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SUPERLINEAR CONVERGENCE OF AN INTERIOR-POINT
METHOD DESPITE DEPENDENT CONSTRAINTS
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Abstract. We show that an interior-point method for monotone variational inequalities exhibits
superlinear convergence provided that all the standard assumptions hold except for the well-known
assumption that the Jacobian of the active constraints has full rank at the solution. We show that
superlinear convergence occurs even when the constant rank condition on the Jacobian assumed in
an earlier work does not hold.
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1. Introduction. We consider the following monotone variational inequality
over a closed convex set C C R™:

(1) Find z € C such that (2’ — z)T<I>(z) >0, forallz €C,
where @ : R* — R" and the set C is defined by the following algebraic inequality:

C = {z]g(z) <0},

where g : R® — R™. The mapping ® is assumed to be C'! (continuously differentiable)
and monotone; that is,

(2 = 2)T(®(2') = ®(2)) > 0 for all 2,z € R,

while each component function g¢;(-) of g(-) is convex and twice continuously differen-
tiable.

By introducing ¢(-) explicitly into the problem (1), we obtain the following mixed
nonlinear complementarity (NCP) problem: Find the vector triple (z, A\, y) € R 2
such that

® =10 awze =0

where f: R"™™ — R™ is the C! function defined by
) F(2.3) = B(z) + Dy(z)" A

It is well known [3] that, under suitable conditions on ¢ such as the Slater constraint
qualification, z solves (1) if and only if there exists a multiplier A such that (z,A)
solves (2).

To show superlinear (local) convergence in methods for nonlinear programs, on
eusually makes several assumptions with regard to the solution point. Until recently,
these assumptions included (local) uniqueness of the solution (z, A, y). This uniqueness
condition was relaxed somewhat in [6] to allow for several multipliers A corresponding
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to a locally unique solution z* of (1), by introducing a constant rank condition on the
gradients of the constraints g; that are active at z*. The point of this article is to show
that superlinear convergence holds in the previous setting [6] even when the constant
rank condition does not hold. This result lends theoretical support to our numerical
observations [6, Section 7]. Moreover, we believe that the superlinear convergence
result can be shown for other interior-point methods whose search directions are
asymptotically the same as the pure Newton (affine-scaling) direction defined below
(6).

Briefly stated, the assumptions we make to obtain the superlinear results are as
follows: monotonicity and differentiability of the mapping from (z, A) to (f(z, A), —g(#)),
such that the partial derivative with respect to z is Lipschitz near z*; a positive defi-
niteness condition to ensure invertibility of the linear system that is solved at each it-
eration of the interior-point method; the Slater constraint qualification on g; existence
of a strictly complementary solution; and a second-order condition that guarantees
local uniqueness of the solution z* of (1). A formal statement of these assumptions
and further details are given in Section 2.2. Superlinear convergence has been proved
for other methods for nonlinear programming without the strict complementarity as-
sumption, but these results typically require the Jacobian of active constraints to have
full rank (see Pang [5], Bonnans [1], and Facchinei, Fischer, and Kanzow [2]).

Possibly the best known application of (1) is the convex programming problem

defined by

(4) min ¢(z) subject to z€C,

where ¢ : R® — Ris C? and convex. Let ® = D¢. It is easy to show that the
NCP formulation (2),(3) is equivalent to the standard Karush-Kuhn-Tucker (KKT)
conditions for (4). If a constraint qualification holds, then solutions of (4) correspond,
via Lagrange multipliers, to solutions of (2)—(3) and, in addition, solutions of (1) and
(4) coincide.

