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Abstract

he research reported in this article was spawned by a colleague’s request to find an elegant proof (of a
s

m
theorem from Boolean algebra) to replace his proof consisting of 816 deduced steps. The request wa

et by finding a proof consisting of 100 deduced steps. The methodology used to obtain the far shorter

m
proof is presented in detail through a sequence of experiments. Although clearly not an algorithm, the

ethodology is sufficiently general to enable its use for seeking elegant proofs regardless of the domain
o

c
of study. In addition to (usually) being more elegant, shorter proofs often provide the needed path t
onstructing a more efficient circuit, a more effective algorithm, and the like. The methodology relies

f
e
heavily on the assistance of McCune’s automated reasoning program OTTER. Of the aspects of proo
legance, the main focus here is on proof length, with brief attention paid to the type of term present,

,
r
the number of variables required, and the complexity of deduced steps. The methodology is iterative
elying heavily on the use of three strategies: the resonance strategy, the hot list strategy, and

,
d
McCune’s ratio strategy. These strategies, as well as other features on which the methodology relies
o exhibit tendencies that can be exploited in the search for shorter proofs and for other objectives. To

o
o
provide some insight regarding the value of the methodology, I discuss its successful application t
ther problems from Boolean algebra and to problems from lattice theory. Research suggestions and

1

challenges are also offered.

. Problem Origin

Two independent themes are central to this article. One is concerned with evidence of advances
l

p
made in automated reasoning, and the other is concerned with a methodology for attacking the genera
roblem of finding shorter proofs. Though independent, both themes are addressed by a single success

with a specific problem posed by W. McCune.

Using his program OTTER [McCune90,McCune91,McCune94], McCune had obtained an 816-

b
step proof of a theorem in Boolean algebra; he calls the theorem DUAL-BA-3 in a recent monograph
y him and his colleague R. Padmanabhan [McCune96]. The problem he posed to me was to find a far

h
more elegant proof than his 816-step proof, with the focus strictly on proof length. This article shows
ow the request was met by finding a proof of length 100, details the methodology that was used, and

1

demonstrates that automated reasoning has met an important test measuring its advance.

.1. Measuring Progress

The early years of a field are quite often occupied with developing the theory, formulating neces-
-

a
sary components, and—where a computer is involved—designing and implementing programs. Eventu
lly, however, the field must be evaluated. In the case of automated reasoning, crucial to an evaluation

y
a
is the testing of its programs on problems supplied by others. By solving a problem supplied b
nother researcher (in this case, McCune), I provide yet more evidence of the value of automated rea-

M
soning. The successful gathering of the evidence is especially appealing—even piquant—because

cCune also designed and implemented the very program, OTTER, I used to solve the problem he

h
posed.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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1.2. A Methodology or an Algorithm?

Although the problem that is solved concerns the finding of an elegant proof for a specific

a
theorem, where elegance focuses solely on proof length, the research that produced the desired solution
lso resulted in the formulation of a general methodology for automating the search for elegant proofs,

i
where elegance is not confined to proof length. Where proof length is the concern, the methodology is
terative, usually beginning with a ‘‘long’’ proof and, if the methodology succeeds, culminating with a

r
s
‘‘short’’ proof. As shown in Section 4, later stages of the methodology use results obtained in earlie
tages; for example, the proof steps of a proof completed in Experiment j are used to guide the search

for a shorter proof in Experiment k, where j is less than k.

Ideally, the world wishes access to an algorithm. Perhaps disappointing to some, the approach
-

d
presented here is indeed not an algorithm. In fact, my experiments suggest that an algorithm for pro
ucing shorter proofs is in the main impractical. Nevertheless, certain program options and parameters

s
c
are beneficial, and, to aid the researcher who wishes to use OTTER, in Section 3 I discuss tendencie
oncerning their use. For example, quite often the setting of a smaller (rather than a larger) maximum

s
p
(maxiweight) on the length of retained conclusions promotes the completion of shorter proofs. Thi
henomenon is by no means dependent on the use of OTTER; indeed, with his program EQP, McCune

f
w
was able to answer the long-standing open question on Robbins algebra by producing a 194-step proo

hen the maxiweight was assigned the value 60, and he later obtained an 86-step proof when the
s

t
maxiweight was assigned the value 50 (with no other changes made). An intuitive explanation assert
hat the presence in a proof of a complicated formula or equation forces the inclusion of numerous steps

t
g
used to extract from the complicated item what is needed. Where I have some notion of the type jus
iven, I supply it. Perhaps such hints will enable a researcher to explain which tendencies hold in

which cases and why.

Although I do not share in the view, I have colleagues who suspect that a practical algorithm can
f

m
be found. I offer this as a topic for research, if one is so disposed. Indeed, just as the experiments o

any years provided the basis for McCune’s formulation of an autonomous mode for OTTER to
e

m
apply—a mode that automatically sets options and makes choices that the researcher would otherwis

ake—perhaps the experiments covered in this article will provide a basis for a far more automated
e

s
approach for finding shorter proofs. If such were to occur, the practical consequences would b
ignificant, for mathematics, circuit design, program synthesis, and the like.

1.3. Perspective

To put in perspective the research reported here and to provide some insight into the difficulty of
,

I
pursuing the topic of a more fully automated search for elegant proofs, two items merit mention. First

have studied such an automated approach for some years now; see [Wos96a]. However, my in-depth
f

e
experiments focused mainly on problems in which equality played little or no role. The presence o
quality presents many subtle obstacles, some of which concern the use of demodulation. For example,

p
even a simple experiment whose object is to cursorily check a given proof by supplying as weight tem-
lates the proof steps, each assigned a weight of say k, coupled with an assignment of k to the

maxiweight can result in OTTER completing no proof at all.

Second, none of my experiments had ever begun with a proof of such magnitude, in this case, a
s

o
proof of length 816. Perhaps the longest proof that initiated an experiment in my earlier studies wa
ne of length 63.

Because of these two factors, the culmination of my research in producing a 100-step proof was

1

most startling.

.4. Elegance—Importance and Properties

The search for elegant proofs has continuously played a key role in mathematics and in logic.

m
Such a search can lead to the discovery of new, important relationships, and it can also lead to the for-

ulation of significant concepts. In addition to the aesthetic aspects of elegance of concern to
.

I
mathematics and logic, practical aspects also exist, easily illustrated when the focus is on proof length
ndeed, the methodology here may also serve well in the context of constructing more efficient circuits,

,synthesizing more effective algorithms, and the like. Often a ‘‘short’’ proof (when it is, in effect
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constructive) can be used to provide the needed path, for example, by using an answer literal to extract

o
from the proof the sought-after object. The desired object might be a circuit relying on few AND gates
r an algorithm in which divide rarely occurs.

Although what precisely makes a given proof elegant is subject to debate, five properties merit
.

E
mention: proof length, term structure, variable abundance, deduced-step complexity, and compactness

ach of the cited properties has aesthetic appeal, but each is also relevant to practical considerations,

a
for example, in circuit design. Here I focus mainly on the first property (proof length), giving brief
ttention to the second through the fourth properties. (Should one happen to wonder whether proof

,
t
length is indeed relevant to elegance, one need only examine the history of mathematics, for example
hat focusing on the various proofs of the Church-Rosser theorem.) As for the fifth property of elegance,

m
compactness, I introduced and studied it in [Wos96a,Wos96c]. (Because of its newness, the concept

erits immediate focus. By example, a proof of a theorem of the form P implies the and of Q, R, and
s

a
S is compact if and only if it is a proof of exactly one of Q, R, or S, implying that the other two proof
re subproofs.) The likelihood of finding a proof that is elegant with respect to one or more of the cited

a
p
five properties can be sharply increased if an automated reasoning program is heavily relied upon,
rogram such as OTTER.

Throughout this article, the first of the five properties, proof length, has a rather precise meaning,

b
namely, the number of deduced steps explicitly present in the proof. The qualifier ‘‘rather’’ is present
ecause intermediate steps resulting from the use of demodulation (for canonicalization) are not counted

in proof length.

Compared with the typical use in mathematics, the treatment of proof length in logic is more

o
likely to be precise. The explanation rests with the frequent practice in mathematics of omitting many
bvious steps (for example, those arising from applying symmetry of equality). In fact, on many an

s
a
occasion, I have heard a logician say that mathematicians only outline proofs. In contrast, in variou
reas of logic (such as equivalential calculus [Kalman78,Wos95b]), all deduced steps are explicitly

s
c
presented. Further, various areas of logic require the use of a specific inference rule, a rule such a
ondensed detachment [Kalman83,Wos95b]. Seldom is a specific inference rule cited in a mathematics

paper or book.

The second property of elegance, term structure, refers to the type of term present in a proof.

s
For example, does the proof (say, from group theory) contain terms of the form inverse(inverse(t)) for
ome term t, or does the proof (say, from many-valued sentential calculus) contain terms of the form

s
o
n(n(t)) where n denotes negation, or does the proof contain terms in which nested divide instruction

ccur? Just as a proof may offer added elegance because of being terse, so also may it offer elegance
by avoiding some type of term.

The third property of elegance, variable abundance, refers to the number of distinct variables
f

i
required by one or more deduced steps of the proof. For example, the proof might require (for one o
ts deduced steps) the use of five distinct variables. In the vast majority of cases, requiring a smaller

number of distinct variables adds to elegance.

The fourth property of elegance, deduced-step complexity, is concerned with the length as meas-

‘
ured in symbols of the formulas, equations, or clauses present in the proof. (I sometimes use the term
‘clause’’ in a less strict fashion to refer to equations and the like written in various notations accept-

a
able to OTTER.) Exclusive of commas or parentheses, a proof may derive some of its elegance from
voiding the use of any deduced steps that are complex (with respect to length). Indeed, when a proof

-
t
contains formulas or equations that appear to be ‘‘messy’’ in that a lengthy array of symbols is encoun
ered, the scientist often evinces disappointment, and sometimes comments on the lack of ‘‘elegance’’.

e
m

Of the four properties of elegance discussed in this article, the first (proof length) presents th
ost difficulty. The concern for proof length presents the type of challenge that is not directly address-

-
r
able with an automated reasoning program and (apparently) is not effectively addressable with an algo
ithm. To dispel the thought that the use of a (frequently impractical) breadth-first (or level-saturation)

a
approach suffices, consider the case in which such an approach yields at level 3 a proof of length 7 and
t level 4 a proof of length 4; see Chapter 3 of [Wos96a] for a more detailed discussion. On the other

a
hand, (as will be seen) the concern for the second through the fourth properties of elegance is directly
ddressable with a program such as OTTER and, at least in theory, can be attacked algorithmically.
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The fifth property of elegance, compactness, also presents difficulty, not admitting an algorithmic

1

attack that is practical.)

