x+ y)) = y9C9D (n(D +C) = n(C)) 9>>=>>;) 9x9y(x + y = y)Proof (found on gyro.mcs.anl.gov at 1081324.76 seconds, Feb. 18, 1996).2 x+ y 6= y4 n(D +C) = n(C)5 n(n(n(x) + y) + n(x+ y)) = y7 n(n(D +C + x) + n(n(C) + x)) = x [4 ! 5]8 n(n(C) + n(D + n(C))) = D [4 ! 5]10 n(n(D + x) + n(n(C) + n(D+ n(C)) + x)) = x [8 ! 5]12 n(D + n(C + n(D+ n(C)))) = n(D+ n(C)) [8 ! 5]21 n(n(n(n(x) + y) + x+ y) + y) = n(n(x) + y) [5 ! 5]28 n(n(D +C + n(n(C) + x) + x) + x) = n(n(C) + x) [4 ! 21 :4]38 n(n(n(D +C + x) + n(n(C) + x) + y) + n(x+ y)) = y [7 ! 5]67 n(n(D + n(C)) + n(D+ C + n(D+ n(C)))) = D [12 ! 5]144 n(n(n(n(x) + y) + x+ y + y) + n(n(x) + y)) = y [21 ! 5]148 n(n(n(n(x) + y) + n(x+ y) + n(y + z) + z) + z) = n(y + z) [5 ! 21 :5]173 n(D + n(D+ n(C) + n(D+ C + n(D+ n(C))))) = n(D +C + n(D+ n(C)))[67 ! 5]290 n(n(n(n(n(x) + y) + x+ y + y) + n(n(x) + y) + z) + n(y + z)) = z [144 ! 5]301 n(D +C + n(D+ n(C))) = n(C) [8 ! 38 :8,173]829 n(n(D + n(C)) + n(D+ n(D+ n(C)) + n(n(C) + n(x)) + n(n(C) + x))) = D[8 ! 148 :8]1237 n(n(n(n(n(x) + y) + n(x+ y) + n(y + z) + z) + z + u) + n(n(y + z) + u)) = u[148 ! 5]1478 n(D +D+ C + n(D+ n(C))) = n(C) [28 ! 10 :290]1501 n(n(D +D+ C + n(D+ n(C)) + n(n(C) + x) + x) + x) = n(n(C) + x)[1478 ! 21 :1478]3321 n(D + n(D+ n(C) + n(D+ n(D+ n(C)) + n(n(C) + n(x)) + n(n(C) + x)))) =n(C) [8 ! 1237]3710 n(D + n(D+ n(C)) + n(n(C) + n(x)) + n(n(C) + x)) = n(C)

33 Basic Test Problems: A Practical Evaluation of Some Paramodulation Strategies 43[829 ! 38 :301,8,3321]3711 n(D + n(D+ n(C)) + n(D+C + n(C)) + n(n(C) + n(C))) = n(C) [4 ! 3710]3736 D + n(D+ n(C)) + n(n(C) + n(C)) = n(n(C) + n(C)) [3711 ! 5 :1501]3737 2 [3736,2]References[1] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superpo-sition. In D. Kapur, editor, Proceedings of the 11th International Conference on AutomatedDeduction, Lecture Notes in Arti�cial Intelligence, Vol. 607, pages 462{476.Springer-Verlag,1992.[2] M. Bonacina and W. McCune. Distributed theorem proving by Peers. In A. Bundy, editor,Proceedings of the 12th International Conference on Automated Deduction, Lecture Notes inArti�cial Intelligence, Vol. 814, pages 841{845. Springer-Verlag, 1994. Extended abstract.[3] J. Hsiang and M. Rusinowitch. On word problems in equational theories. In T. Ottmann,editor, Proceedings of 14th ICALP, Lecture Notes in Computer Science, Vol. 267, pages54{71. Springer-Verlag, 1987.[4] G. Huet. An algorithm to generate the basis of solutions to homogeneous linear Diophantineequations. Information Processing Letters, 7:144{147, 1978.[5] D. Kapur, D. Musser, and P Narendran. Only prime superpositions need be considered inthe Knuth-Bendix completion procedure. J. Symbolic Computation, 6:19{36, 1988.[6] D. Kapur and H. Zhang. RRL: Rewrite rule laboratory user's manual. Technical Report89-03, Department of Computer Science, University of Iowa, 1989.[7] D. Kapur and H. Zhang. A case study of the completion procedure: Proving ring commu-tativity problems. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays inHonor of Alan Robinson, chapter 10, pages 360{394. MIT Press, 1991.[8] D. Lankford. Canonical inference. Tech. Report ATP-32, Dept. of Mathematics, Universityof Texas at Austin, 1975.[9] W. McCune. Experiments with discrimination tree indexing and path indexing for termretrieval. Journal of Automated Reasoning, 9(2):147{167, 1992. Invited paper.[10] W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, ArgonneNational Laboratory, Argonne, IL, 1994.[11] W. McCune and R. Padmanabhan. Automated Deduction in Equational Logic and CubicCurves, volume 1095 of Lecture Notes in Computer Science (AI subseries). Springer-Verlag,Berlin, 1996.[12] W. McCune and L. Wos. Experiments in automated deduction with condensed detach-ment. In D. Kapur, editor, Proceedings of the 11th International Conference on AutomatedDeduction, Lecture Notes in Arti�cial Intelligence, Vol. 607, pages 209{223, Berlin, 1992.Springer-Verlag.[13] R. Niewenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Br�uckner, edi-tor, Proceedings of the European Symposium on Programming, Lecture Notes in ComputerScience, Vol. 582, pages 371{389, Berlin, 1992. Springer-Verlag.[14] R. Overbeek. A new class of automated theorem-proving algorithms. PhD thesis, Pennsyl-vania State University, 1971.[15] G. E. Peterson. A technique for establishing completeness results in theorem proving withequality. SIAM J. Computing, 12(1):82{100, 1983.