We consider the solution of (1) by the interior-point algorithm of Ralph and
Wright [6], which is in turn a natural extension of the safe-step/fast-step algorithm
of Wright [7] for monotone linear complementarity problems. The algorithm is based
on a restatement of the problem (2) as a set of constrained nonlinear equations, as
follows:

_f(z’/\) rf(z’/\)
(5) y+g(2) [ =] rlzw) | =0, (Ny) >0,
—AYe —AYe

where the residuals r¢ and r, are defined in an obvious way. All iterates (2%, A% yF)
satisfy the positivity conditions strictly; that is, (A\*,y*) > 0 for all £ = 0,1,2,....
The interior-point algorithm can be viewed as a modified Newton’s method applied to
the equality conditions in (5), in which search directions and step lengths are chosen
to maintain the positivity condition on (A, y). Near a solution, the algorithm takes
steps along the pure Newton direction defined by

D.f DgT" 0 Az re(z,A)
(6) -Dg 0 I AN | = | rg(z,w)
0 Y A Ay —AYe

The solution (Az, AX, Ay) of this system is also known as the affine-scaling direction.
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The duality measure defined by
T
p=Ay/m

1s used frequently in our analysis as a measure of nonoptimality and infeasibility.

To extend the superlinear convergence result of [6] without a constant rank con-
dition on the active constraint Jacobian, we show that the affine-scaling step defined
by (6) has size O(p). Hence, the superlinearity result can be extended to most algo-
rithms that take near-unit steps along directions that are asymptotically the same as
the affine-scaling direction.

Since we are extending our work in [6], much of the analysis in that earlier paper,
much of the analysis in the earlier work carries over without modification to the present
case, and we omit many of the details here. We focus instead on the main technical
result needed to prove fast local convergence—the estimate (Az, AX, Ay) = O(y) for
the affine-scaling step—and restate just enough of the earlier material to make the
current note self-contained.

2. The Algorithm. In this section, we review the notation, assumptions, and
the statement of the algorithm from Ralph and Wright [6]. We also state the main
global and superlinear convergence results, which differ from the corresponding theo-
rems in [6] only in the absence of the constant rank assumption.

2.1. Notation and Terminology. We use S to denote the solution set for (2),
and S, » to denote its projection onto its first n 4+ m components; that is,

S={(zAy) (=, A y)solves (2)}, S ={(2,) [ (2,4, —g(2)) € S}
For a particular z* to be defined in Assumption 4, we define
(7) SE={AETA) €8:n)

We can partition {1,2,...,m} into basic and nonbasic index sets B and N such
that for all solutions (z*,A*,y*) € S, we have

Al =0, for all i € N; yi =0, forallieB.

The solution (2%, A*, —g(z*)) is strictly complementary if \* + y* > 0; that is, \¥ > 0
foralli € B and yf = —g(2*) >0 foralli € NV.

We use Ay and Ag to denote the subvectors of A that correspond to the index sets
N and B, respectively. Similarly, we use Dgg(z) to denote the |B| x n row submatrix
of Dyg(z) corresponding to B.

Finally, if we do not specify the arguments for functions ¢, Dg, f, and so on, they
are understood to be the appropriate components of the current point (z, A, y). The
notation Dg* refers to Dg(z*).

2.2. Assumptions. Here we give a formal statement of the assumptions needed
for global and superlinear convergence. Some motivation is given here, but we refer
the reader to the earlier paper [6] for further details.

The first assumption ensures that the mapping f defined by (3) is monotone with
respect to z and therefore that the mapping (z, A) = (f(z,A), —g(z)) is monotone.

AssuMPTION 1. ® : R® = R” is C! and monotone; and each component function
gi of g : R = R™ 15 C? and conver.
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The second assumption requires positive definiteness of a certain matrix projec-
tion, to ensure that the coefficient matrix of the Newton-like system to be solved for
each step in the interior-point algorithm is nonsingular (see (11)).

ASSUMPTION 2. The two-sided projection of the matriz

D.f(z,\) = D®(z) + Z XiD?g;i ()

™

onto ker Dg(z) is positive definite for all z € R* and XA € R}, ; that is, for any basis
7 of ker Dg(z), the matriz ZT D, f(2,\)Z is invertible.

Note that this assumption is trivially satisfied when the nonnegativity condition
z > 0 is incorporated in the constraint function g(-).

We assume, too, that the Slater condition holds for the constraint function g.

ASSUMPTION 3. There is a vector Z € C such that ¢(z) < 0.

Next, we assume the existence (but not uniqueness) of a strictly complementary
solution.