.5. A Narrow Window

To attack the tough problem of finding ‘‘short’’ proofs, OTTER offers various means—although
n

t
far from producing an algorithm; see Section 2. (Regarding the other aspects of elegance discussed i
his article, one learns that OTTER offers, in most cases, just what is needed.) What becomes clear (in

s
p
Section 4, where an abbreviated sequence of experiments illustrating the basic methodology i
resented) is the narrowness of the path that leads to success. (A far more detailed treatment of the

e
a
crucial experiments is given in [Wos97].) For example, a change from the value 9 to the value 10 in th
ssignment of but one input parameter results (sometimes) in the completion of no proofs, in contrast to

the completion of a proof marking significant progress.

Nevertheless, when the goal is proof-length reduction, certain tendencies seem to hold regarding
g

t
option choices and parameter assignments. In that regard, Section 7 presents a shortcut to movin
oward the objective of finding a ‘‘short’’ proof, an approach that might be termed a pseudo-algorithm,

2

and Section 3 discusses tendencies exhibited by various parameters and strategies.

. The Target Theorem and an Arsenal of Weapons

Next in order are two items: a presentation of the specific theorem that serves as the target, and
I

a
a discussion of the various weapons OTTER offers for attempting to reach the target. In particular,
ddress three pressing questions with regard to proof length, namely, which weapons played the key

)
s
role, how they were used, and in what order. The discussion sets the stage for viewing (in Section 4
ome of the crucial sequence of experiments that answer these questions; the experiments culminated in

-
t
the completion of a 100-step proof to replace the 816-step proof serving as the starting point. In addi
ion, in contrast to the indirect attack on the first property of elegance, the discussion shows how

o
a
OTTER can be used to directly address the second, third, and fourth cited properties of elegance. T
id the researcher interested in using OTTER for both similar and totally dissimilar objectives, the

experiments are accompanied by some commentary explaining why certain choices were made.

The following equations capture the theorem (DUAL-BA-3) to be proved, where x@ denotes the
e

p
complement of x and where the two inequalities arise from, respectively, negating the theorem to b
roved and negating its dual.

x
x = x.

* (y + z) = (x * y) + (x * z).
.

x
x + (y * z) = (x + y) * (x + z)

+ x@ = 1.

(
x * x@ = 0.
x * y@) + ((x * x) + (y@ * x)) = x.

(
(x * x@) + ((x * z) + (x@ * z)) = z.
x * y@) + ((x * y) + (y@ * y)) = x.

.
(
(x + y@) * ((x + x) * (y@ + x)) = x
x + x@) * ((x + z) * (x@ + z)) = z.

.
(
(x + y@) * ((x + y) * (y@ + y)) = x
A * B) + B != B e $Ans(A2).

.

T

(A + B) * B != B e $Ans(A4)

he theorem under study asserts that, excluding the two equations in which != occurs, the given set of
-

s
equations is an axiomatization of Boolean algebra; both McCune and I placed both equations in the pas
ive list for our respective studies. (Earlier work [McCune96] showed that it is sufficient to derive

w
either of the two absorption laws, whose respective negations are captured by the two equations in

hich != occurs; because of duality, a proof of one of the negated equations provides a proof of the

i
other.) The context of the problem was the search for a Boolean algebra axiomatization consisting of an
ndependent self-dual set of two equations. (A set is self-dual if and only if the dual of each equation

y
a
is also in the set.) In fact, the ten equations (given earlier) lead directly to such an axiomatization b
pplying a method due to Padmanabhan and Quackenbush [Padmanabhan73]. Each equation of the pair
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as length 1103, measured in symbol count. This theorem DUAL-BA-3 was used to find the first

i
known independent self-dual 2-basis for Boolean algebra. The theorem is significant in that, from prel-
minary results, deriving either absorption law showed that the set of ten equations is a basis for

t
s
Boolean algebra. By using Pixley reduction, the set of ten equations can be reduced to an equivalen
elf-dual set of two equations, which is easily shown to be independent.

e
s

McCune had succeeded in obtaining a proof with OTTER, a proof of length 816, counting fiv
teps resulting from ‘‘copy’’ followed either by ‘‘flip’’ (which interchanges the arguments of an equa-

w
tion) or by demodulation, and counting one step resulting from back demodulating an input equation

ith another input equation. (The proof length is increased by the use of ‘‘flip’’ if and only if the

e
equation that is flipped is also present in the proof; both forms of an equation are retained when
qiunitsibothiways is set; the use of Kunth Bendix automatically sets this option.) He asked me to find

-
s
a more elegant proof, adding (in jest) that the goal was a proof of length 100 but, realistically, a 200
tep proof would indeed be impressive.

In addition to the incentive of finding a proof that McCune would consider elegant, the theorem
e

e
offered a challenge rather different from my earlier studies seeking shorter proofs. Specifically, thos
arlier studies [Wos95a,Wos96a,Wos96c] focused mainly on areas of logic, areas in which the equality

.
(
relation was totally absent; in contrast, the theorem of interest relies exclusively on the equality relation
Most of the other theorems used here to test the power of the methodology also rely on the equality

r
fl
relation and on no other. For the actual proofs produced by the methodology, or proofs of a simila

avor, see [McCune96] or either of the following two Web addresses,

T
http://www.mcs.anl.gov/home/mccune/ar/monograph/ or http://www.mcs.anl.gov/people/wos/index.html.)

herefore, new obstacles no doubt would be encountered, for problems featuring equality behave (in
s

n
mathematics and especially in automated reasoning) sharply differently from those in which equality i
ot present or present barely.

h2.1. Attacking Proof Lengt

Anticipation of new obstacles to overcome naturally suggested I quickly review some of
I

b
OTTER’s arsenal of weapons that might be useful in seeking a shorter proof for the given theorem.
egan with a study of the approach McCune had used to find any proof, the approach that culminated in

a
K
his finding an 816-step proof. He used three familiar weapons: weighting, the ratio strategy, and

nuth-Bendix approach. Specifically, McCune used a maxiweight (maximum weight) of 28 to limit
t

f
the complexity (measured in symbol count) of retained clauses, a limit that I maintained for the firs
ourteen experiments, some of which are reported here. To direct the program’s reasoning, he used his

t
i
ratio strategy [McCune94,Wos96a], assigning a value of 4 to the pickigiveniratio. That assignmen
nstructs OTTER to choose as the focus of attention four clauses by weight (complexity, whether deter-

,
t
mined by weight templates or by symbol count), one by breadth first (first come, first serve), then four
hen one, and the like. It seemed obvious to me that, for seeking shorter proofs, both maxiweight and

f
a
the ratio strategy would prove most useful—perhaps even required—no doubt relying on a variety o
ssignments for their respective values. McCune also used a Knuth-Bendix approach for drawing con-

-
t
clusions and for canonicalization. I adopted this weapon also, although not specifically for proof shor
ening.

From my earlier studies focusing on finding shorter proofs, I added three weapons to the cited
d

M
arsenal: the resonance strategy [Wos95a,Wos96a], the hot list strategy [Wos96a,Wos96b], an

cCune’s dynamic hot list strategy [Wos95b,Wos96a,Wos96b]. Regarding the resonance strategy, its

s
objective is to enable the researcher to suggest equations or formulas, called resonators, each of whose
ymbol pattern (all of whose variables are considered indistinguishable) is conjectured to merit special

t
attention for directing a program’s reasoning. To each resonator one assigns a value reflecting its rela-
ive significance; the smaller the value, the greater the significance.

e
t

In contrast to directing a program’s reasoning, the objective of the hot list strategy is to rearrang
he order in which conclusions are drawn. The rearranging is caused by immediately visiting and,

m
depending on the value of the (input) heat parameter, even immediately revisiting a set of input state-

ents chosen by the researcher and placed in an input list, called list(hot). The chosen statements are
used to complete applications of inference rules rather than to initiate them.
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The dynamic hot list strategy has the same objective as does the hot list strategy. However,
,

t
whereas the (static) hot list strategy is restricted to using clauses that are present when the run begins
he dynamic hot list strategy has access to members adjoined to the list(hot) during the run. The input

d
heat parameter governs the amount of recursion that is permitted for both the hot list strategy and the
ynamic hot list strategy. The input dynamiciheatiweight parameter assignment places an upper bound

e
t
on the pickigiven weight of clauses that can be adjoined to the hot list during the run. (A claus
echnically has two weights: its pickigiven weight, which is used in the context of choosing clauses as

c
the focus of attention to drive the program’s reasoning, and its purgeigen weight, which is used in the
ontext of clause discarding; often the two weights are the same. If no member of a weightilist

w
matches a clause, where variables are treated as indistinguishable, the clause is given a pickigiven

eight equal to its symbol count; the same is true for its purgeigen weight.) Each of the cited three
-

p
strategies, as well as other weapons offered by OTTER, plays a vital role in the context of the first pro
erty (proof length) of elegance.

e2.2. Attacking Other Properties of Eleganc

On the other hand, far fewer weapons are needed when the concern is the second, the third, or the
f

p
fourth property. Further, whereas a focus on proof length requires the use of a methodology, each o
roperties 2 through 4 can be directly addressed with one or more features offered by OTTER. For

pertinent material, see [Wos95a,Wos96a,Wos96c].

