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SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 2to a locally unique solution z� of (1), by introducing a constant rank condition on thegradients of the constraints gi that are active at z�. The point of this article is to showthat superlinear convergence holds in the previous setting [6] even when the constantrank condition does not hold. This result lends theoretical support to our numericalobservations [6, Section 7]. Moreover, we believe that the superlinear convergenceresult can be shown for other interior-point methods whose search directions areasymptotically the same as the pure Newton (a�ne-scaling) direction de�ned below(6). Briey stated, the assumptions we make to obtain the superlinear results are asfollows: monotonicity and di�erentiability of the mapping from (z; �) to (f(z; �);�g(z)),such that the partial derivative with respect to z is Lipschitz near z�; a positive de�-niteness condition to ensure invertibility of the linear system that is solved at each it-eration of the interior-point method; the Slater constraint quali�cation on g; existenceof a strictly complementary solution; and a second-order condition that guaranteeslocal uniqueness of the solution z� of (1). A formal statement of these assumptionsand further details are given in Section 2.2. Superlinear convergence has been provedfor other methods for nonlinear programming without the strict complementarity as-sumption, but these results typically require the Jacobian of active constraints to havefull rank (see Pang [5], Bonnans [1], and Facchinei, Fischer, and Kanzow [2]).Possibly the best known application of (1) is the convex programming problemde�ned by minz �(z) subject to z 2 C;(4)where � : IRn ! IR is C2 and convex. Let � = D�. It is easy to show that theNCP formulation (2),(3) is equivalent to the standard Karush-Kuhn-Tucker (KKT)conditions for (4). If a constraint quali�cation holds, then solutions of (4) correspond,via Lagrange multipliers, to solutions of (2){(3) and, in addition, solutions of (1) and(4) coincide.We consider the solution of (1) by the interior-point algorithm of Ralph andWright [6], which is in turn a natural extension of the safe-step/fast-step algorithmof Wright [7] for monotone linear complementarity problems. The algorithm is basedon a restatement of the problem (2) as a set of constrained nonlinear equations, asfollows: 24 �f(z; �)y + g(z)��Y e 35 = 24 rf (z; �)rg(z; y)��Y e 35 = 0; (�; y) � 0;(5)where the residuals rf and rg are de�ned in an obvious way. All iterates (zk; �k; yk)satisfy the positivity conditions strictly; that is, (�k; yk) > 0 for all k = 0; 1; 2; : : :.The interior-point algorithm can be viewed as a modi�ed Newton's method applied tothe equality conditions in (5), in which search directions and step lengths are chosento maintain the positivity condition on (�; y). Near a solution, the algorithm takessteps along the pure Newton direction de�ned by24 Dzf DgT 0�Dg 0 �I0 Y � 3524 �z���y 35 = 24 rf (z; �)rg(z; y)��Y e 35 :(6)The solution (�z;��;�y) of this system is also known as the a�ne-scaling direction.