ASSUMPTION 4. There is a strictly complementary solution (z*,\*,y*), that is,
(z*, A", y*) satisfies (2) with \* + y* > 0.

The strict complementarity condition is essential for superlinear convergence in a
number of contexts besides NCP and nonlinear programming. See, for example Wright
[8, Chapter 7] for an analysis of linear programming and Monteiro and Wright [4] for
asymptotic properties of interior-point methods for monotone linear complementarity
problems.

Next, we make a smoothness assumption on ® and g in the neighborhood of the
first component z* of the strictly complementary solution from Assumption 4. (We
show in [6, Lemma 4.2] that, under this assumption, z* is the first component of all
solutions.)

AssUMPTION 5. The matriz-valued functions D® and D?g;, i = 1,2,...,m are
Lipschitz continuous in a neighborhood of z*.

Finally, we make an invertibility assumption on the projection of the Hessian
onto the kernel of the active constraint Jacobian. This assumption is essentially a
second-order sufficient condition for optimality.

ASSUMPTION 6. Let z* be defined as in Assumption 4, and let B, S, » and S5 be
defined as in Section 2. Then for each X € 8%, the two-sided projection of D, f(z*, A)
onto ker(Dyg¥) is invertible.

In the statements of our results, we refer to a set of “standing assumptions,”
which we define as follows:

Standing Assumptions: Assumptions 1-6, together with an assump-

tion that the algorithm of Ralph and Wright [6] applied to the prob-

lem (2) generates an infinite sequence {(z* A\* y*)} with a limit

point.
Along with Assumptions 1-6, the superlinear convergence result in Ralph and Wright
[6] requires a constant rank constraint qualification to hold. To be specific, the analysis
of that paper requires the existence of an open neighborhood U of z* such that for
all matrix sequences {H*} C {Dgs(2)T |z € U} with H* — H* = Dgp(2*)T and all
index sets J C {1,2,...,|B|}, we have that

rank H,kj — rank H;.

However, in the analysis of [6], this assumption is not invoked until Section 5.4, so we
are justified in reusing many results from earlier sections of that paper here. Indeed,
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we also reuse results from later sections of [6] by applying them to constant matrices
(which certainly satisfy the constant rank condition).

The algorithm makes use of a family of sets (v, 5) defined for positive parameters
~ and 3 as follows:

(8) Q.8 = {(zA9) [ (Ay) 20, (lre(z, M < B,
Irg(zo )l < By Niys > yp, i=1,2,...,m}.

In particular, the kth iterate (2, A\* y*) belongs to Q(vk, Bx), where the algorithm
chooses the sequences {v} and {8k} to satisly

0<Bmin:60SBIS"'SﬁkS"'<ﬁmaxa
Ymax = Y0 2 Y1 > 2 Yk 2 0 2 Ymin > 0.

Given the notation

2

A
Qk = Q('Yk;ﬁk)a Q Q('Yminaﬁmax)a

it is easy to see that
QCcUyC--CHC---CQ

Since all iterates (z*, \¥ y*) belong to €, and since the residual norms ||r¢|| and [|ry|]
are bounded in terms of u for vectors in this set, we are justified in using p alone as
an indicator of progress, rather than a merit function that also takes account of the
residual norms.

We assume that the sequence of iterates has a limit point, which we denote by

(9) (z", A %),

By [6, Theorem 3.2], we have that (z*, A, y*) € 8. We are particularly interested in
points in €2 that lie close to this limit point, so we define the near-solution neighbor-

hood §(¢) by

(10) SO 2= A1 Q1A y) - (% Ay <6},

2.3. The Algorithm. The major computational operation in the algorithm is
the repeated solution of n + 2m-dimensional linear systems of the form

D.f DgT" 0 Az re(z,A)
(11) —Dyg 0 —1 AX | = rq(2,y) ,
0 Y A Ay —AYe+ apuge

,%] These equations are simply

the Newton equations for the nonlinear system of equality conditions from (2), except
for the & term. The algorithm searches along the direction (Az, AX, Ay) obtained
from (11).