Indeed, when the second property, that of term structure, is the concern, one can rely either on
e

c
OTTER’s treatment of demodulation or on weighting. Regarding the use of demodulation, consider th
ase in which one wishes to avoid terms of the form n(n(t)) for any term t, and assume that the only

e
d
predicate present is P. The following set of demodulators will suffice; OTTER discards clauses that ar
emodulated to $T for true. (One can think of the function n as negation and the function i as implica-

tion.)

list(demodulators).

(
(n(n(x)) = junk).
i(junk,x) = junk).

.
(
(i(x,junk) = junk)
n(junk) = junk).

e
(P(junk) = $T).
ndiofilist.

A careful analysis of the demodulators in the given list shows that iteration will demodulate (rewrite) a
r

t
deduced but unwanted conclusion (that takes the form of a unit clause) eventually to $T, standing fo
rue.

Regarding the use of weighting, in addition to placing entire equations or formulas in a
-

p
weightilist (as is the case for resonators), one can place subexpressions in a weightilist. If, for exam
le, the type of elegance that is desired asks for the absence of all terms of the form inverse(inverse(t))

c
for terms t (say, in a study of group theory), one can include an appropriate weight template. In the
ase under discussion, the following weight template can be included in weightilist(purgeigen) or in

g
t
weightilist(pickiandipurge), with the intention that the program purge deduced conclusions containin
he undesired subexpression.

.

B

weight(inverse(inverse($(1))),1000)

ecause of the presence of this template, the purgeigen weight of any deduced conclusion containing
e

u
the cited type of term will be increased by at least 1000, if no other weight template interferes. (Th
se of $(1) causes the term in the corresponding position, whether complex or not, to be multiplied by

s
i
1.) If the maxiweight is strictly less than 1000, such a conclusion will be immediately purged, unles
ts weight is sufficiently reduced because of the actions of yet another template. One thus has a taste of

f
e
how OTTER offers a means for directly addressing the concern for term structure in the context o
legant proofs.

Because of the way weighting is implemented in OTTER, it can be used to serve another pur-
-pose, namely, to purge an entire class of unwanted equations through the use of the resonance
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restriction strategy. With this strategy, conclusions that match a resonator are purged; of the conclu-
l

c
sions that are retained, the choice for the focus of attention to direct the reasoning is based on symbo
ount. As for the relevance to elegance, one can imagine having identified a class of equations or for-

s
mulas that are to be avoided, if elegance is to be increased, a class all of whose members have the
ame functional shape, differing only in the presence of the particular variables. For example, the class

to be avoided might contain the following equations.

(x* ((y+z)* (y+u)))* ((x*y)+ (x* (z*u))@ ) = (x* (y+y))*1.
.

(
(x* ((z+y)* (y+u)))* ((x*y)+ (x* (z*u))@ ) = (x* (y+y))*1
x* ((y+z)* (y+u)))* ((y*x)+ (x* (z*u))@ ) = (x* (y+y))*1.

.

I

(x* ((z+y)* (y+u)))* ((y*x)+ (x* (z*u))@ ) = (x* (y+y))*1

f the intent is to avoid these equations and others of their class differing only in the particular variables

v
that occur, one need only select an equation of the class and use it as a resonator, assigning to it a
alue greater than the maxiweight. Placing the chosen resonator in weightilist(purgeigen) or in

d
c
weightilist(pickiandipurge) will, if nothing else interferes, cause the program to purge any deduce
onclusion that is in the undesired class. Any member of the undesired class will suffice as the chosen

a
r
resonator—one of the beautiful aspects of the resonance strategy—for (by definition) all variables in
esonator are treated as indistinguishable. (For more details concerning the resonance-restriction stra-

tegy, see Sections 4.2 and 5.2 in [Wos96a].)

Regarding the third cited property of elegance, that focusing on variable abundance, OTTER
offers precisely what is needed with a command of the following type.

assign(maxidistinctivars,5).

With the inclusion of this command, the program will purge any deduced clause that contains more
s

f
than five distinct variables. The use of that feature alone can result in the completion of a proof that i
ar more attractive than the proof produced without using that feature.

s
r

As for the fourth cited property of elegance, deduced-clause complexity, the feature that i
elevant can be easily guessed, namely, the option to assign a chosen value to maxiweight. For exam-

e
ple, if no weight templates are included in the input, OTTER will assign as the purgeigen weight to
ach deduced clause its symbol count, of course ignoring commas and parentheses. Therefore, if one

e
m
wishes the program to seek a proof in which no deduced step has a length exceeding, say, k, on

erely assigns to maxiweight the value k. No problem exists if, at the same time, one wishes to
n

s
include weight templates to guide the program’s search without interfering with the stated intention. I
uch an event, one places the guiding templates in weightilist(pickigiven); no template in that list is

c
consulted when computing the purgeigen weight, the weight used to decide whether to retain a new
onclusion in the context of its complexity.

s3. Making Choices and Identifying Tendencie

Consistent with my promise regarding tendencies, this section offers notions gathered from exper-
r

a
imentation. Indeed, as one learns here, studies with OTTER suggest that some types of paramete
ssignment tend to be more effective than others. This observation holds whether the objective is that

d
of finding shorter proofs (featured in this article) or the objective is that of finding any proof. The ten-
encies are discussed in lieu of a practical algorithm. (Of course, the word tendency is the correct

t
n
term, for exceptions abound no matter which option, parameter, strategy, and the like is the focus.) Tha
o such algorithm exists (which is my position) might be less surprising if one pauses to note that a

e
e
mathematician who is asked for an algorithm for finding any proof would, at best, be amused. (Th
xperiments that are cited in this section are discussed in Section 4 and, more fully, in [Wos97].)

3.1. MaxiiWeight

One of the more innocent-appearing parameters that governs the actions of OTTER is that which

T

places a maximum on the weight (complexity) of retained information, namely, maxiweight.

endency 1. Assignment of a smaller maxiiweight rather than a larger tends to produce shorter
proofs, tends to promote finding any proof, and tends to reduce the CPU time required to
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I

complete the designated task.

ntuitively, my guess is that long and messy formulas or equations force the program to include
s

i
numerous steps to unpack the information that they contain. Perhaps the situation is like the gift that i
n a box, which is in a box, which is in yet another box, and the like, with the actual object of delight

buried deeply within the nested boxes.

To immediately answer a natural question, I note that I typically choose to assign maxiweight (in

3

the beginning of an attack) a value between 20 and 30.

.2. The Hot List Strategy

Just as the values assigned to parameters can be crucial, so also can the choice of strategy or stra-

T

tegies.

endency 2. Use of the hot list strategy tends to promote the finding of shorter proofs, tends to
e

t
promote the finding of any proof, and tends to reduce the CPU time that is required to complet
he assigned task.

The presence or absence of the hot list strategy can produce sharply contrasting results. Whereas its
-

m
use in Experiment 26 enabled OTTER to complete the desired 100-step proof, the corresponding experi

ent differing only in the omission of the hot list strategy completed no proofs. Such contrasting
results are explained by the rearranging of the order in which conclusions are drawn.

Indeed, without the hot list strategy, the retention of a new clause does not cause the program to
e

w
immediately choose that new clause to initiate an application of the inference rules in use, as is the cas

hen the hot list strategy is in use. (Nevertheless, this tendency in no way implies that such immediate

t
initiation is necessarily an advantage. In particular, the new demodulators that might be retained with
he use of the hot list strategy might get in the way, might rewrite some clause into a form that blocks

T

finding a shorter proof or, for that matter, finding any proof.)

endency 3. Use of clauses in the hot list that are representable in a few (perhaps less than 10)

c
symbols—with the added property that the right-hand argument is a single symbol, variable or
onstant—tends to promote reaching the desired objective.

a
t
Tendency 4. Inclusion of a clause in the hot list that corresponds to the added hypothesis of
heorem—for example, when studying ring theory, the assumption that the cube of x is x for all

T

x—tends to promote program effectiveness.

he analogue of this tendency is found in many mathematics books and papers where a proof continu-

T

ally leans on the added hypothesis of the theorem in focus to derive one step after another.

endency 5. Use of clauses in the hot list corresponding to associativity or commutativity tends to

I

sharply decrease the effectiveness of a reasoning program.

f a clause, such as that for commutativity, easily matches terms within each newly retained conclusion,

c
then the program can become preoccupied over and over, sharply reducing the number of clauses
hosen from the set of support to initiate inference rule application.

r
e

As the cited tendencies suggest, the content of the (input) hot list can be indeed critical. Fo
xample, in Experiment 26 if one uses for the input hot list that used throughout many of the experi-

t
ments reported in Section 3 and in [Wos97] (just two clauses), no proofs are returned; in contrast, with
he following four clauses in the hot list, the desired 100-step proof is found. (As one clearly sees, the

clauses do not adhere to Tendency 3; but the discussion focuses on tendencies, not on rigorous rules.)

x * (y + z) = (x * y) + (x * z).
.

x
x + (y * z) = (x + y) * (x + z)

+ x@ = 1.

O

x * x@ = 0.

bviously, at least one of the two additional clauses (in the hot list) enables the immediate deduction
oand retention of one or more needed clauses. (As a reminder, the clauses in the hot list are used t



9

complete application of inference rules.)

However, as experimentation shows, sometimes a greater value assigned to the heat parameter
-

g
harms rather than helps, and sometimes additional members in the hot list impede rather than aid pro
ress. The answers to the questions of how and when to use the hot list strategy rest with the proper-

-
i
ties of the correspondingly perturbed space of retained conclusions; currently, the only means for mak
ng the appropriate decisions is through experimentation.

e
d
Tendency 6. Adjoining clauses frequently to the hot list during a run, in the context of th

ynamic hot list strategy, tends to sharply decrease program effectiveness.

e
c
The performance tends to increase if clause adjunction during a run consists of the type of claus
lassed as useful in the context of the static hot list strategy.

e
d
Tendency 7. Assignment of a value of 1 to the input heat parameter, for both the static and th

ynamic hot list strategy, tends to promote the finding of shorter proofs and tends to promote the

H

completion of any proof.

igher values tend to becalm the program, forcing it to remain in one place for a long time before
f

M
choosing a new initiating clause from the set of support. Other tendencies regarding the use o

cCune’s dynamic hot list strategy are more difficult to identify at this time, for its use has received
relatively small experimental attention so far.