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 3The duality measure de�ned by � = �T y=mis used frequently in our analysis as a measure of nonoptimality and infeasibility.To extend the superlinear convergence result of [6] without a constant rank con-dition on the active constraint Jacobian, we show that the a�ne-scaling step de�nedby (6) has size O(�). Hence, the superlinearity result can be extended to most algo-rithms that take near-unit steps along directions that are asymptotically the same asthe a�ne-scaling direction.Since we are extending our work in [6], much of the analysis in that earlier paper,much of the analysis in the earlier work carries over without modi�cation to the presentcase, and we omit many of the details here. We focus instead on the main technicalresult needed to prove fast local convergence|the estimate (�z;��;�y) = O(�) forthe a�ne-scaling step|and restate just enough of the earlier material to make thecurrent note self-contained.2. The Algorithm. In this section, we review the notation, assumptions, andthe statement of the algorithm from Ralph and Wright [6]. We also state the mainglobal and superlinear convergence results, which di�er from the corresponding theo-rems in [6] only in the absence of the constant rank assumption.2.1. Notation and Terminology. We use S to denote the solution set for (2),and Sz;� to denote its projection onto its �rst n+m components; that is,S = f(z; �; y) j (z; �; y) solves (2)g; Sz;� = f(z; �) j (z; �;�g(z)) 2 Sg:For a particular z� to be de�ned in Assumption 4, we de�neS�� = f� j (z�; �) 2 Sz;�g:(7) We can partition f1; 2; : : :;mg into basic and nonbasic index sets B and N suchthat for all solutions (z�; ��; y�) 2 S, we have��i = 0; for all i 2 N ; y�i = 0; for all i 2 B.The solution (z�; ��;�g(z�)) is strictly complementary if �� + y� > 0; that is, ��i > 0for all i 2 B and y�i = �g(z�) > 0 for all i 2 N .We use �N and �B to denote the subvectors of � that correspond to the index setsN and B, respectively. Similarly, we use DgB(z) to denote the jBj�n row submatrixof Dg(z) corresponding to B.Finally, if we do not specify the arguments for functions g, Dg, f , and so on, theyare understood to be the appropriate components of the current point (z; �; y). Thenotation Dg� refers to Dg(z�).2.2. Assumptions. Here we give a formal statement of the assumptions neededfor global and superlinear convergence. Some motivation is given here, but we referthe reader to the earlier paper [6] for further details.The �rst assumption ensures that the mapping f de�ned by (3) is monotone withrespect to z and therefore that the mapping (z; �)! (f(z; �);�g(z)) is monotone.Assumption 1. � : IRn ! IRn is C1 and monotone; and each component functiongi of g : IRn ! IRm is C2 and convex.



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 4The second assumption requires positive de�niteness of a certain matrix projec-tion, to ensure that the coe�cient matrix of the Newton-like system to be solved foreach step in the interior-point algorithm is nonsingular (see (11)).Assumption 2. The two-sided projection of the matrixDzf(z; �) = D�(z) + mXi=1 �iD2gi(z)onto kerDg(z) is positive de�nite for all z 2 IRn and � 2 IRm++; that is, for any basisZ of kerDg(z), the matrix ZTDzf(z; �)Z is invertible.Note that this assumption is trivially satis�ed when the nonnegativity conditionz � 0 is incorporated in the constraint function g(�).We assume, too, that the Slater condition holds for the constraint function g.Assumption 3. There is a vector �z 2 C such that g(�z) < 0.Next, we assume the existence (but not uniqueness) of a strictly complementarysolution.Assumption 4. There is a strictly complementary solution (z�; ��; y�), that is,(z�; ��; y�) satis�es (2) with �� + y� > 0.The strict complementarity condition is essential for superlinear convergence in anumber of contexts besides NCP and nonlinear programming. See, for exampleWright[8, Chapter 7] for an analysis of linear programming and Monteiro and Wright [4] forasymptotic properties of interior-point methods for monotone linear complementarityproblems.Next, we make a smoothness assumption on � and g in the neighborhood of the�rst component z� of the strictly complementary solution from Assumption 4. (Weshow in [6, Lemma 4.2] that, under this assumption, z� is the �rst component of allsolutions.)Assumption 5. The matrix-valued functions D� and D2gi, i = 1; 2; : : : ;m areLipschitz continuous in a neighborhood of z�.Finally, we make an invertibility assumption on the projection of the Hessianonto the kernel of the active constraint Jacobian. This assumption is essentially asecond-order su�cient condition for optimality.Assumption 6. Let z� be de�ned as in Assumption 4, and let B, Sz;� and S�� bede�ned as in Section 2. Then for each � 2 S��, the two-sided projection of Dzf(z�; �)onto ker(Dg�B) is