At each iteration, the algorithm performs a fast step along a direction obtained by
solving (6) (or, equivalently, (11) with & = 0). We choose the neighborhood €41 to
be strictly larger than € (by appropriate choice of 4541 and fB;41), thereby allowing
a nontrivial step ay, to be taken along this direction without leaving Q1. If the fast

where the centering parameter & lies in the range [0

step achieves at least a certain fixed decrease in y, it 1s accepted as the new iterate.
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Otherwise, we reset Q41 < Qi and defne a safe step by solving (11) with & chosen in
the range [@, 1) for some constant & € (0, %) We perform a backtracking line search
along this direction, stopping when we identify a value of ay that achieves a “sufficient
decrease” in p without leaving the set €241.

The algorithm is parametrized by the following quantities whose roles are ex-
plained more fully in [6].

o

X€(0,1), c€(0,3), a€(01, xwe(01), e
ﬁmin > 0; 6max = ﬁmin exp(3/2)a 0< “Ymin < Ymax S %a
7€(0,3),  pe(0,min((37)"7,1-x)),

al)a

where exp(-) is the exponential function. The constants Bmin and ymax are related to
the starting point (2%, A% y°) as follows:

Ayl > Amaxpo,  Nrr (2% A0 < Binpro, g (=%, 5| < Brninpro-

The main algorithm is as follows.
to = 0; Y0 < Ymax; Bo < Bmin;
for £=0,1,2,...,
if Hi — 0
terminate with solution (z%, A\¥ | y*);

(LML ALY o fast(2F AR vt vk, Br);
if pey1 < ppn
tk+1 —tp+1 ;
Ye+1 & Ymin + 75 (Ymax — Ymin )5 Geg1 e (1+F44) Bx;

else
tk+1 — tk;
(LML AL o safe(2f AR oF e, e, Br);
Vr41 £ Ve Brt1 < Br;
end for.

Although we may calculate both a fast step and a safe step in the same iteration,
the coefficient matrix in (11) is the same for both steps, so the coefficient matrix is
factored only once.

The safe-step procedure is defined as follows.

safe(z, A\, y, 1,7, B):
choose & € |7, %], ab € [a,1];
solve (11) to find (Az, AX, Ay);
choose o to be the first element in the sequence o, ya®, x2a?, ..,
such that the following conditions are satisfied:

Ai(@)yi(@) >y p(e),

g (z(@), M)l < Bula);

llrg(z(a), y(@))ll < Bula);
pla) < [L—ar(l—2a)lu

return (z(«), Ala), y(a)).

The fast step routine is described next.
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fast(z, A, y, 1,7, 8):
solve (11) with & = 0 to find (Az, AX, Ay);

set ¥ = Ymin + ¥ (Ymax — Ymin); set 8= (14+5TH3;
define

if a’ <0 return(z, A, y);
choose a to be the first element in the sequence o, ya?, x?a®, .. .,
such that the following conditions are satisfied:
Ai(@)yi(a) > p(e),
7 (z(@), Al < Bpla);
Irg(z(a),y(@))l < Bu(a);
return (z(a), A(a), y()).

\Y

2.4. Convergence of the Algorithm. The algorithm converges globally ac-
cording to the following theorem.

THEOREM 2.1. (Ralph and Wright [6, Theorem 3.2]) Suppose that Assumptions 1
and 2 hold. Then either

(A) (2% \F %) € 8 for some k < o0, or

(B) all limit points of {(z%, A\* y*)} belong to S.

Here, however, our focus is on the following local superlinear convergence theorem.
It is simply a restatement of [6, Theorem 3.3] without the constant rank condition on
the active constraint Jacobian matrix [6, Assumption 7].

THEOREM 2.2. Suppose that Assumptions 1, 2, 3, 4, 5, and 6 are satisfied and
that the sequence {(2%, \* y*)} is infinite, with a limit point (z*, A, y*) € S. Then the
algorithm eventually always takes fast steps, and

(1) the sequence {uj} converges superlinearly to zero with Q-order at least 1 + 7,

and

(ii) the sequence {(2*, M, y*)} converges superlinearly to (2*, A, y*) with R-order

at least 1+ 7.

