
Otter: The CADE-13 Competition IncarnationsWILLIAM McCUNE and LARRY WOS �Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL60439.Preprint ANL/MCS-P619-1096Abstract. This article discusses the two incarnations of Otter entered in the CADE-13 Auto-mated Theorem Proving Competition. Also presented are some historical background, a summa-ry of applications that have led to new results in mathematics and logic, and a general discussionof Otter.Key words: Automated theorem proving, automated reasoning, equational deduction, Otter,paramodulation, resolution. 1. IntroductionOtter [19, 21] is an automated deduction system for �rst-order logic with equality.Two versions of Otter were entered in the CADE-13 Automated Theorem ProvingSystem Competition, and the main purpose of this article is to give a detailedpresentation of our entries. The �rst version (called Otter-304z) is essentiallyOtter 3.0.4 operating in its autonomous mode, and the second (called Otter-Wos)is a minor variation of Otter 3.0.4.Because this article also serves as a general reference and overview of Otter, wealso present some background, a summary of applications of Otter, and featuresof Otter that are not directly related to the competition.1.1. Historical BackgroundResearch in automated theorem proving at Argonne started in 1963. We havealways placed great importance on implementing and testing our ideas in the �eld,so many computer programs have been written. The �rst generation consistedmainly of two programs. PG1 (Program 1), designed by Dan Carson, GeorgeRobinson, and Wos in 1963, had the unit preference strategy [40]; experimentationwith PG1 led to the set of support strategy [42] and demodulation [43]. TheprogramRG1 [41] (R is mnemonic for equality), designed by George Robinson andWos in 1967, had binary resolution, factoring, paramodulation, demodulation,and the set of support strategy.The second generation, started by Ross Overbeek in 1970 [28], was based onthe NIUTP (Northern Illinois University Theorem Prover) series [12, 13], which� Supported by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.



2 WILLIAM McCUNE and LARRY WOSevolved into AURA (AUtomated Reasoning Assistant) and its variants [31], withcontributions from Brian Smith, Rusty Lusk, Bob Vero�, Steve Winker, andWos. The NIUTP/AURA generation (written mostly in IBM assembly language,with some PL/1) included the �rst high-performance implementations of hyper-resolution, demodulation, and paramodulation, and it introduced unit-resultingresolution and weighting. The result was the �rst practical set of programs inthat their use led to answers to several open questions in equivalential calculus[45], ternary Boolean algebra [33], semigroups [35], and Robbins algebra.The third generation of Argonne theorem provers, started in 1980 by Over-beek, Lusk, and McCune, consisted mostly of the LMA [10] (Logic Machine Archi-tecture), a toolkit (written in Pascal) for building deduction systems, and ITP[11] (Interactive Theorem Prover), constructed with LMA. The functionality ofITP was similar to that of AURA, except that environments were omitted. Themotivations for LMA and ITP were sound software engineering and portability.Several experimental theorem provers based on technology for compiling logicprograms [1] were also part of the third generation.Otter [19] is a member of the fourth generation. We started writing codefor a new theorem prover in June 1987, and by December of that year it haddeveloped into a program that was useful for our research on inference rules andsearch strategies. For a while the program was called CART (for Compendiumof Automated Reasoning Techniques), but that name brought too many imagesof oxen and mud, so we renamed the program Otter (Organized theorem-provingtechniques for e�ective research) in May 1988. Other members of the fourth gen-eration are ROO [9] (Radical Otter Optimization), by John Slaney, Lusk, andMcCune, which is a parallel version of Otter; FDB [2] (Formula DataBase), byOverbeek and Ralph Butler, which is a uni�cation and indexing toolkit; MACE[18] (Models And CounterExamples), by McCune, which searches for �nite mod-els; and EQP [20] (EQuational Prover), by McCune, a program for equationallogic, which incorporates associative-commutative uni�cation and matching.Aside from e�ective inference rules and strategies for proving theorems, speedand portability were the main considerations in building Otter. Therefore, the Cprogramming language was used. The functionality of AURA and ITP, especiallythe inference and search methods, was quite useful in practice, so Otter retainedmost of it. However, low-level algorithms such as indexing techniques [15] wereimproved during construction of Otter, resulting in sharp speedups over ITP.Otter evolved from 1988 through 1995 as the need for new features arose duringour work on inference rules, search strategies, and applications. Major releases ofOtter occurred at CADE-9 in May 1988 (version 0.9), in January 1989 (version 1),in March 1990 (version 2), and in January 1994 (version 3). The current versionis 3.0.4, released in August 1995.