The answers to other questions about the hot list strategy—the value assigned to the input heat

i
parameter or the content of the (input) hot list, for example—rest with the properties of the correspond-
ngly perturbed space of retained conclusions. Currently, the only means for making the appropriate

decisions is through experimentation.

Indeed, as the following shows, the value assigned to the (input) heat parameter can save or lose
e

t
the day. Whereas the value 3 in Experiment 26 worked well, the value 1 yielded no proof of either th
arget conclusion or of the dual. (I ignored the case for the value 2 because its use in Experiment 25

-
g
did not produce the desired 100-step proof.) In the cited case, the smaller value did not permit the pro
ram to deduce clauses of heat level greater than 1, and at least one such clause must have played a

3

significant role.

.3. The Resonance Strategy

The resonance strategy is designed to cope with obstacles such as cul de sacs or dead ends.

t
Indeed, often experiments lead to a sequence of shorter and shorter proofs that reach a point conjec-
ured to be far from what is possible—and yet no further progress occurs. To escape such a cul de sac,

e
the resonance strategy is recommended, using proof steps from the last ‘‘good’’ proof or from some
arlier or related proof.

Tendency 8. Resonators that correspond to proof steps of a closely related theorem aid the pro-

I

gram, whether the objective is proof-length reduction or simply proof finding (of any proof).

n the limiting case for the resonance strategy, steps from a proof of a theorem obtained in an earlier
-

m
experiment, if used as resonators, tend to be useful for finding an even shorter proof in a later experi

ent. An explanation for this phenomenon asserts that such steps (of course, depending on the other

fi
option and parameter choices) can tightly direct a program’s search, but not restrict the program to

nding the already-completed proof. Note that, in contrast to lemmas that should be true when
s

t
included in an attack, resonators have no truth value. Indeed, when a resonator is used that correspond
o a step of an earlier proof of the theorem under study or corresponds to a proof step of another

-
t
theorem, its inclusion does not play the role of an included lemma. For a fuller discussion of the rela
ion of resonators to lemmas, see [Wos95a].

The added needed latitude to enable a new proof to be completed is derived from such elements

a
as a maxiweight whose value is perhaps ten times the value assigned to each of the resonators, usually

small value such as 2. (However, if some of the resonators match many retained clauses, their
effectiveness can be totally destroyed and, worse, no proof is found because the program becomes
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)

3

mired in focusing on a large number of similar clauses.

.4. The Ratio Strategy

Only relatively recently did I and my colleagues at Argonne find useful a level-saturation or

t
breadth-first search; see [Wos92] for relevant data. Formerly, our preference was for a search based on
he complexity of clauses that might initiate applications of inference rules. Currently, McCune and I

T

typically rely on the ratio strategy, which combines both direction strategies.

endency 9. Regarding assignments to the pickiigiveniiratio, progress toward finding a shorter
-

l
proof (or any proof, for that matter) appears to be correlated with small values, but not the smal
est. Tendency 9. Assignment of small values, but not the smallest, to the pickiigiveniiratio tends

W

to promote the finding of a shorter proof and tends to promote the completion of any proof.

hen the smallest possible value, 1, is assigned to the pickigiveniratio parameter, the program is

u
instructed to place equal weight (for choosing clauses to initiate applications of the inference rules in
se) on first-come first-serve information and on information of least complexity. If misfortune smiles,

w
first-come first-serve information (that saved as the program’s attack begins) will include statements

hose complexity equals the maximum allowed in the experiment.

r
p

As conjectured, the use of messy formulas or equations can interfere with the seeking of shorte
roofs. On the other hand, if one assigns the pickigiveniratio a large value (such as 20), then the pro-

.
M
gram will likely consider few complicated conclusions to initiate applications of an inference rule

ore than rarely, such a conclusion proves to be the key to unlocking the puzzle, to finding a shorter

r
proof or to finding any proof. In fact, the cited phenomenon is precisely why McCune formulated the
atio strategy.

To immediately answer a natural question, I note that I typically favor an assignment of either the

3

value 3 or the value 4 to the pickigiveniratio.

.5. Ancestor Subsumption

The only means offered by OTTER for directly attacking the problem of finding shorter proofs is
.

T
by using ancestor subsumption (which, for practical reasons, requires the use of back subsumption)

his procedure compares the derivation path lengths when presented with two copies of the same

T

deduced conclusion and retains the copy reached by the strictly shorter path.

endency 10. Use of ancestor subsumption tends to promote the finding of shorter proofs; how-

s
ever, use of ancestor subsumption tends to sharply increase the required CPU time if the goal is
imply finding a proof.

For an example of the fact that shorter subproofs do not necessarily lead to a shorter total proof, see

4

Chapter 3 of {Wos96a}.

. A Tortuous Path to Success

At this point, the focus is on various experiments whose objective was to find a proof of DUAL-
f

o
BA-3, a proof far shorter than McCune’s 816-step proof. Only barely was I seriously seeking a proo
f length 100, McCune’s original request (though said in jest). I conducted more than one hundred

l
m
experiments, the result of which was indeed a 100-step proof and, perhaps more important, a genera

ethodology for seeking ‘‘short’’ proofs. Immediately preceding Section 5, a table of twenty-six of the
I

f
more interesting experiments is given, the details of which are covered in [Wos97]. In this article,
ocus on far fewer experiments, noting that setbacks did occur; my objective is mainly to illustrate the

s
r
methodology, to show how it was developed and used, and to provide data supporting the tendencie
egarding option choices and parameter assignments.

Earlier studies seeking shorter proofs [Wos95a,Wos96a,Wos96c] virtually demanded the use of
)

w
the resonance strategy, if the goal of finding a 100-step proof (or, for that matter, a 400-step proof

ere to be reached. As for which equations to use as resonators, again virtually no thought was
required. Indeed, experiments in areas other than Boolean algebra had shown that deduced steps from
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the proof of a theorem (even if only distantly related to the target theorem) often serve well as resona-

fi
tors, whether the goal is a sharp reduction in CPU time required to complete any proof or the goal is to

nd a shorter proof. In fact, steps from the proof of a target theorem often serve well as resonators for
-

n
improving one’s results regarding the target theorem. Note that, typically, Experiment k+1 uses as reso
ators proof steps of a proof obtained in Experiment k. Therefore, I began (in Experiment 1) by using

-
d
as resonators the 811 deduced steps of McCune’s proof, starting with a clause obtained by back demo
ulation, but not including the earlier clauses produced by ‘‘copy’’.

a
S

Almost all the experiments reported in the remainder of this article were conducted on
PARCstation-10. For brevity, the CPU times are cited without the reminder that they are only approx-

l
imations. Also, note that all resonators placed in a weightilist must be unit clauses, free of ‘‘ e ’’ (the
ogical or symbol). Therefore, when I discuss positive deduced steps of a proof to be used as resona-

4

tors, implicit is the requirement that each be a unit clause.

.1. A Fine Start: Experiment 1

In Experiment 1, each resonator (each of the 811 deduced steps of McCune’s proof) was assigned
d

O
the value 2. All resonators were placed in the pickiandipurge weightilist. This placement instructe

TTER to assign both a pickigiven weight and a purgeigen weight of 2 to any deduced clause that
l

w
matched any of the 811 resonators, where (in the resonator case) two clauses match if they are identica

hen all variables are treated as indistinguishable from each other.

s
s

The steps of McCune’s proof that are deduced and retained are thus used to influence OTTER’
earch for a proof; indeed, because of being assigned the small pickigiven weight of 2, they are given

r
r
preference (over most or all clauses) for being chosen to initiate an application of the inference rule o
ules in use. Also (of slightly lesser significance) the deduction of a step of McCune’s proof will

a
almost certainly lead to its retention, at least in the context of maxiweight, for such a step will be
ssigned a purgeigen weight of 2. In Experiment 1, the maxiweight was assigned the same value

McCune used, namely, 28.

Since the pickigiveniratio remained unchanged from that used to obtain the 816-step proof,

e
namely, that of 4, the presence of clauses matching a resonator would only guide OTTER’s search, for
very fifth clause used to initiate an application of an inference rule would be chosen by first come, first

fi
serve. Such guiding rather than totally controlling the search gives the program the opportunity of

nding a proof different from McCune’s and, more to the point, a chance of finding a shorter proof.

d
a

In 1613 CPU-seconds on a SPARCstation-10 with retention of clause (15257), OTTER complete
proof of length 680 and level 78; the level of McCune’s proof is 89. (The two levels are given to

e
r
provide yet one more measure of the difference between the two proofs; level will not be cited for th
emaining experiments, but it is given in Table 1.) Five of its steps result from applying copy to an

s
f
input clause, followed either by flip to interchange arguments or by demodulation, and one step result
rom back demodulating an input clause with another input clause. (This added information is given in

r
t
the event that one wishes to measure proof length beginning with the first use of paramodulation. Fo
he remainder of this article, the figures for proof length will be taken from an OTTER run; the pro-

gram counts steps of the cited types in its computation.)

Because McCune was equally interested in a ‘‘short’’ proof of the dual, its negation, captured by
the following clause, was also included.

(A + B) * B != B.

Even more impressive in the context of proof length reduction, the dual was also proved, the proof hav-
ing length 628; its level is 67, completing in 1608 CPU-seconds with retention of clause (15031).

Perhaps startling—and certainly charming—except for the clause corresponding to negating the
t

c
dual, the proof of the dual is a subproof of the proof of the primary conclusion. To remove any doub
oncerning technicalities, of course the proof of the dual, being one of contradiction, relies on the nega-

o
tion of the dual, whereas the proof of the primary conclusion relies on its negation; clearly, the negation
f the dual is not present in the proof of the primary conclusion, and conversely.