The proof of this result follows that of the earlier paper in all respects except for

the estimate

(12) (A2, AN, Ay) = O(s)
for the affine-scaling step calculated from (6). The remainder of this section is devoted
to proving that this estimate holds under the given assumptions.

3. An O(p) Estimate for the Affine-Scaling Step. Our strategy for proving
the estimate (12) for the step (6) is based on a partitioning of the right-hand side in
(6). The following vectors are useful in defining the partition.

(13a) np = Df(2, M)z = 2) + Dg(2)" (7 = N),
(13b) ng = y—Dg(2)(z7 —2) +9(z7),

(13¢) 7l D:f(z,N)(2" = 2) + Dg (") (7 = V),
(

(

(

13d) g y—Dg(") (=" = 2) +9(=7),
13e) €f —f(z,0) = D, f(2, \)(z* = 2) = Dg(2)T (= = \),
) eg = 9(2) —9(z") + Dy(2) (" —2),
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where z* is defined in Assumption 4 and (z*, 7) is the projection of the current point
(z,A) onto the set S, » of (2, A) solution components. The right-hand side of (6) can
be partitioned as

ry Ny €r
Tg = Mg + | &
—AYe —AYe 0

We define a corresponding splitting of the affine-scaling step:
(14) (Az, AN, Ay) = (t,u,v) + (¢, 0/, 0),

where (t,u,v) and (¥, 4, v') satisfy the following linear systems:

D.f (Dg)" 0 t 0y
(15) —Dyg 0 —I u | = Mg ,
0 Y A v —AYe
D.f (Dy)" 0 v &
(16) —Dyg 0 -1 u | = g
0 Y A v 0

We define a third variant on (6) as follows:

D.f  (Dg)" 0 Az iy
(17) —Dgy 0 -1 || A= a |,
0 Y A Ay _AYe

and split the step (A\z, &j\, A\y) as

it

(18) (A2, AN Ay) = (

bl

where (, @, %) and (#',%',3') satisfy

D.f (Dg")" 0 t My

(19) —(Dg7) 0 =L |a|=]1

0 Y A 0] 0

D.f (D¢t o t 0

(20) —(Dg*) 0 —1 i | = 0
0 Y A ¥ —AYe

Because of Assumption 2, the matrices in (15), (16), (17), (19), and (20) are all
invertible, so all these systems have unique solutions.

Our basic strategy for proving the estimate (12) is as follows. From [6, Section 5.3],
we have without assuming the constant rank condition that (¢, «',v") = O(y) for all
(z,A,y) € 8(d), where § € (0,1) is a positive constant. The constant rank assumption
is, however, needed in [6] to prove that the other step component (¢, u, v) is also O(u).
In this article, we obtain the same estimate without the constant rank assumption, by
proving that

(21) (Az, AN Ay) = O0(n),  (Az—t, AN —u, Ay —v) = O(p),
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for all (z,A,y) € S(9).

Our first result, proved in the earlier paper [6], collects some bounds that are
useful throughout this section.

LEMMA 3.1. [6, Lemma 5.1] Suppose that the standing assumptions hold. Then
there is a constant C such that the following bounds hold for all (z, A\, y) € S(1):

(22&) A < Chp (iEN), yvi <Chip (iEB),
(22b) Ai 2 Ymin /C1 (Z € B)a Yi > Ymin/C1 (Z € N)’
(22¢) Yi > Yminpt/C1 (i € B), Ai > Yminpt/C1 (1 € N).

Lemma 3.1 implies that the limit point (z*, A, y*) defined in (9) has

(23) A >0, 1€ B, yi = —gi(z") >0, ieN.
The second result is as follows.
LEMMA 3.2. (cf. [6, Lemma 5.2]) Suppose that the standing assumptions are

satisfied. Then there are constants § € (0,1) and Cy > 0 such that for all (z, A, y) €
S(S), the solutions (Az, AN\, Ay) of (17) and (t, @, %) of (19) satisfy

(24) 1Az]] < Cop(1+[]AN]])
and

(25) 12l < Cop(L + [las])),
respectively.