[16] G. Robinson and L. Wos. Paramodulation and theorem-proving in �rst-order theories withequality. In D. Michie and R. Meltzer, editors,Machine Intelligence, Vol. IV, pages 135{150.Edinburgh University Press, 1969.[17] M. Stickel. A uni�cation algorithm for associative-commutative functions. J. ACM,28(3):423{434, 1981.[18] S. Winker. Robbins algebra: Conditions that make a near-Booleanalgebra Boolean. Journalof Automated Reasoning, 6(4):465{489, 1990.[19] L. Wos. Automating the search for elegant proofs. J. Automated Reasoning, 1996. ToAppear.[20] L. Wos. The Automation of Reasoning: An Experimenter's Notebook with Otter Tutorial.Academic Press, New York, 1996.[21] L. Wos, D. Carson, and G. Robinson. The unit preference strategy in theorem proving. InAFIPS Proceedings 26, pages 615{621. Spartan Books, 1964.[22] L. Wos, G. Robinson, D. Carson, and L. Shalla. The concept of demodulation in theoremproving. J. ACM, 14(4):698{709, 1967.

Indexassociative-commutative uni�cationexperiments, 26, 27extended equations, 10in EQP, 5, 8, 9superset limit, 12basic paramodulationdescription, 11experiments, 27best-�rst search, 8blocked paramodulationdescription, 11experiments, 27, 28Boolean algebra test problem, 33, 34breadth-�rst search, 8cancellative semigroup test problem, 33completeness, inference rules, 1EQP theorem proverassociative-commutative uni�cation, 9description, 4experiments, 1Robbins algebra proofs, 40structure sharing, 6equational logic, 2equational theorems, 2experimentsassociative-commutative, 14comparison, 25non-AC, 14paramodulation, 1functional subsumptiondescription, 12experiments, 26given clause algorithmdescription, 8experiments, 25group theory problems, 2Huet, G.associative-commutative uni�cation, 9indexing of terms, 6inference rulescompleteness, 1paramodulation, 1Kapur, D.associative-commutative uni�cation, 9blocked paramodulation, 11prime superposition, 11

lattice problems, 2lattice theory test problem, 34{36max-weight parameter, 2Moufang loop test problem, 36, 37Musser, D.prime superposition, 11Narendran, P.prime superposition, 11ordered paramodulationdescription, 10experiments, 27ordering of terms, 10ordering on terms, 3, 4Otter theorem proverautonomous mode, 3comparison with EQP, 4Padmanabhan, R., 2pair algorithmdescription, 8experiments, 25paramodulationArgonne paradigm, 3basic, 11blocked, 11completeness, 4experiments, 1ordered, 10strategies, 10winning strategies, 27Peterson, G.paramodulation, 4pick-given-ratiodescription, 8experiments, 25reordering search, 3proof length, 13quasilattice test problem, 37{39Robbins algebralemmas, 28proofs of lemmas, 40test problem, 39web pages, 32RRL theorem prover, 9set di�erence test problem, 39Stickel, M.associative-commutative uni�cation, 9structure sharing, 6

46 Indexternary Boolean algebra test problem, 40test problems33 denials, 33description, 2weakly associative lattice test problem, 40web pagesparamodulation experiments, 32Robbins algebra, 32Winker, S.Robbins algebra, 29Wos, Larrydemodulation, 3experiments, 3paramodulation, 3Robbins algebra, 29Zhang, H.associative-commutative uni�cation, 9blocked paramodulation, 11