paper.tex; 17/10/1996; 11:24; no v.; p.2



Otter: The CADE-13 Competition Incarnations 31.2. Applications of OtterOtter has been applied to several areas of mathematics and logic, and many newresults have been obtained with its use. Examples of such results are the existenceof �xed point combinators in fragments of combinatory logic [25, 36], logic cal-culi with condensed detachment [27], single axioms for group calculi [14, 17],single axioms for group theory and subvarieties [16, 26] and (K. Kunen andJ. Hart) [5, 3, 6], single axioms for ternary Boolean algebra (with R. Padman-abhan) [30], equational theorems about cubic curves (with Padmanabhan) [29],single axioms for lattice-like algebras (with Padmanabhan) [22], self-dual basesfor groups and for lattices (with Padmanabhan) [23], implicational axioms forgroups and Abelian groups (with A. D. Sands) [24], Robbins algebra (with S.Winker) [44, 20, 34], Moufang loops [23] and (Kunen) [7, 8], illiative combinatorylogic (T. Jech) [4], and proofs with particular properties [37, 38, 39].2. ArchitectureOtter reads an input �le containing a set of clauses and some control information.The set of clauses represents the theory and denial of the conclusion (all proofs areby contradiction), and the control information consists of various switches andparameter settings for specifying the inference rules and search strategies. AsOtter searches, it writes information (including the proof, if found) to an output�le. (Otter also has a primitive interactive component that allows the user tointerrupt the search to examine the state and adjust switches and parameters,but that is not a major feature of the program.)We now summarize how Otter works. See the manual [19] for details on thematerial in this section.2.1. LogicOtter applies to statements in classical �rst-order (unsorted) logic with equality. Itaccepts as input either clauses or quanti�ed formulas. Quanti�ed formulas (whichmay contain 8, 9, _, ^, :, !, $) are immediately transformed to clause formby negation normal form conversion, then (naive) Skolemization, then conjunc-tive normal form conversion. All of Otter's inference rules and search algorithmsoperate on clauses.2.2. Inference RulesOtter's main inference rules are based on resolution or paramodulation. The reso-lution inference rules known to Otter are binary resolution, hyperresolution, neg-ative hyperresolution, unit-resulting resolution, and linked unit-resulting resolu-tion. Equational deduction is done with binary paramodulation and various formspaper.tex; 17/10/1996; 11:24; no v.; p.3



4 WILLIAM McCUNE and LARRY WOSof demodulation. (We sometimes classify demodulation as a rewriting rule ratherthan as an inference rule.) Factoring is not built into resolution and paramodu-lation; it is considered to be a separate inference rule.Otter has one additional inference rule (called gL) for problems about cubiccurves in algebraic geometry. It is a generalization rule that applies to equationsand is derived from the property of cubic curves that for some kinds of statementP , if P holds at some point on a cubic curve, then P holds at every point on thecurve. See [23] for details and applications.2.3. ControlAn Otter process can be viewed as a closure computation with redundancy con-trol (also called saturation in the recent literature); that is, Otter attempts tocompute the closure of a set of input statements under a set of inference rules,applying deletion rules (subsumption and demodulation) that preserve logicalcompleteness of the inference system. The computation is driven by a loop.2.3.1. The Inference LoopOtter maintains three lists of clauses.Usable. These clauses are available for application of inference rules. Theyactively participate in the search.Sos. These clauses are waiting to participate in the search through applicationof inference rules. (Members of sos that are equations may be participating asdemodulators.)Demodulators. These are equations that are used as rewrite rules. Membersof demodulators may occur in usable or sos also.The inference loop operates mainly on clauses in lists sos and usable:While sos is not empty and no refutation has been found,1. Select a clause, the given-clause, in sos;2. Move given-clause from sos to usable;3. Infer and process new clauses using the inference rules in effect;each new clause must have the given-clause as one of its parentsand members of usable as its other parents; new clauses thatpass the retention tests are appended to sos;End of while loop.The processing of inferred clauses (Step 3 above) involves many optional reten-tion tests and other procedures; the most important ones are listed here.Given newly inferred clause C,1. Demodulate C (with members of list Demodulators);2. Orient equality literals in C;3. Discard C if weight(C) > the max-weight parameter;4. Discard C if it is subsumed by a member of usable or sos;5. Check if C conflicts with any clause in usable or sos togive a refutation; paper.tex; 17/10/1996; 11:24; no v.; p.4