Proof. We claim first that the right-hand-side components of (17) and (19) are
O(p). From [6, Equation (78)], we have that

(26) [[(z,A) = (2", T)|| < Ca1p, for all (z, A, y) € §(62),

for some positive constants C5 1 and d2 € (0,1). By Lipschitz continuity (Assump-
tion 5), the definitions (8) and (10), and the fact that f(z*,7) = 0 where (2*,7) is
defined in (13), there are constants d3 € (0,d>) and C% 2 > 0 such that

[l
< NN+ (DA =2+ Dy(a) (7= N = £ D + 1)
+|Dg(z) — Dg(=")|l[|l7 — Al|
Ll|(2,A) = (2%, 7)|]* + Bmaxpt + L]z — 27||I|7 = Al

<
< Coap, for all (2, A, y) € S(d3),

(27)

where L denotes the Lipschitz constant of Assumption 5. (The radius d3 is chosen so
that S(d3) lies inside the neighborhood of Assumption 5.) For the second right-hand
side component, we have simply that

lrgll + llg(27) — g(2) — Dg(z")(z" — 2)|
ﬁmaxli + LHZ* — ZH2
Ca apt, for all (2, A,y) € S(d3),

[17gll

ININIA
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after a possible adjustment of C5 5. For the remaining right-hand-side component in
(17), we have trivially that

AV el = mp.

Consider now the system (17). As in the proof of [6, Lemma 5.2], we have that

P

= O(d3) for all (z,A,y) € S§(d3). By eliminating the Ay component we obtain

[_%})ﬁﬁf]

We reduce the system further by eliminating the vector A\/\N to obtain

(D.f) + (Dgi) " AxY i (Dgx) (Dgz)" 1| A=
(29) [ Do T A ] s
[ 15 — (Dga )" ANY ((g)w — yw) ]
(ﬁg)B —YB '

One can easily see that the right-hand-side vector in this expression is O(u), because
of (27), (28) and the bounds (22), which imply that ys, Ay, and ANYA71 are all O(p)
for (z, A, y) € S(d3) C S(1).

By using the estimate A;'Ys = O(p) (see Lemma 3.1 again) and recalling the
notation (9) for the limit point of the sequence, we have for (z, A, y) € S(d3) that

D.f N (et 1 &2 ] [ O(ul|Az]))
(30) ~(Dgz) 0 ] s _[%,;B]+ O(ullasl) |

where (77}, (1);)) denotes the right-hand-side vector in (29). By partitioning Az into

its components in ker Dg}; and ran (DgZ;)T, we have from Assumption 6 that Az is
bounded in norm by the size of the right-hand side in (30). Hence, there is a constant
(2,3 such that

[Az]] < Caz |+ p(l|Az]| + [[AXs]) |,

for all (z,A,y) € 8(63). By choosing 5 e (0,43) small enough that Cssp < .5 for

(z,A,y) € 8(8), the result (24) follows from some simple manipulation of the inequality
above.

The proof of (25) is similar. O

The next result and others following make use of the positive diagonal matrix D

defined by

(31) D= A-l/2y1/2

From Lemma 3.1, there 1s a constant C5 such that

(32) ID|| < Cap™2, |ID7Y| < Cap™ /2,

for all (z,A,y) € S(1).
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LEMMA 3.3. (cf. [6, Lemma 5.3]) Suppose that the standing assumptions are
satisfied. Then for § defined in Lemma 3.2, there is Cy > 0 such that

(33) IDAN| < Cap'?, [ID71AY[| < Capt/?,

for all (z, A\, y) € 8(9).
Proof. First, let & be defined in Lemma 3.2, but adjusted if necessary to ensure
that

(34) (z,\y) €80) = pu<1.

The proof closely follows that of [6, Lemma 5.3], but we spell out the details here
because the analytical techniques are also needed in a later result (Theorem 3.8).