4.2. The Hot List Strategy: Experiment 2

12

Whether the focus is on the target conclusion or on its dual, this fine start on a path to finding a
s

s
far shorter proof does not imply that all always went according to plan—the path was unpredictable, a
hown in Table 1. However, with this satisfying reduction in proof length from 816 to 680 or 628

E
(whichever choice is made), the stage was nicely set for Experiment 2. The only change made from

xperiment 1 was that of adding the use of the hot list strategy with the heat parameter assigned the
e

r
value 1. The object was to gain some insight into the value of using this strategy (coupled with th
esonance strategy) in the context of seeking a shorter proof for the target theorem.

o
p

Of course, the addition of the hot list strategy naturally presented the question of which clauses t
lace in list(hot). Typically, a practice that has served well is to place in the hot list the clauses

r
corresponding to the special hypothesis. (The special hypothesis of a theorem of the form if P then Q
efers to that part of P, if such exists, that excludes the underlying axioms and lemmas. For example,

t
in the study of the theory that asserts that rings in which, for every x, the cube of x = x are commuta-
ive, the special hypothesis consists of the equation xxx = x.) A less precise rule that often is effective

,
w
suggests for the members of the hot list those clauses in the initial set of support that are ‘‘simple’’

here simplicity usually means expressed in a small number of symbols. The second rule is the one
that was used. Therefore, the following two clauses were placed in list(hot).

x + x@ = 1.
x * x@ = 0.

Neither clause is directly relevant to the conclusion of the theorem, namely,

n

(x*y)+y = y,

or to its dual, namely,

N

(x+y)*y = y.

evertheless, the presence of the cited two clauses in the (input) hot list, as the following data shows,
produced enough of a reduction in proof length to clearly be of interest, and even piquant (to me).

A 607-step proof of the conclusion obtained by McCune was completed in 3702 CPU-seconds

4

with retention of clause (23437); a 606-step proof of the dual was also completed in the experiment.

.3. Resonance and the Dynamic Hot List Strategy: Experiment 3

r
s

The next experiment, Experiment 3, was mainly influenced by a practice reflecting earlie
uccesses (in other areas) in seeking shorter proofs, successes in which the resonance strategy played a

e
e
key role [Wos95a,Wos96a,Wos96c]. The practice is iterative, using the deduced proof steps from on
xperiment as resonators in a later experiment.

The first decision I had to make was to choose between the proof steps of the so-called primary
t

2
conclusion and those of the dual of the conclusion. Although the two proofs completed in Experimen

are of almost equal length, 607 (for the primary) and 606 (for the dual), later experiments (as with
o

f
Experiment 1) might not share this almost-equal-length property. Influencing my decision were tw
actors. First, aesthetics virtually demanded staying with the conclusion of McCune’s 816-step proof; to

d
u
do otherwise would in a sense be cheating, be loading the dice. Second, science virtually demande
sing the primary conclusion, for many situations to which one might wish to apply the methodology

f
s
might lack a dual. (As an aside, an interesting area for research concerns using as resonators proo
teps of the dual in an iterative attack on seeking a shorter proof, either of the primary or of the dual.)

l
w
Therefore, with few exceptions, the choice of proof steps of the primary conclusion rather than the dua

as the rule for most of the sequence of experiments to be discussed, as was the omission of the type
-

t
of clause obtained with copy. Only when I hoped to extract a few extra droplets of proof-length reduc
ion did I violate this rule. Data regarding the dual will not come into play or be presented until Experi-

ment 18, where its use became crucial; [Wos97] covers that data.

Therefore, for Experiment 3, 602 resonators were used, each assigned a value of 2. In other

i
words, five of the 607 possible resonators were not included, those in which copy was applied to an
nput clause.
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One other change was made for Experiment 3, namely, the introduction of the dynamic hot list

n
strategy. However, rather than simply adding the use of this strategy, the idea was to imitate a combi-
ation strategy that had proved most effective, namely, that of combining the resonance strategy with

f
s
the dynamic hot list strategy; see [Wos96c]. The combination strategy is, intuitively, an if-then type o
trategy: If a clause is retained that matches a member of a chosen set of resonators, then adjoin that

‘
clause to the hot list during the run. The notion is that the adjunction to the hot list (during the run) of
‘short’’ clauses might produce an even shorter proof, for the use of short clauses in the input hot list

u
had resulted in progress. Therefore, the decision was to choose from among the 602 resonators to be
sed those expressed in five or fewer symbols (counting spaces, commas, and parentheses, but not

v
counting the period), assign to each the value 1, and assign to the (input) dynamiciheatiweight the
alue 1. The consequences of this decision are that (1) any clause that is deduced and that matches a

e
p
resonator with weight 1 will also be assigned a pickigiven weight of 1—because the resonators wer
laced in the pickiandipurge weightilist—and (2), if such a clause is retained, it will be adjoined to

n
a
the hot list during the run, because of its weight and because the dynamiciheatiweight has bee
ssigned the value 1. (The value assigned to the dynamiciheatiweight places an upper bound on the

pickigiven weight of clauses that can be adjoined to the hot list during a run.)

Of the 602 resonators to be used, 19 were assigned the value 1; they were placed in the

w
pickiandipurge weightilist before the 602 resonators. Therefore, ignoring the assigned value, 19

eight templates appeared twice. The earliest weight template that matches a clause is that which is

n
used to assign the weight to the clause; so the second copy of a template with assigned value of 2 did
ot interfere with the assignment of 1 as the weight of a clause matching one of the 19 used in con-

r
junction with the dynamic hot list strategy. Summarizing, if a ‘‘short’’ clause (as just defined) was
etained that matched a ‘‘short’’ clause of the proof completed in Experiment 2, then that clause was

adjoined to the hot list during the run.

Experiment 3 was markedly successful. In 321 CPU-seconds with retention of clause (9789), a
-

i
proof (of the primary conclusion) of length 344 was completed. Thus the iterative approach was work
ng well, having cut the required number of steps to prove the primary conclusion more than in half.

4.4. Layering Resonators: Experiment 4 through 7

As one sees in the preceding section, the use of a set of resonators does not require that each
3

w
member of the set be assigned the same value. Indeed, a subset of the resonators used in Experiment

as assigned the value 1 (with the remaining assigned the value 2) with the intention that any retained
)

e
clause matching a resonator whose assigned value is 1 be added to the hot list. Experiment 3 (as noted
mployed the dynamic hot list strategy. Although I dropped the use of the dynamic hot list strategy for

t
the next four experiments (as well as for all experiments other than 3, 14, and 23), for Experiments 4
hrough 7 I still used a layered set of resonators, meaning that not all of the resonators were assigned

the same value.

In particular, for Experiment 4, resonators represented in seven or fewer symbols were assigned
d

t
the value 1, and the remaining were assigned the value 2. As expected, all of the resonators correspon
o proof steps from the proof completed in Experiment 3. Experiment 4 produced more progress, com-

f
l
pleting a proof of the desired theorem in 111 CPU-seconds with retention of clause (5871), a proof o
ength 325.

As one might expect because of the iterative nature of the methodology, for Experiment 5 new
.

T
resonators were used, those corresponding to the proof steps of the proof obtained in Experiment 4

he same type of layering of resonators was employed. Experiment 5 produced another significant

s
reduction in proof length, completing a 287-step proof with retention of clause (9400) in 164 CPU-
econds.

Experiment 5 was followed by numerous failures in the context of finding shorter proofs. For a
,

o
taste of how much ground could be lost with ineffective choices of the parameters and the strategies
ne of the unsuccessful experiments completed a proof of length 514, virtually proving that an algo-

s
rithm is not being discussed, merely a methodology. Also strongly and correctly suggested are the
ubtlety, intricacy, and complexity of seeking shorter proofs; indeed, the process is quite delicate in the

sense that the slightest change in a parameter assignment can result either in finding no proofs or in
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finding a rather shorter proof. Regarding what was tried, the value of the heat parameter was assigned
s

a
1 sometimes and sometimes 2, and sometimes the hot list strategy was not used. The maxiweight wa
ssigned various values, from 12 to 36. Although the usual assignment for the pickigiveniratio was 4,

n
sometimes 3 was chosen. Diverse moves were made in the context of the choice and layering of reso-
ators.

One learns that the methodology is experimental, often requiring playing with various combina-
,

n
tions of parameter assignments and strategy choices whose effects are indeed unpredictable. In short
ot much worked—until Experiment 6 was conducted.

Experiment 6 differed from Experiment 5 in two ways. First, as expected, the resonators were
,

i
the correspondents of the proof steps of the proof (of the primary conclusion) obtained in Experiment 5
n place of those from Experiment 4. Second, the resonators that correspond to a step obtained with

g
a
back demodulation were given a weight of 4 rather than 2, to delay their consideration for initiatin
pplications of an inference rule. (This added action resulted directly from a remark my colleague

s
McCune made concerning the possible value of being able to apply all relevant demodulators at once in
equence, rather than by means of a set of sequences, each producing another step in the proof.)

d
w

The ideal case explains the assignment of higher weight to correspondents of proof steps obtaine
ith back demodulation. Imagine that the proof under consideration (whose steps are to serve as reso-

d
nators) contains a chain of clauses, A, B, C, D, E, obtained by applying back demodulation: back
emodulation applied to A yields B, back demodulation applied to B yields C, similarly D from C, and

d
p
E from D. In the ideal case, when the program (relying on the resonators from the just-mentione

roof) was seeking a shorter proof, the deduction of A would find already present and in the needed
d

b
order the demodulators that had been used to respectively deduce B through E. In that event, A woul
e successively demodulated to yield B through E, but—and here is the point—A, B, C, and D would

s
l
be intermediate steps, and they would therefore not be explicitly present in the proof to add to it
ength.

Thus, by causing the program to delay considering for the focus of attention clauses that (in the
s

w
proof whose steps are used as resonators) were obtained by back demodulation, perhaps such clause

ould not be needed to complete a proof, preferably a shorter proof. Nevertheless, because the ideal

u
case seldom occurs (regardless of the context), assigning such a high weight that the type of clause
nder discussion is in fact purged asks for serious trouble. After all, a clause that was obtained with

;
i
back demodulation might have been a parent (when paramodulation was used) of a crucial clause
ndeed, its absence might prevent the program from completing any proof, much less a shorter one.

-
s

Of course, as one might predict from the preceding, Experiment 6 succeeded, completing a 260
tep proof with retention of clause (5977), requiring 80 CPU-seconds.