Otter: The CADE-13 Competition Incarnations 56. If C has passed the retention tests, thena. (optional) if C is an oriented equation, append it toDemodulators and rewrite all members of usable or sos;b. discard members of usable or sos that are subsumed by C;c. (optional) Factor C;The inference loop can be seen as a simple implementation of the set of supportstrategy, because no inferences are drawn in which all of the participants are inthe initial usable list. That is, the initial sos list is the initial set of support: alllines of deduction must start with a clause in the initial sos list.The loop can also be used to drive a Knuth-Bendix completion procedure.If the initial sos list consists of the initial set of equations, all equations (inputand derived) can be oriented into terminating demodulators, the inference ruleis a restricted form of paramodulation, the max-weight parameter is 1, and theinference loop terminates because sos is empty, then the resulting usable list is acomplete set of reductions for the theory. Our strategies for equational theoremproving evolved separately from the development of Knuth-Bendix completion,but in some cases they are quite similar to it.Term orderings play a key role in equational reasoning, mainly to orient equa-tions into demodulators and to guarantee termination of demodulation. Twomethods are available in Otter: the lexicographic recursive path ordering (LRPO),and the ad hoc ordering. Most of our current work uses LRPO. The user mayinput a (total) symbol ordering; the default symbol ordering is constants � high-arity � � � � � binary � unary, and within arity, the lexicographic ascii orderingis used. See the Otter manual [19] for the ad hoc ordering method.Selection of the given clause in Step 1 of the inference loop is the most impor-tant aspect of the search process; it is the next path to explore. The defaultselection is the smallest clause in sos, which we call best-�rst search. Instead, theuser may specify a breadth-�rst search, in which the �rst clause in sos is selected(sos operates as a queue), or a depth-�rst search (sos is a stack). We have foundthat a combination of best-�rst and breadth-�rst search is frequently quite valu-able, and one of Otter's parameters, the pick-given-ratio, can be used to specifya ratio: a value of n means that through n iterations of the inference loop, theshortest clause is selected, then in the next iteration the �rst clause is selected,and so on.Discarding large clauses (Step 3 in the processing of newly derived clauses)obviously interferes with completeness, but it is quite important in practice. Ifmax-weight=1, clauses are retained and appended to sos at a much higher ratethan they are removed as given clauses. As a result, most retained clauses nev-er enter the search, and memory is wasted. If many of those clauses becomedemodulators, much time is spent (and wasted) using them to try to demodulateprevious clauses. Thus, a good value for the max-weight parameter is importantto achieving a well-behaved search [20]. We frequently make several initial search-es, varying the max-weight parameter until a good value is found. When multiplepaper.tex; 17/10/1996; 11:24; no v.; p.5



6 WILLIAM McCUNE and LARRY WOSsearches are not done (in particular in Otter's autonomous mode) the parametercontrol-memory is used to dynamically adjust the max-weight parameter basedon the amount of memory available.2.3.2. The Autonomous ModeAlthough Otter is not an interactive program, we typically use it in an interactiveway. We run a search, examine the output, change the switches and parametersto adjust Otter's behavior, then start another search, and so on. Because thiskind of multiple search is still an art form, we have not attempted to automateit. However, Otter has a fully automatic mode, called the autonomous mode,which is useful for inexperienced users, easy problems, situations in which Otteris called from another program, and comparison with other programs.In the autonomous mode, Otter unconditionally sets several options and par-titions clauses into the usable and sos lists. Otter then checks its input for thefollowing