Recall the splitting (18) of the step (&z, A\/\, A\y) into components (f,,7) and
(#', @, %) defined by (19) and (20), respectively. By multiplying the last block row in
(20) by A=*/2y=1/2 and using (31), we find that

(35) D' + D' = —(AY) %,
Using (20) again, we obtain
(ﬂ’)Tf/ — _(a/)T(Dg*){/ — ({/)T(sz){/ Z 0’

since D, f is positive semidefinite by Assumption 1. Hence, by taking inner products
of both sides in (35), we obtain

ID@|]* + |D™HF|* < [[(AY)2e]|* = mp,
and therefore
(36) HDa/H S ml/Zﬂl/Z’ ||D_11~)/|| S ml/Zﬂl/Z.

For (t,1,%), the third block row in (19) implies that D& = —D~'4. Therefore,
we have

~(Dg)i-=7, = -al(Dg)i+i D% =Ty,
= [IDall* = (@77, + )T, — O (D )i

(37) = ||Dall* < [|Dal[[ID™ gl + 21| 11,
where again we have used monotonicity of D, f. Define the constant C} 1 as

04,1 = HlaX(Czcz,z, 0202,203, 02,203)~
From (25), (27), (32), and (34), we have for (z, , y) € 8(J) that
11751l < Cop(L+]as])Co i < CoCoop® (14+Csp™ | Dil]) < Can (1 +4'* || Dal)).
From (28) and (32), we have

|1D™ gl < Cap™'/?C op < Cyypi/?.
By substituting the last two bounds into (37), we obtain

1Dl = 264, | Did|ja? = Cap® < 0.
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It follows from this inequality by a standard argument that
1Di| < Caop'’?,

for some constant Cy » depending only on Cj 1, and 5. By combining this bound with
(18) and (36), we obtain

IDAN|| < [|Da|| + |DE'|| < (Caz +m?)pt/?,

and the first part of (33) follows if we define Cy = Ca s + mt/?. Since D~1% = —Da,
the second part of (33) follows likewise. [

Bounds on some of the components of A\ and &g follow easily from Lemma 3.3.
THEOREM 3.4. (cf. [6, Theorem 5.4]) Suppose that the standing assumptions are
satisfied. Then there are positive constants § and Cy such that

(38) IAA(| < Csp, (| Ayl < Cspe

Proof. Let § be as defined in Lemma 3.3. From the definition (31) and the bounds

(33), we have
1/2
= AN
‘ (/\z)

for any ¢ € . Hence, by using (22), we obtain

< |DAN| < Cap'l?,

N 1/2 1/2
|£\Az| < (3) 04/,L1/2 < let/z/ C4/i1/2’
which proves that ||£\/\N|| < Cip for an obvious choice of Cs. The bound on &‘/B is
derived similarly. O
LEMMA 3.5. (cf. [6, Lemma 5.10]) Let § # J C B and § # K C N. If the
two-sided projection of D, f(z, ) onto ker Dy} is positive definite, then fort € R”
and 77 € R|‘7|, we have that

(t,m7) € ker [ (—%gj; (Dgo‘*7)T ]

if and only ift =0 and 77 € ker(Dg})T. In addition, we have that

* \T
dimker[ (_DB;;) (Dgoj) —?./c ] :dimker(Dg})T.
Proof. This result differs from [6, Lemma 5.10] only in that z* replaces z as the
argument of Dg(-). The proof is essentially unchanged. O
By Assumptions 5 and 6, the two-sided projection of D, f(z, A) onto the kernel of
(Dyg3) is positive definite for all (z, A, y) sufficiently close to the limit point (z*, A, y*)
defined in (9). Tt follows from Lemma 3.5 and (23) that the set

39) {[%{1(93’*?) (Dgo%)T _?N ﬁll<z,A>—<z*A>||sa}
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has constant column rank for some § > 0.