invertible.In the statements of our results, we refer to a set of \standing assumptions,"which we de�ne as follows:Standing Assumptions: Assumptions 1{6, together with an assump-tion that the algorithm of Ralph and Wright [6] applied to the prob-lem (2) generates an in�nite sequence f(zk; �k; yk)g with a limitpoint.Along with Assumptions 1{6, the superlinear convergence result in Ralph and Wright[6] requires a constant rank constraint quali�cation to hold. To be speci�c, the analysisof that paper requires the existence of an open neighborhood U of z� such that forall matrix sequences fHkg � fDgB(z)T j z 2 Ug with Hk ! H� = DgB(z�)T and allindex sets J � f1; 2; : : : ; jBjg, we have thatrankHk�J ! rankH��J :However, in the analysis of [6], this assumption is not invoked until Section 5.4, so weare justi�ed in reusing many results from earlier sections of that paper here. Indeed,



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 5we also reuse results from later sections of [6] by applying them to constant matrices(which certainly satisfy the constant rank condition).The algorithmmakes use of a family of sets 
(; �) de�ned for positive parameters and � as follows:
(; �) = f(z; �; y) j (�; y) � 0; krf (z; �)k � ��;(8) krg(z; y)k � ��; �iyi � �; i = 1; 2; : : : ;mg :In particular, the kth iterate (zk; �k; yk) belongs to 
(k; �k), where the algorithmchooses the sequences fkg and f�kg to satisfy0 < �min = �0 � �1 � � � � � �k � � � � < �max;max = 0 � 1 � � � � � k � � � � � min > 0:Given the notation 
k 4= 
(k; �k); 
 4= 
(min ; �max);it is easy to see that 
0 � 
1 � � � � � 
k � � � � � 
:Since all iterates (zk; �k; yk) belong to 
, and since the residual norms krfk and krgkare bounded in terms of � for vectors in this set, we are justi�ed in using � alone asan indicator of progress, rather than a merit function that also takes account of theresidual norms.We assume that the sequence of iterates has a limit point, which we denote by(z�; �̂; y�):(9)By [6, Theorem 3.2], we have that (z�; �̂; y�) 2 S. We are particularly interested inpoints in 
 that lie close to this limit point, so we de�ne the near-solution neighbor-hood S(�) by S(�) 4= f(z; �; y) 2 
 j k(z; �; y)� (z�; �̂; y�)k � �g:(10)2.3. The Algorithm. The major computational operation in the algorithm isthe repeated solution of n + 2m-dimensional linear systems of the form24 Dzf DgT 0�Dg 0 �I0 Y � 3524 �z���y 35 = 24 rf (z; �)rg(z; y)��Y e+ ~��ke 35 ;(11)where the centering parameter ~� lies in the range [0; 12 ]. These equations are simplythe Newton equations for the nonlinear system of equality conditions from (2), exceptfor the ~� term. The algorithm searches along the direction (�z;��;�y) obtainedfrom (11).At each iteration, the algorithm performs a fast step along a direction obtained bysolving (6) (or, equivalently, (11) with ~� = 0). We choose the neighborhood 
k+1 tobe strictly larger than 
k (by appropriate choice of k+1 and �k+1), thereby allowinga nontrivial step �k to be taken along this direction without leaving 
k+1. If the faststep achieves at least a certain �xed decrease in �, it is accepted as the new iterate.



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 6Otherwise, we reset 
k+1  
k and defne a safe step by solving (11) with ~� chosen inthe range [��; 1) for some constant �� 2 (0; 12 ). We perform a backtracking line searchalong this direction, stopping when we identify a value of �k that achieves a \su�cientdecrease" in � without leaving the set 
k+1.The algorithm is parametrized by the following quantities whose roles are ex-plained more fully in [6].� 2 (0; 1); �� 2 (0; 12); �� 2 (0; 1]; � 2 (0; 1); �̂ 2 (0; 1);�min > 0; �max = �min exp(3=2); 0 < min < max � 12 ;� 2 (0; 12); � 2 (0;min((12�)1=�̂ ; 1� �));where exp(�) is the exponential function. The constants �min and max are related tothe starting point (z0; �0; y0) as follows:�0i y0i � max�0; krf (z0; �0)k � �min�0; krg(z0; y0)k � �min�0:The main algorithm is as follows.t0  0; 0  max; �0  �min;for k = 0; 1; 2; : : :,if �k = 0terminate with solution (zk; �k; yk);(zk+1; �k+1; yk+1) fast(zk; �k; yk; tk; k; �k);if �k+1 � ��ktk+1  tk + 1 ;k+1  min + �tk+1 (max � min); �k+1  (1 + �tk+1 )�k;else tk+1  tk;(zk+1; �k+1; yk+1) safe(zk; �k; yk; tk; k; �k);k+1  k; �k+1  �k;end for.Although we may calculate both a fast step and a safe step in the same iteration,the coe�cient matrix in (11) is the same for both steps, so the coe�cient matrix isfactored only once.The safe-step procedure is de�ned as follows.safe(z; �; y; t; ; �):choose ~� 2 [��; 12 ], �0 2 [��; 1];solve (11) to �nd (�z;��;�y);choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,such that the following conditions are satis�ed:�i(�)yi(�) �  �(�);krf (z(�); �(�))k � ��(�);krg(z(�); y(�))k � ��(�);�(�) � [1� ��(1� ~�)]�return (z(�); �(�); y(�)).The fast step routine is described next.