properties: whether all clauses are propositional, whether all clauses areHorn, whether the equality relation is present, and, if equality is present, whetherequality axioms are present.The autonomous mode algorithm is the following.set max-mem to 12 megabytes;set control-memory flag;set pick-given-ratio parameter to 4;set process-input flag;place positive clauses in sos list;place nonpositive clauses in usable list;if (all clauses are propositional)set propositional flag;set hyperresolution flag;elseif (nonunits are present)set hyperresolution flag;if (all clauses are Horn)clear ordered hyperresolution flag;elseset factoring flag;set unit-deletion flag;if (equality is present)set knuth-bendix flag;if (equality axioms are present)clear paramodulation flags;The max-mem parameter limits the amount of memory available for storageof clauses and related data structures, the process-input ag causes input clausesto be processed as if they were derived clauses, the propositional ag causes sev-eral optimizations particular to propositional clauses to be in e�ect, the orderedhyperresolution ag (set by default) prevents satellites from resolving on non-maximal literals, the unit-deletion ag causes each unit clause, say P , to be usedpaper.tex; 17/10/1996; 11:24; no v.; p.6



Otter: The CADE-13 Competition Incarnations 7as a rewrite rule P = TRUE to simplify nonunit derived clauses, and the knuth-bendix ag causes several additional options to be set so that the search resemblesKnuth-Bendix completion (see [19]).The two competition entries named Otter-304z were run in the (ordinary)autonomous mode.2.3.3. The Auto-Wos ModeA di�erent version of the autonomous mode, called auto-wos, was created specif-ically for the CADE-13 competition. The �rst reason for this was so that Ottercould compete in the \monolithic" class, which does not allow di�erent modulesof code to be called based on properties of the input clauses. The second reasonwas so that we could use a di�erent paramodulation strategy.The auto-wos algorithm is the following.1. set process-input flag;2. set control-memory flag;3. set pick-given-ratio parameter to 4;4. set knuth-bendix flag;5. clear index-for-back-demod-flag;6. set para-from-units-only flag;7. set hyperresolution flag;8. set unit-deletion flag;9. set factor flag;10. if (every positive clause in sos is ground)move all positive clauses in usable to sos;The property that makes auto-wos mode \monolithic" is that (nearly) allmodules called for some type of input in ordinary autonomous mode are calledfor all types of problem in auto-wos mode. For example, clauses are indexedfor paramodulation, and paramodulation is called even if no equality literals arepresent; and hyperresolution and factoring are called even if no nonunit clausesare present. The ag index-for-back-demod (default set if back demodulation isin e�ect) causes all terms in all clauses to be indexed so that they can be found ifthey can be rewritten by a newly derived demodulator. We clear this ag becauseindexing all terms is an expensive operation and very wasteful if no equality ispresent.The second, and more practical, feature of auto-wos mode is that paramodula-tion from nonunit clauses is prohibited. This restriction is incomplete in general,but it is quite useful in practice.The competition entry named Otter-Wos was run in the auto-wos mode.2.4. Tuning for the CompetitionBoth Otter-304z and Otter-Wos had the following two changes applied for thecompetition. (1) The set of symbols recognized as equality relations was changedso that the input language would be compatible with TPTP's; this change doespaper.tex; 17/10/1996; 11:24; no v.; p.7



8 WILLIAM McCUNE and LARRY WOSnot a�ect performance. (2) The value of the max-mem parameter was increasedfrom 12 megabytes to 20 megabytes. This change does a�ect performance becauseit can change the set of retained clauses; in particular, the behavior of the control-memory feature, which automatically adjusts themax-weight parameter, dependson the value ofmax-mem. All of the eligible TPTP problems were run with valuesof 12, 16, 20, and 24 megabytes for max-mem, and performance with 20 wasslightly better than with the others.The auto-wos mode (thus Otter-Wos) was tuned with the 391 \Eligible Mixed"set of TPTP problems. First, we experimented with the initial set of support.The TPTP classi�es each input clause as \axiom", \hypothesis", or \conjec-ture". (Otter-304z does not use this information.) To decide the initial sos list,we experimented with several rules of the formsos hypothesis [ conjecture; if P (sos); then sos sos[ f(axiom);for various properties P and functions f . In the end, we used the rule withP = \all positive clauses are ground" and f = \positive clauses". Second, weexperimented with the hot list strategy [39], which causes Otter to give specialemphasis to key clauses; results indicated that our current hot list strategiesare best used in the iterative-search mode rather than in autonomous modes, sothe hot list strategy was not used for the competition. Finally, we experimentedwith several paramodulation restriction strategies and found that prohibitingparamodulation from nonunit clauses, although incomplete, is more e�ective onthe \Mixed Eligible" TPTP problems (and, we believe, in general).3. ImplementationOtter is written in the C programming language, which was chosen for execu-tion speed and portability. It contains about 35,000 lines of code (including com-ments). Clauses and terms are stored in shared data structures, which speed someof the indexing and inference operations and save memory. Specially designed andtuned indexing algorithms [15] are used to access terms and clauses for subsump-tion operations, application in inference rules, and application of demodulators.Otter is designed to run in a UNIX-like environment, but versions (with severallimitations) are available also for DOS computers and Macintoshes.4. Performance in the CompetitionOtter-304z in the unit equality competition. Otter placed �rst, proving 43of 50 theorems in 2750 seconds. In second place was Waldmeister, with 37 proofsin 4730 seconds. Otter's performance is not surprising to us because applicationpaper.tex; 17/10/1996; 11:24; no v.; p.8



Otter: The CADE-13 Competition Incarnations 9to real problems has driven its development and because we have focused onequational applications in the past few years.Otter-304z in the mixed/open competition. Otter placed second in thiscategory, with 28 proofs of 50 theorems in 7314 seconds. The winner was SPASS,with 32 proofs in 6244 seconds. Otter's performance was not surprising to usbecause most of these theorems are non-Horn, and many contain a mixture ofequality and nonequality relations; we have worked on very few applications withthese properties, and no special tuning was done for this area.Otter-Wos in the mixed/monolithic competition. Otter placed second,with 32 proofs of 50 theorems in 6037 seconds. The winner was E-SETHEO,with 36 proofs in 5655 seconds. We can compare these with the mixed/opencompetition, because the same set of theorems was used. The positive e�ect ofthe paramodulation restriction more than o�set the wasted indexing operationsfor theorems without equality. Both E-SETHEO and Otter did better than weexpected when compared with the mixed/open results.In the design of the competition, the open/monolithic distinction was madebecause it was thought that the open systems would have an unfair advantage.For this competition, at least, the monolithic systems did better, so perhaps themixed/open and mixed/monolithic categories should be judged together. In thatcase, E-SETHEO wins, Otter-Wos places second, SPASS is very close behind inthird, and Otter-304z is sixth.Otter's performance in the competition clearly points to its strengths in unitequality reasoning and its weaknesses in non-Horn deduction and on problemswith a mixture of equality and nonequality relations. A strength not evident fromthe competition is deduction in Horn theories, and a weakness not evident is, ofcourse, propositional satis�ability.5. ConclusionOne of the most important features of the results can be seen in the tables ofruntimes for each system on each theorem [32]. Most of the theorems on whichthe top �nishers failed were proved easily by at least one system. Each of the unitequality theorems was proved by at least one system, and 45 of 50 were provedin less than 20 seconds by at least one system. Of the mixed theorems, 46 wereproved by at least one system, and 44 were proved in less than 17 seconds byat least one system. These results support our long-held position that the bestmethod for automated deduction is a variety of methods.We take this opportunity to thank Geo� Sutcli�e and Christian Suttner fororganizing and running the CADE-13 competition. It must have been an enor-mous amount of work, with not much glory for them. It has advanced the �eld ofautomated deduction by providing stimuli for practical and theoretical researchand by making the �eld more visible to potential users and others.paper.tex; 17/10/1996; 11:24; no v.; p.9
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