THEOREM 3.6. Suppose that the standing assumptions hold. Then there is a
positive constant & such that for all (z,Ay) € S(S), we have that (&z, &\/\B, A\yN) is
the solution of the following conver quadratic program:

_min slDssus|? + 5l(Dyw) o,
(£, aB,Un)
(40) subject to
* { o * A
D.f  (Dgp)" 0 ] s | = | 11— (Pgx) Ay
D7) 0 =) ]l g + LsAys

Moreover, there is a constant Cs such that

(41) 1(AXs, Ayl < Coll (g, g, Adw, Ayss) -

Proof. The value § = min(d, 5), with d from (39) and § from Theorem 3.4, suffices
to prove this result. The technique of proof is by now familiar (it follows the proof of
[6, Theorem 5.12] closely), and we omit the details. O

At this point, we have proved the first estimate in (21), as we summarize in the
following theorem.

THEOREM 3.7. Suppose that the standing assumptions hold. Then there are
constants & and C; such that for any (z,Ay) € S(S) we have

(Az, AN, Ay) < Crp.

Proof. Let 4 be as defined in Theorem 3.6. From Theorem 3.4, (27), and (28), we

have for (z, A, y) € S(§) that

1G2s, g, A, Ays)l| = O(p).-

Hence, from (41) we have also that
(A5, Ay )ll = O(n),
and it follows from (24) that ||£\z|| =0(p). O

Our last result is concerned with the second estimate in (21) involving the rela-
tionship between (¢, u,v) and (A\z, A\/\, A\y)

THEOREM 3.8. Suppose that the standing assumptions hold. Then there are
positive constants § > 0 and Cg such that

(A2 =, AN — u, Ay — v)|| < Csp,

for all (z, A\, y) € 8(9).
Proof. By taking differences of (15) and (17), we obtain

—

D.f (Dg)" 0 Az —t
—(Dg) 0 —1 AX—u
0 Y A Ay —v

(Dg = Dg*) (7w = \) + (Dg — Dg*)T AN
(42) = (Dg — Dg*)(z* — 2) + (Dg* — Dg)Az
0
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We have from (26), Lipschitz continuity of Dg(-) (Assumption 5), and Theorem 3.7
that there is a radius d4 € (0,9) such that

(Dg = Dg*) (7w = \) + (Dg — Dg*)T A\
(43) | (Dg — Dg*)(z* — 2) + (Dg* — Dg)Az | =0(?), all (z,)\,y) € S(da).
0

The remainder of the proof follows that of [6, Lemma 5.7]. By applying the
technique used in Lemma 3.2 to the system (42), and using the estimate (43), we
have that there are constants ds € (0,d4) and Cgs1 > 0 such that

(44) 1Az =t < Csi (47 + pllus — Ads])) , all (2,1,9) € S(65).

Next, we note that the technique used in the second half of the proof of Lemma 3.3
can be used to prove that there is § € (0,d5) such that

(45) ID(AX = w)l| = [P~ Ay = v)l| < Cs2p™?, all (2,4, y) € S(9),

where D is the diagonal scaling matrix defined in (31). Modifications are needed only
to account for the different right-hand side estimate (43) and the different estimate

(44) of ||£\z —t||; we omit the details. From (32) and (45), it follows immediately that
|AX = ul| < Cs2Csp, (| Ay — v]| < Cs2Csp.

The final estimate for (A\z —1) is obtained by substituting these expressions into (44).
a

COROLLARY 3.9. Suppose that the standing assumptions hold. Then there are
constants § > 0 and Cg such that the affine-scaling step defined by (6) satisfies

[[(Az, AX Ay)|| < Cop, all (z, A, y) € 8(3).

Proof. We have from Theorems 3.7 and 3.8 that (¢, u,v) = O(u) for § defined as in
Theorem 3.8. Moreover, it follows directly from [6, Section 5.3] that (¢/, ', v") = O(u),
possibly after some adjustment of 6. Hence, the result follows from (14). O

4. Conclusions. The result proved here explains the numerical experience re-
ported in Section 7 of Ralph and Wright [6], in which the convergence behavior of
our test problems seemed to be the same regardless of whether the active constraint
Jacobian satisfied the constant rank condition. We speculated in [6] about possible
relaxation of the constant rank condition and have verified in this article that, in fact,
this condition can be dispensed with altogether.

Our results are possibly the first proofs of superlinear convergence in nonlinear
programming without multiplier nondegeneracy or uniqueness.
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