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 7fast(z; �; y; t; ; �):solve (11) with ~� = 0 to �nd (�z;��;�y);set ~ = min + �t+1(max � min); set ~� = (1 + �t+1)�;de�ne �0 = 1� ��̂�t ;if �0 � 0 return(z; �; y);choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,such that the following conditions are satis�ed:�i(�)yi(�) � ~ �(�);krf (z(�); �(�))k � ~��(�);krg(z(�); y(�))k � ~��(�);return (z(�); �(�); y(�)).2.4. Convergence of the Algorithm. The algorithm converges globally ac-cording to the following theorem.Theorem 2.1. (Ralph and Wright [6, Theorem 3.2]) Suppose that Assumptions 1and 2 hold. Then either(A) (zk; �k; yk) 2 S for some k <1, or(B) all limit points of f(zk; �k; yk)g belong to S.Here, however, our focus is on the following local superlinear convergence theorem.It is simply a restatement of [6, Theorem 3.3] without the constant rank condition onthe active constraint Jacobian matrix [6, Assumption 7].Theorem 2.2. Suppose that Assumptions 1, 2, 3, 4, 5, and 6 are satis�ed andthat the sequence f(zk; �k; yk)g is in�nite, with a limit point (z�; �̂; y�) 2 S. Then thealgorithm eventually always takes fast steps, and(i) the sequence f�kg converges superlinearly to zero with Q-order at least 1+ �̂ ,and(ii) the sequence f(zk; �k; yk)g converges superlinearly to (z�; �̂; y�) with R-orderat least 1 + �̂ .The proof of this result follows that of the earlier paper in all respects except forthe estimate (�z;��;�y) = O(�)(12)for the a�ne-scaling step calculated from (6). The remainder of this section is devotedto proving that this estimate holds under the given assumptions.3. An O(�) Estimate for the A�ne-Scaling Step. Our strategy for provingthe estimate (12) for the step (6) is based on a partitioning of the right-hand side in(6). The following vectors are useful in de�ning the partition.�f = Dzf(z; �)(z� � z) +Dg(z)T (�� � �);(13a) �g = y �Dg(z)(z� � z) + g(z�);(13b) ��f = Dzf(z; �)(z� � z) +Dg(z�)T (�� � �);(13c) ��g = y �Dg(z�)(z� � z) + g(z�);(13d) �f = �f(z; �) �Dzf(z; �)(z� � z)�Dg(z)T (�� � �);(13e) �g = g(z) � g(z�) +Dg(z)(z� � z);(13f)



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 8where z� is de�ned in Assumption 4 and (z�; ��) is the projection of the current point(z; �) onto the set Sz;� of (z; �) solution components. The right-hand side of (6) canbe partitioned as 24 rfrg��Y e 35 = 24 �f�g��Y e 35+ 24 �f�g0 35 :We de�ne a corresponding splitting of the a�ne-scaling step:(�z;��;�y) = (t; u; v) + (t0; u0; v0);(14)where (t; u; v) and (t0; u0; v0) satisfy the following linear systems:24 Dzf (Dg)T 0�Dg 0 �I0 Y � 3524 tuv 35 = 24 �f�g��Y e 35 ;(15) 24 Dzf (Dg)T 0�Dg 0 �I0 Y � 3524 t0u0v0 35 = 24 �f�g0 35 :(16)We de�ne a third variant on (6) as follows:24 Dzf (Dg�)T 0�(Dg�) 0 �I0 Y � 35264 c�zc��c�y 375 = 24 ��f��g��Y e 35 ;(17)and split the step (c�z; c��; c�y) as(c�z; c��; c�y) = (~t; ~u; ~v) + (~t0; ~u0; ~v0);(18)where (~t; ~u; ~v) and (~t0; ~u0; ~v0) satisfy24 Dzf (Dg�)T 0�(Dg�) 0 �I0 Y � 3524 ~t~u~v 35 = 24 ��f��g0 35(19) 24 Dzf (Dg�)T 