-
t

After additional unsuccessful attempts to find a proof of length strictly less than 260, the condi
ions for a successful experiment were determined. For this experiment, Experiment 7, two changes

r
were made from Experiment 6. First, as expected with this iterative methodology that relies on the
esults of earlier experiments to be used for later experiments, the resonators used in Experiment 7 were

e
p
the proof steps of the proof completed in Experiment 6. The assignment of their values followed th
attern of Experiment 6. Second, because of some of the data gathered in the unsuccessful runs, the

s
r
pickigiveniratio was assigned the value 7, rather than 4. The intention was to use complex clause
etained early in the run less often than was the case in Experiment 6.

g
6

Another significant reduction was obtained, in that OTTER completed a 236-step proof, requirin
3 CPU-seconds and the retention of clause (5092). For but one data point that might be of interest, 30

4

steps of the 236-step proof are not among the 260-step proof obtained in the preceding experiment.

.5. Perturbing the Search Space: Experiment 15

Experiments 8 through 14 (as shown in Table 1) produced slow but steady progress. Experiment

a
15 (of the 26 detailed in [Wos97]) reflected some of the difficulty that was being encountered in
ttempting to find a proof of length strictly less than 207, the length of the proof completed in Experi-

t
w
ment 14. For that experiment, use of the dynamic hot list strategy was dropped, and the maxiweigh

as reduced from an assignment of 28 to one of 20; 28 had been the assigned value until this
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15

xperiment. The reduction was designed to perturb the search space by avoiding the retention of
t

o
numerous complex clauses; recall that the ratio strategy, which was still in use and with an assignmen
f the value 9 to the pickigiveniratio, permits a program to focus on complex clauses, especially those

-
j
retained early in the run. Also, consistent with the discussion of tendencies given in Section 3, the con
ecture was that a smaller maxiweight might enable OTTER to find a shorter proof. As expected, the

-
e
resonators were the correspondents of the proof steps of the proof completed in Experiment 14. How
ver, as yet another example of returning to what worked earlier, those corresponding to a step obtained

e
u
with back demodulation were assigned a weight of 4 rather than assigned a weight of 2 (as was th
sual case in this sequence of experiments).

Finally, for the first time, a direct attack on proof length was initiated, by adding the use of
.

W
ancestor subsumption and (as almost always then required) also adding the use of back subsumption

ith the use of ancestor subsumption, when a conclusion is drawn more than once, the lengths of the
e

s
corresponding derivation path lengths are compared; the program retains the copy reached by th
horter path.

The experiment succeeded nobly, completing a 185-step proof in 28 CPU-seconds. Not only was

i
the realistic goal reached—a goal that McCune had classed as impressive—but the result provided
ncentive to seek the goal he had suggested in jest, namely, a proof of length 100.

4.6. Focusing on the Dual: Experiment 18

At this point, I encountered an impasse. Various moves produced no progress. Therefore, in
e

m
desperation—or from the belief that far more was possible—I made an additional modification to th

ethodology.

For Experiment 18, rather than choosing for resonators proof steps of the primary conclusion, the

t
dual was used, from Experiment 17. A significant change was made regarding the values assigned to
he resonators. Although those with ten or fewer symbols in them were still assigned the value 1, those

e
r
used as demodulators and that showed backidemod in their history were assigned the value 2, with th
emaining assigned the value 4. The notion was that progress might occur if clauses used as demodula-

t
tors that in addition were obtained with back demodulation were given preference for being chosen as
he focus of attention to drive the program’s reasoning. Although still based far more on intuition than

y
m
on analysis, the idea also was to have certain clauses used as demodulators available earlier than the

ight otherwise be, in turn perhaps reducing the need for the presence (in a completed proof) of clauses
t

w
obtained from back demodulation. The pickigiven ratio was assigned the value 9, and the maxiweigh

as assigned the value 14.

Experiment 18 completed a 153-step proof of the primary conclusion in 16 CPU-seconds.

o
Although still not the main goal, the dual was proved, with a 145-step proof, in 14 CPU-seconds. Not
nly was the proof length decreasing, so also was the required CPU time. In case one is tempted to

.
N
assert that such is expected, various experiments in diverse fields do not support such an assertion

evertheless, when less and less CPU time is required, the methodology under study at least gives the
appearance of power.

Before continuing the account of the results of the sequence of experiments, I give some com-

c
mentary concerning the role of the resonance strategy. Of the 153 steps of the proof of the primary
onclusion obtained in Experiment 18, 24 of them are not among the resonators that were used in the

t
1
experiment. Recall that the resonators correspond to the proof steps of the dual proved in Experimen
7. Thus—precisely in the spirit of the resonance strategy—one has a nice illustration of the value of

.
P
using as resonators the proof steps of a related theorem when attacking the main target theorem

erhaps even more persuasive, 21 steps of the 153 do not match at the resonator level any of the reso-

i
nators that were used, where (as a reminder) matching in this context means treating all variables as
ndistinguishable from each other. In the given example, the resonance strategy can be viewed as hav-

4

ing supplied a detailed outline of a proof, with OTTER finding the remaining needed steps.

.7. Victory: Experiments 25 and 26

Except for changes regarding the use of the hot list strategy, Experiment 25 was indeed similar to
lExperiment 24, of course using for resonators the proof steps of the completed proof (from the dua
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still) from Experiment 24. The (input) heat parameter was assigned the value 2 rather than 1 to permit
recursion, and the following four clauses were placed in the input hot list.

x * (y + z) = (x * y) + (x * z).
.

x
x + (y * z) = (x + y) * (x + z)

+ x@ = 1.

W

x * x@ = 0.

hen the heat parameter is assigned the value 1, conclusions that result from consulting the hot list

p
(whether one is using the hot list strategy or the dynamic hot list strategy) have heat level 1. If the
rogram decides to retain a conclusion of heat level 1 and if the (input) heat parameter is assigned the

i
value 2, then before another conclusion is chosen as the focus of attention, the heat-level-1 conclusion
s used to initiate the search for conclusions of heat level 2 (with the hypotheses needed to complete the

corresponding application of the inference rule chosen from the hot list).

Assigning a value of 2 to the heat parameter certainly has great potential for perturbing the search
-

i
space, and, at this stage of the search for a ‘‘short’’ proof, such perturbation seemed imperative. Plac
ng additional clauses in the hot list, whether dynamically or input, also sharply increases the likelihood

o
d
that the search will be perturbed. Indeed, the hot list strategy was formulated to enable a program t
raw conclusions far sooner than it would otherwise; with the use of the strategy, the order in which

conclusions are drawn is usually dramatically rearranged.

The first proof completed in Experiment 25 was that of the dual, a proof of length 108, in 8
-

s
CPU-seconds. For the record, in the context of the dual, ground finally was lost. However, in 9 CPU
econds, OTTER completed a 102-step proof of level 44 of the target conclusion. Almost as rewarding

n
h
as finding such a short proof was the fact that the (primary) target had been proved in fewer steps tha
ad the dual, which was not the case for so many of the experiments reported here.

-
t

The result led to the conjecture that, with a few experiments based on fiddling with the parame
ers and option choices, a singular event would occur: OTTER would complete a 100-step proof of the

target. (That numbers such as 100 would have appeal for a mathematician must amuse many.)

For Experiment 26, I assigned heat the value 3 rather than 2 (or 1, as was the case for so many
f

t
experiments). For resonators, I chose the proof steps of the proof completed in Experiment 25, that o
he primary target and not the dual. The return to focusing on proof steps of the primary conclusion as

p
the source for resonators was in part because of the length of its proof (102) in Experiment 25 and in
art because it is the target of the study. The assignment of values to the resonators was that used in so

.
T
many of the cited experiments, namely, 1, 2, and 4. I assigned maxiweight the value 4 rather than 14

he assignment of the value 4 to maxiweight merits a short explanation. The notion was that of

r
preventing the program from retaining any clause that does not match (at the resonator level) one of the
esonators, match in the sense that all variables are considered indistinguishable.

a
1

With Experiment 26, my not-so-well hidden and actual goal was reached: OTTER completed
00-step proof of level 44 of the target of the study in 6 CPU-seconds. As for the dual, its proof has

length 99 and level 44, also requiring 6 CPU-seconds.

The results of each experiment are summarized in Table 1. Because the level of a proof gives
f

i
yet one more measure of its difficulty, the table also gives that information. (By definition, the level o
nput clauses is 0; the level of a deduced clause is one greater than the maximum of the levels of its

parents.)

Table 1: The Road from an 816-Step Proof to a 100-Step Proof

center; lcccc lrrrr. Experiment Length Level Time (sec)
1 680 78 1613

1
3
2 606 78 370

344 53 321
1

5
4 325 52 11

287 44 164
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7
6 260 45 80

236 43 63
1

9
8 235 43 5

233 43 51 10 229 42 52 11 225 42 51
0

1
12 224 41 51 13 219 39 47 14 207 44 5
5 185 41 28 16 176 47 31 17 211 67 69

8
2
18 153 51 16 19 136 51 12 20 172 64 3
1 136 43 13 22 126 45 11 23 131 49 13

5. Obstacles to Finding Short Proofs

To provide additional insight into why the path that began with a proof of length 816 and ended
s

p
with a proof of length 100 was of necessity tortuous and, at the same time, to show why the variou
arameters and options exhibit tendencies only, the following general but brief discussion of obstacles is

m
in order. (Chapter 3 of [Wos96a] focuses in detail on the obstacles to finding shorter proofs and the

eans to overcome them.)

My purpose is twofold: first, by discussing various obstacles, to give some feeling for the
t

c
difficulty of finding such a short proof; and, second, by touching on the consequences of differen
hoices, to provide some understanding of the complexity of option choosing in this context.

,
n

To begin with, the presence of the equality relation introduces an element often not present
amely, the need for demodulation (the use of rewrite rules for simplification and canonicalization).

p
Indeed, without demodulation, in the vast majority of cases (when equality is relied upon heavily), the
rogram will drown in redundant information—the same fact expressed in too many tightly coupled

,
t
ways; see [Wos91b]. For but one example, the program might deduce that a+b = c, that 0+(a+b) = c
hat a+b = c+0, and the like. For the theorem (DUAL-BA-3) featured in Sections 2 and 4, demodula-

a
tion was indispensable, whether the goal was that of finding a shorter proof or, for that matter, finding
ny proof.