0�(Dg�) 0 �I0 Y � 3524 ~t0~u0~v0 35 = 24 00��Y e 35 :(20)Because of Assumption 2, the matrices in (15), (16), (17), (19), and (20) are allinvertible, so all these systems have unique solutions.Our basic strategy for proving the estimate (12) is as follows. From [6, Section 5.3],we have without assuming the constant rank condition that (t0; u0; v0) = O(�) for all(z; �; y) 2 S(�), where � 2 (0; 1) is a positive constant. The constant rank assumptionis, however, needed in [6] to prove that the other step component (t; u; v) is also O(�).In this article, we obtain the same estimate without the constant rank assumption, byproving that(c�z; c��; c�y) = O(�); (c�z � t; c��� u; c�y � v) = O(�);(21)



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 9for all (z; �; y) 2 S(�).Our �rst result, proved in the earlier paper [6], collects some bounds that areuseful throughout this section.Lemma 3.1. [6, Lemma 5.1] Suppose that the standing assumptions hold. Thenthere is a constant C1 such that the following bounds hold for all (z; �; y) 2 S(1):�i � C1� (i 2 N ); yi � C1� (i 2 B);(22a) �i � min=C1 (i 2 B); yi � min=C1 (i 2 N );(22b) yi � min�=C1 (i 2 B); �i � min�=C1 (i 2 N ):(22c)Lemma 3.1 implies that the limit point (z�; �̂; y�) de�ned in (9) has�̂i > 0; i 2 B; y�i = �gi(z�) > 0; i 2 N :(23)The second result is as follows.Lemma 3.2. (cf. [6, Lemma 5.2]) Suppose that the standing assumptions aresatis�ed. Then there are constants �̂ 2 (0; 1) and C2 > 0 such that for all (z; �; y) 2S(�̂), the solutions (c�z; c��; c�y) of (17) and (~t; ~u; ~v) of (19) satisfykc�zk � C2�(1 + kc��Bk)(24)and k~tk � C2�(1 + k~uBk);(25)respectively.Proof. We claim �rst that the right-hand-side components of (17) and (19) areO(�). From [6, Equation (78)], we have thatk(z; �)� (z�; ��)k � C2;1�; for all (z; �; y) 2 S(�2);(26)for some positive constants C2;1 and �2 2 (0; 1). By Lipschitz continuity (Assump-tion 5), the de�nitions (8) and (10), and the fact that f(z�; ��) = 0 where (z�; ��) isde�ned in (13), there are constants �3 2 (0; �2) and C2;2 > 0 such thatk��fk� kf(z; �) + (Dzf)(z� � z) +Dg(z)T (�� � �)� f(z�; ��)k+ kf(z; �)k+kDg(z) �Dg(z�)kk�� � �k� Lk(z; �) � (z�; ��)k2 + �max�+ Lkz � z�kk�� � �k� C2;2�; for all (z; �; y) 2 S(�3);(27)where L denotes the Lipschitz constant of Assumption 5. (The radius �3 is chosen sothat S(�3) lies inside the neighborhood of Assumption 5.) For the second right-handside component, we have simply thatk��gk � krgk+ kg(z�)� g(z) �Dg(z�)(z� � z)k� �max�+ Lkz� � zk2� C2;2�; for all (z; �; y) 2 S(�3);(28)



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 10after a possible adjustment of C2;2. For the remaining right-hand-side component in(17), we have trivially that k�Y ek1 = m�:Consider now the system (17). As in the proof of [6, Lemma 5.2], we have that� = O(�3) for all (z; �; y) 2 S(�3). By eliminating the c�y component we obtain� Dzf (Dg�)T�(Dg�) ��1Y � " c�zc�� # = � ��f��g � y � :We reduce the system further by eliminating the vector c��N to obtain� (Dzf) + (Dg�N )T�NY �1N (Dg�N ) (Dg�B)T�(Dg�B) ��1B YB � " c�zc��B #(29) = � ��f � (Dg�N )T�NY �1N ((��g)N � yN )(��g)B � yB � :One can easily see that the right-hand-side vector in this expression is O(�), becauseof (27), (28) and the bounds (22), which imply that yB, �N , and �NY �1N are all O(�)for (z; �; y) 2 S(�3) � S(1).By using the estimate ��1B YB = O(�) (see Lemma 3.1 again) and recalling thenotation (9) for the limit point of the sequence, we have for (z; �; y) 2 S(�3) that� Dzf(z� ; �̂) (Dg�B)T�(Dg�B) 0 � " c�zc��B # = � ��0f(��0g)B �+ " O(�kc�zk)O(�kc��Bk) # ;(30)where (��0f ; (��0g)B) denotes the right-hand-side vector in (29). By partitioning c�z intoits components in kerDg�B and ran (Dg�B)T , we have from Assumption 6 that c�z isbounded in norm by the size of the right-hand side in (30). Hence, there is a constantC2;3 such that kc�zk � C2;3 h�+ �(kc�zk+ kc��Bk)i ;for all (z; �; y) 2 S(�3). By choosing �̂ 2 (0; �3) small enough that C2;3� � :5 for(z; �; y) 2 S(�̂), the result (24) follows from some simplemanipulationof the inequalityabove.The proof of (25) is similar.The next result and others following make use of the positive diagonal matrix Dde�ned by D = ��1=2Y 1=2:(31)From Lemma 3.1, there is a constant C3 such thatkDk � C3��1=2; kD�1k � C3��1=2;(32)for all (z; �; y) 2 S(1).



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 11Lemma 3.3. (cf. [6, Lemma 5.3]) Suppose that the standing assumptions aresatis�ed. Then for �̂ de�ned in Lemma 3.2, there is C4 > 0 such thatkDc��k � C4�1=2; kD�1c�yk � C4�1=2;(33)for all (z; �; y) 2 S(�̂).Proof. First, let �̂ be de�ned in Lemma 3.2, but adjusted if necessary to ensurethat (z; �; y) 2 S(�̂) ) � � 1:(34)The proof closely follows that of [6, Lemma 5.3], but we spell out the details herebecause the analytical techniques are also needed in a later result (Theorem 3.8).Recall the splitting (18) of the step (c�z; c��; c�y) into components (~t; ~u; ~v) and(~t0; ~u0; ~v0) de�ned by (19) and (20), respectively. By multiplying the last block row in(20) by ��1=2Y �1=2 and using (31), we �nd thatD~u0 +D�1~v0 = �(�Y )1=2e:(35)Using (20) again, we obtain(~u0)T ~v0 = �(~u0)T (Dg�)~t0 = (~t0)T (Dzf)~t0 � 0;since Dzf is positive semide�nite by Assumption 1. Hence, by taking inner productsof both sides in (35), we obtainkD~u0k2 + kD�1~v0k2 � k(�Y )1=2ek2 = m�;and therefore kD~u0k � m1=2�1=2; kD�1~v0k � m1=2�1=2:(36)For (~t; ~u; ~v), the third block row in (19) implies that D~u = �D�1~v. Therefore,we have �(Dg�)~t� ~v = ��g ) �~uT (Dg�)~t + ~uTD2~u = ~uT ��g) kD~uk2 = (~u)T ��g + (~t)T ��f � (~t)T (Dzf)~t) kD~uk2 � kD~uk kD�1��gk+ k~tk k��fk;(37)where again we have used monotonicity of Dzf . De�ne the constant C4;1 asC4;1 = max(C2C2;2; C2C2;2C3; C2;2C3):From (25), (27), (32), and (34), we have for (z; �; y) 2 S(�̂) thatk~tk k��fk � C2�(1+k~uBk)C2;2� � C2C2;2�2(1+C3��1=2kD~uk) � C4;1(�2+�1=2kD~uk):From (28) and (32), we havekD�1��gk � C3��1=2C2;2� � C4;1�1=2:By substituting the last two bounds into (37), we obtainkD~uk2 � 2C4;1kD~uk�1=2 � C4;1�2 � 0:



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 12It follows from this inequality by a standard argument thatkD~uk � C4;2�1=2;for some constant C4;2 depending only on C4;1, and �̂. By combining this bound with(18) and (36), we obtainkDc��k � kD~uk+ kD~u0k � (C4;2 +m1=2)�1=2;and the �rst part of (33) follows if we de�ne C4 = C4;2 +m1=2. Since D�1~v = �D~u,the second part of (33) follows likewise.Bounds on some of the components of c�� and c�y follow easily from Lemma 3.3.Theorem 3.4. (cf. [6, Theorem 5.4]) Suppose that the standing assumptions aresatis�ed. Then there are positive constants �̂ and C5 such thatkc��N k � C5�; kc�yBk � C5�:(38)Proof. Let �̂ be as de�ned in Lemma 3.3. From the de�nition (31) and the bounds(33), we have ������ yi�i�1=2 c��i����� � kDc��k � C4�1=2;for any i 2 N . Hence, by using (22), we obtainjc��ij � ��iyi�1=2C4�1=2 � C1�1=21=2min C4�1=2;which proves that kc��N k � C5� for an obvious choice of C5. The bound on c�yB isderived similarly.Lemma 3.5. (cf. [6, Lemma 5.10]) Let ; 6= J � B and ; 6= K � N . If thetwo-sided projection of Dzf(z; �) onto kerDg�B is positive de�nite, then for t 2 IRnand �J 2 IRjJ j, we have that(t; �J ) 2 ker � (Dzf) (Dg�J )T�Dg�J 0 �if and only if t = 0 and �J 2 ker(Dg�J )T . In addition, we have thatdimker � (Dzf) (Dg�J )T 0�Dg� 0 �I�K � = dimker(Dg�J )T :Proof. This result di�ers from [6, Lemma 5.10] only in that z� replaces z as theargument of Dg(�). The proof is essentially unchanged.By Assumptions 5 and 6, the two-sided projection of Dzf(z; �) onto the kernel of(Dg�B) is positive de�nite for all (z; �; y) su�ciently close to the limit point (z�; �̂; y�)de�ned in (9). It follows from Lemma 3.5 and (23) that the set�� Dzf(z; �) (Dg�B)T 0�(Dg�) 0 �I�N � : k(z; �)� (z�; �̂)k � ���(39)



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 13has constant column rank for some �� > 0.Theorem 3.6. Suppose that the standing assumptions hold. Then there is apositive constant ~� such that for all (z; �; y) 2 S(~�), we have that (c�z; c��B; c�yN ) isthe solution of the following convex quadratic program:min(�t;�uB;�vN ) 12kDBB�uBk2 + 12k(DNN )�1�vNk2;subject to(40) � Dzf (Dg�B)T 0�(Dg�) 0 �(I�N ) �24 �t�uB�vN 35 = " ��f � (Dg�N )T c��N��g + I�Bc�yB # :Moreover, there is a constant C6 such thatk(c��B; c�yN )k � C6k(��f ; ��g; c��N ; c�yB)k:(41)Proof. The value ~� = min(��; �̂), with �� from (39) and �̂ from Theorem 3.4, su�cesto prove this result. The technique of proof is by now familiar (it follows the proof of[6, Theorem 5.12] closely), and we omit the details.At this point, we have proved the �rst estimate in (21), as we summarize in thefollowing theorem.Theorem 3.7. Suppose that the standing assumptions hold. Then there areconstants ~� and C7 such that for any (z; �; y) 2 S(~�) we have(c�z; c��; c�y) � C7�:Proof. Let ~� be as de�ned in Theorem 3.6. From Theorem 3.4, (27), and (28), wehave for (z; �; y) 2 S(~�) thatk(��f ; ��g; c��N ; c�yB)k = O(�):Hence, from (41) we have also thatk(c��B; c�yN )k = O(�);and it follows from (24) that kc�zk = O(�).Our last result is concerned with the second estimate in (21) involving the rela-tionship between (t; u; v) and (c�z; c��; c�y).Theorem 3.8. Suppose that the standing assumptions hold. Then there arepositive constants � > 0 and C8 such thatk(c�z � t; c��� u; c�y � v)k � C8�;for all (z; �; y) 2 S(�).Proof. By taking di�erences of (15) and (17), we obtain24 Dzf (Dg)T 0�(Dg) 0 �I0 Y � 35264 c�z � tc��� uc�y � v 375= 24 (Dg �Dg�)(�� � �) + (Dg �Dg�)T c��(Dg �Dg�)(z� � z) + (Dg� �Dg)c�z0 35 :(42)



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 14We have from (26), Lipschitz continuity of Dg(�) (Assumption 5), and Theorem 3.7that there is a radius �4 2 (0; ~�) such that24 (Dg �Dg�)(�� � �) + (Dg �Dg�)T c��(Dg �Dg�)(z� � z) + (Dg� �Dg)c�z0 35 = O(�2); all (z; �; y) 2 S(�4):(43)The remainder of the proof follows that of [6, Lemma 5.7]. By applying thetechnique used in Lemma 3.2 to the system (42), and using the estimate (43), wehave that there are constants �5 2 (0; �4) and C8;1 > 0 such thatkc�z � tk � C8;1 ��2 + �kuB � c��Bk� ; all (z; �; y) 2 S(�5):(44)Next, we note that the technique used in the second half of the proof of Lemma 3.3can be used to prove that there is � 2 (0; �5) such thatkD(c�� � u)k = kD�1(c�y � v)k � C8;2�3=2; all (z; �; y) 2 S(�);(45)where D is the diagonal scaling matrix de�ned in (31). Modi�cations are needed onlyto account for the di�erent right-hand side estimate (43) and the di�erent estimate(44) of kc�z� tk; we omit the details. From (32) and (45), it follows immediately thatkc��� uk � C8;2C3�; kc�y � vk � C8;2C3�:The �nal estimate for (c�z� t) is obtained by substituting these expressions into (44).Corollary 3.9. Suppose that the standing assumptions hold. Then there areconstants � > 0 and C9 such that the a�ne-scaling step de�ned by (6) satis�esk(�z;��;�y)k � C9�; all (z; �; y) 2 S(�).Proof. We have from Theorems 3.7 and 3.8 that (t; u; v) = O(�) for � de�ned as inTheorem 3.8. Moreover, it follows directly from [6, Section 5.3] that (t0; u0; v0) = O(�),possibly after some adjustment of �. Hence, the result follows from (14).4. Conclusions. The result proved here explains the numerical experience re-ported in Section 7 of Ralph and Wright [6], in which the convergence behavior ofour test problems seemed to be the same regardless of whether the active constraintJacobian satis�ed the constant rank condition. We speculated in [6] about possiblerelaxation of the constant rank condition and have veri�ed in this article that, in fact,this condition can be dispensed with altogether.Our results are possibly the �rst proofs of superlinear convergence in nonlinearprogramming without multiplier nondegeneracy or uniqueness.REFERENCES[1] J. F. Bonnans, Local study of Newton type algorithms for constrained problems, inOptimization{Fifth French-German Conference, S. Dolecki, ed., no. 1405 in Lecture Notesin Mathematics, Springer-Verlag, 1989, pp. 13{24.
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