When demodulators are present, the order in which demodulators are applied can be crucial,

d
sometimes producing the needed equation to complete the assignment, but sometimes preventing its
iscovery. To complicate matters further, without an arduous analysis, one must simply wait and see

a
which demodulator is applied before which, for example, when one chooses to use a Knuth-Bendix
pproach (in which demodulators are adjoined during the run). The situation is rather like creating a

f
r
grammar, a set of rules (the analogue of demodulators) that affect sentence structure; when the order o
ule application changes, the sentence structure changes, not always in a manner that best fits the objec-

tive.

The discovery and addition of demodulators are of course dependent on the choice of options and
t

e
the assignment of values to the parameters. For a simple example, whereas a maxiweight of 20 migh
nable a program to deduce and retain a demodulator (rewrite rule) expressed in 20 symbols, a

f
s
maxiweight of 16 might prevent its deduction, much less its retention. Regarding the tendency o
maller maxiweight to promote the completion of a shorter proof, one thus sees that an obstacle does

-
m
indeed exist and that the word tendency is appropriate. One also has a glimpse of why the path cul

inating in the discovery of a 100-step proof was of necessity tortuous.

f
p

For a subtler example, assume that the maxiweight is well chosen in the sense that it itsel
resents no obstacle, and consider two cases: an assignment of the value 6 to the pickigiveniratio, and

y
a
an assignment of the value 7. On the surface, one not familiar with the ratio strategy might hastil
ssert that this small difference (6 versus 7) could be of little import. Actually, as shown by some of

o
the experiments not detailed here, quite the opposite is the case. Indeed, in some experiments a change
f 1 in the value assigned to the pickigiveniratio resulted in the program completing no proofs,

r
whereas before the change a shorter proof was found. Again one sees how a pickigiveniratio of 6
ather than 7 having the (possible) tendency of promoting the completion of a shorter proof might be in

t
t
conflict with another obstacle. Also, the fact that the search is so touchy (as illustrated) suggests tha
he path from the 816-step proof to the 100-step proof was understandably tortuous.
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ompared with the preceding two examples, regarding the seeking of shorter proofs, a direct

r
attack based on using ancestor subsumption may yield far more sinister and unintuitive results. As a
eminder, ancestor subsumption (which, for practical reasons, requires the use of back subsumption)

a
compares the derivation path lengths when presented with two copies of the same deduced conclusion
nd retains the copy reached by the strictly shorter path. On the surface, one might surmise that ances-

g
tor subsumption is precisely what is needed to find shorter proofs and, perhaps further, that its use is
uaranteed to find the shortest proof. Such a surmise is so far from the truth that the term ‘‘sinister’’ is

s
in fact justified. Actually, the truth is captured by the aphorism Shorter subproofs do not necessarily a
horter total proof make.

For a glimpse of what can go wrong when using ancestor subsumption (with finer detail given in

u
Chapter 3 of [Wos96a]), begin by assuming A is a clause that is present in all proofs of the theorem

nder study. (The assumption, though not necessary, permits focusing on a simple example.) Second,

t
assume that A occurs well before the end of any proof (also not a needed assumption). Next, assume
hat there exist two subproofs of A of respective lengths 5 and 3, where length is measured solely in

-
m
terms of deduced clauses. Then assume that, other than A, the two subproofs share no steps in com

on. If two proofs of the theorem under consideration are completed respectively based on the two
l

p
subproofs such that, ignoring A, all of the steps of the first subproof are present in the second tota
roof and such that none of the steps of the second subproof are present in the first total proof, then

f
A
quite often the first total proof is shorter than the second (despite the presence of a longer subproof o

). Nevertheless, the use of ancestor subsumption does tend to result in the finding of a shorter proof,
but, as the example shows, only tends to.

Finally, although one is free to use or ignore ancestor subsumption, the situation regarding for-

b
ward subsumption is radically different: The use of the latter is virtually required, if one is to avoid
eing buried in useless information. Nevertheless, trouble can occur with the use of forward subsump-

6

tion, somewhat reminiscent of that discussed for ancestor subsumption; see [Wos97] for some detail.

. Applying the Iterative Methodology

At this point, one might naturally conjecture that the effectiveness of the methodology is derived
I

p
(perhaps inadvertently) in some way from the specific theorem DUAL-BA-3. In the following,
resent evidence that refutes this conjecture. The emphasis is still on theorems in which equality is the

-
m
dominant relation. Each of the theorems discussed in this section was studied by McCune and Pad

anabhan and proved by OTTER; each answers a question that was open before OTTER’s attack.

6.1. Testing in the Same Field

The first bit of evidence still concerns Boolean algebra, specifically, a theorem in which equality
n

q
is the only relation. In [McCune96], the theorem is denoted by DUAL-BA-5; with its proof, an ope
uestion was answered. The following clauses capture the theorem to be proved.

624 122 51 9 25 102 44 9 26 100 44
x = x.
y + (x * (y * z)) = y. % L1

3
(
((x * y) + (y * z)) + y = y. % L
x + y) * (x + y@) = x. % B1

(
y * (x + (y + z)) = y. % L2
(x + y) * (y + z)) * y = y. % L4

2
x
(x * y) + (x * y@) = x. % B

+ y = y + x.

(
x * y = y * x.
x + y) + z = x + (y + z).

(
(x * y) * z = x * (y * z).
A * B) + (A * C) != A * (B + C) e (A + B) * B != B e B + B@ != A + A@.

e
t
The theorem asserts that the equations L1-L4, B1, and B2 are a basis for Boolean algebra. To prov
he theorem, one is asked to show that three conclusions hold, respectively corresponding to a distribu-

tive law, an absorption law, and the fact that x+x@ is a constant, which explains the presence of the
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last of the given clauses. In particular, the clause is obtained by negating the and of the three conclu-
sions.

As in the theorem DUAL-BA-3, a starting point was supplied by McCune; he had obtained with
e

g
OTTER a proof of length 119 and, as with DUAL-BA-3, was interested in a more elegant proof. Th
oal was to find a proof of length 100 or less. My approach was iterative, in the sense detailed earlier.

The following summarizes the highlights.

For the first experiment of significance, the pickigiveniratio was assigned the value 4,

h
maxiweight the value 23, and heat the value 1. The following two clauses were placed in the (input)
ot list.

x+y=y+x.

T

x*y=y*x.

he assigned values were those used by McCune; the choice of clauses for list(hot) was based on the
f

M
usual rule of including simple clauses. The resonators were the correspondents of the deduced steps o

cCune’s 119-step proof.

In 115 CPU-seconds with retention of clause (12600), OTTER completed a proof of length 103.

b
As is so typical in view of my interest in the hot list strategy, the experiment was then repeated with
ut one change: The heat parameter was assigned the value 2 rather than 1. In 206 CPU-seconds with

e
a
retention of clause (18556), a 91-step proof was completed. Then, following the iterative aspects of th
pproach, the next experiment mirrored the preceding, except that I used as resonators those

f
c
corresponding to 87 positive deduced steps of the 91-step proof. In 192 CPU-seconds with retention o
lause (22114), OTTER completed a 63-step proof, a reduction in proof length that was (for me) indeed

r
i
unexpected. (As I recall, further resonator replacement, unfortunately, led nowhere.) Then, as called fo
f one is curious about how well the cited tendencies hold, a slight variant of the experiment was con-

r
ducted, in which the value 1 (instead of 2) was assigned to the heat parameter. In 48 CPU-seconds with
etention of clause (9397), a 118-step proof was found.

The last two cited results together provide a nice illustration of why a practical algorithm for

s
finding shorter proofs would be difficult to produce—perhaps even out of reach—and they also provide
ome insight into why the methodology presented in this article was formulated. Specifically, although

t
s
many experiments suggest that assigning the value 1 to the (input) heat parameter (when the hot lis
trategy is in use) is the most effective assignment, here one witnesses a far better result obtained with

,
r
an assignment of the value 2. Again one sees that strategies and parameters exhibit tendencies only
ather than obey hard and fast rules.

At the same time the first of the two items (the 63-step proof) suggests that an even more elegant

e
proof might be obtainable if one were to conduct a quite extensive set of experiments. Such a set of
xperiments would involve assigning a small time limit for each run and simply trying numerous com-

s
binations of option choices and parameter assignments, still emphasizing the methodology that proved
o successful with the theorem DUAL-BA-3. One can easily feel impatience at the prospect of having

n
t
to set up one experiment after another, even though the use of OTTER is often so rewarding and eve
hough the modifications in each case take little actual time. McCune again came to the rescue: With

s
e
shell scripts, he wrote a program, super-loop, that systematically and sequentially sets up and run
xperiments that focus on combinations of a variety of user-chosen options and assignments. To use

.super-loop, one attaches to the end of the designated input file a set of commands of the following type

% end of fixed part

.
x
metaihotiset(2,3,4)
+y=y+x.

(
x*y=y*x.
x + y) + z = x + (y + z).

e
(x * y) * z = x * (y * z).
ndiofilist.

.assign(heat,2,1,0,3)
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a
assign(pickigiveniratio,4,5,6,7,8,9,10,12).
ssign(maxiweight,5,10,15,20,25).

F

flag(ancestorisubsume,set,clear).

or example, using the remainder of the specified input file, in one experiment OTTER will assign
e

t
maxiweight the value 15 and the pickigiven ratio the value 7, will set ancestorisubsume, and will us
hree of the given four clauses in the context of the hot list strategy.

p
p

With access to super-loop and with a quick review of the methodology used to yield the 100-ste
roof of DUAL-BA-3, I decided to run the sequence of experiments determined by the just-cited set of

s
commands, with one addition, namely, the use of the resonance strategy. I chose for the resonators the
teps of McCune’s proof of length 119, assigning to each the value 2. Except for the cited variations

f
d
from experiment to experiment, the approach was reminiscent of that used to obtain the 103-step proo
iscussed earlier. I set the time limit to 120 CPU-seconds.

-
p

In the 209th experiment (directed by super-loop), a 30-step proof (of DUAL-BA-5) was com
leted in 15 CPU-seconds. The crucial option choices and parameter assignments that were used were

-
t
an assignment of the value 8 to the pickigiveniratio and the value 25 to the maxiweight and the set
ing of ancestor subsumption; the hot list strategy was not used. The cited result provides yet one more

6

data point supporting the fact that elements such as maxiweight obey tendencies only.

.2. Further Testing

The success with DUAL-BA-3 (when studied with the methodology central to this article) cou-

[
pled with the just-cited success with DUAL-BA-5 motivated the study of DUAL-BA-2; see
McCune96]. The theorem asserts that the following seven clauses axiomatize Boolean algebra.

x
(x + y) * y = y.

* (y + z) = (x * y) + (x * z).

p
x + x@ = 1.
(x,y,z) = (x*y@) + ((x*z) + (y@ * z)).

p
p(x,x,y) = y.
(x,y,y) = x.

.

F

p(x,y,x) = x

or the study, the following clause was also included because of the use of paramodulation.

T

x = x.

he theorem asks one to prove three properties of Boolean algebra, the same three properties proved in
f

o
DUAL-BA-5, namely, a distributive law, an absorption law, and the fact that x+x@ is a constant. I
ne denies the and of the three properties, one obtains the following clause.

.A + (B * C) != (A + B) * (A + C) e (A * B) + B != B e B * B@ != A * A@

To initiate the study (with the goal of fulfilling McCune’s request for a more elegant proof), I

u
used his 135-step proof. The iterative approach led to the completion of a 93-step proof. Then, by
sing super-loop focusing on 89 deduced steps of the 93-step proof as resonators, an 86-step proof was

v
completed. The proof was found in the 87th experiment directed by super-loop. Regarding options and
alues, the pickigiveniratio was assigned the value 5, the maxiweight was assigned the value 8, ances-

t
tor subsumption was used, and the hot list strategy was not used; 6 CPU-seconds sufficed to produce
he 86-step proof. Super-loop was again used, focusing on 82 deduced steps from the 86-step proof as

p
resonators. In the third experiment, in 3 CPU-seconds with the value 12 assigned to the
ickigiveniratio, the value 8 assigned to maxiweight, and the use of ancestor subsumption, an 83-step

proof was completed.

I then had an inspiration, most likely resulting from some earlier experiments with Robbins alge-
t

e
bra. In the next use of super-loop, I merely cleared eqiunitsibothiways. (If this flag is set, then uni
quality clauses, positive and negative, can be stored in both orientations; see [McCune94].) In the

e
m
seventh experiment, in 4 CPU-seconds, with the pickigiveniratio assigned the value 12, th

axiweight assigned the value 16, and the use of ancestor subsumption, OTTER found an 81-step
proof.
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By following the type of iteration just illustrated a 77-step proof was completed, in 3 CPU-

t
seconds. The experiment required assigning the value 12 to the pickigiveniratio, assigning the value 8
o the maxiweight, assigning the value 1 to the heat parameter, using ancestor subsumption, and setting

g
f
the flag eqiunitsibothiways; only 3 CPU-seconds were required. The hot list contained the followin
our clauses.

.
p
x + x@ = 1
(x,x,y) = y.

.
p
p(x,y,y) = x
(x,y,x) = x.

The result was obtained in the 221st experiment directed by super-loop.

6.3. Broadening the Test

To test the iterative methodology further, I shifted focus from Boolean algebra to quasilattices,

o
focusing on the theorem denoted by QLT-3. McCune and his colleague Padmanabhan [McCune96] had
btained with OTTER the first known equational proof that the following self-dual equation can be used

to specify distributivity.

(((x ˆ y) v z) ˆ y) v (z ˆ x) = (((x v y) ˆ z) v y) ˆ (z v x)

s
l
(All earlier proofs are model-theoretic.) The proof I was asked to replace with a more elegant proof ha
ength 183.

As with DUAL-BA-3, this theorem taxed the iterative methodology greatly, in the sense that

i
many experiments were required to reach the best result, a proof of length 108 and level 14, completed
n 166 CPU-seconds. Among the points of interest are the fact that McCune’s proof (used as the start-

s
ing point) has level 24 and the fact that, in contrast to many of the so-called final experiments in a
tudy, this one required a few CPU-minutes. Also of interest, perhaps suggesting the difficulty of

n
obtaining such a short proof and even suggesting the charm of the proof, the use of super-loop produced
o further progress.

For the researcher intrigued by the challenge of finding a shorter proof, the following clauses can
be used to attack the problem.

x = x.
.

x
x ˆ x = x

ˆ y = y ˆ x.
.

x
(x ˆ y) ˆ z = x ˆ (y ˆ z)

v x = x.
.

(
x v y = y v x
x v y) v z = x v (y v z).

.
(
(x ˆ (y v z)) v (x ˆ y) = x ˆ (y v z)
x v (y ˆ z)) ˆ (x v y) = x v (y ˆ z).

.
A
(((x ˆ y) v z) ˆ y) v (z ˆ x) = (((x v y) ˆ z) v y) ˆ (z v x)

ˆ (B v C) != (A ˆ B) v (A ˆ C).

Then, I used the methodology to attack another theorem chosen by McCune from quasilattices.

m
The theorem, QLT-5 [McCune96], asserts that the following self-dual equation can be used to express

odularity in quasilattices.

(x ˆ y) v (z ˆ (x v y)) = (x v y) ˆ (z v (x ˆ y))

As in the preceding problem, the object was to find a proof even more elegant than that first obtained
5

a
by McCune using OTTER, the first known equational proof. The so-called target proof has length 12
nd level 19. To consider the problem, I used the following clauses.

x
x = x.

ˆ x = x.
.

(
x ˆ y = y ˆ x
x ˆ y) ˆ z = x ˆ (y ˆ z).

x v x = x.
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(
x v y = y v x.
x v y) v z = x v (y v z).

x
x ˆ (x v y) = x.

v (x ˆ y) = x.

x
x * x = x.

* y = y * x.
.

x
(x * y) * z = x * (y * z)

* (x v y) = x.
.

A
x v (x * y) = x

ˆ B != A * B.

Before the use of super-loop was invoked, the basic methodology eventually led to a 95-step
1

d
proof. Then, for some obscure reason, I initiated the attack with super-loop by using as resonators 10
educed steps of a proof of length 106, obtained early in the use of the basic methodology. Perhaps the

l
d
reason was that use of the 95-step proof would lead no further, that it would place the program in a cu
e sac, whereas starting a bit further back might avoid the dead end. As in some of these experiments,

s
the approach was to use super-loop to find (if successful) a shorter proof, then use the positive deduced
teps of the shorter proof for the next use of super-loop.

,
t

In Experiment 3745 of the last use of super-loop, with the pickigiveniratio assigned the value 9
he maxiweight assigned the value 15, the heat parameter assigned the value 1, and the use of ancestor

-
l
subsumption, 7 CPU-seconds sufficed to yield a proof of length 30 and level 13. Two clauses, the fol
owing, were present in list(hot).

x
x v x=x.

v y=y v x.

This result was singularly satisfying, and it demonstrated splendidly (because of occurring in Experi-

7

ment 3745) the value of using super-loop.

. A Promising Shortcut

With little doubt, one interested in finding a more elegant proof than that in hand might wish
-

m
access to an approach that is far less complex, an approach that requires far fewer iterations and judg

ents to be made. The following two-step approach is easy to apply and often does yield impressive
results.

For the first step of the methodological shortcut, one merely takes the input file that produced the
s

m
target proof and adds the use of the hot list strategy. For the (input) hot list, one chooses for it

embers so-called simple or short clauses (as was the case with DUAL-BA-3, the theorem that is the
r

l
focus for much of this article). If successful, the program will find a shorter proof and will find it in fa
ess CPU time. If the first step succeeds, for the second step, one then takes the input file used in the

-
t
first step and adds the use of the resonance strategy. The resonators are the correspondents of the posi
ive deduced steps (required to be unit clauses) of the proof obtained in the first step of the abridged

n
o
approach. The results of applying the just-cited two-step approach to various theorems are next i
rder.

Quite naturally, the first theorem that was attacked was DUAL-BA-3; see Section 4. Three exper-
t

l
iments were conducted. The first was designed to find (if possible) a proof without the use of the ho
ist strategy or the resonance strategy. The second experiment, as dictated by the two-step approach,

l
differed from the first only in its use of the hot list strategy. The members of the hot list were the fol-
owing.

x + x@ = 1.

T

x * x@ = 0.

he third, again dictated by the approach, added the use of the resonance strategy, where the resonators
I

w
were the correspondents of the positive deduced steps yielded by the second experiment. Of course,

as somewhat prepared for the possibility that any of the three experiments might fail to complete a
proof.
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Fortune smiled: Each of the three experiments produced a proof. In order (on the equivalent of a
,

5
SPARCstation-10), the CPU times in seconds are 6681, 585, and 242. The respective lengths are 803
15, and 475. The ensemble of the three experiments suggests that the shortcut is promising, having

e
e
reduced the proof length from 803 to 475. (Regarding the proof length of 803, in contrast to th
xpected 816, apparently the precise input file used by McCune is lost to antiquity.)

s
e

Next, three corresponding experiments were conducted for the theorem DUAL-BA-5. A
xpected, the first experiment produced a proof of length 119; it was completed in 52 CPU-seconds.

Two clauses, the following, were then placed in the hot list.

x+y=y+x.

T

x*y=y*x.

he second experiment required 100 CPU-seconds to complete a proof of length 160. These results

p
were a surprise, for adding the use of the hot list strategy so often reduces the CPU time and yields a
roof of smaller length.

I was most fascinated. Also, I was most intrigued to determine what would happen if I used so
1

w
many resonators, those corresponding to the positive deduced steps of the 160-step proof (only 10

ere used in the first visit to this theorem, as discussed in Section 6). Therefore, as if nothing unto-
ward had occurred, 159 resonators were adjoined, and the third experiment was conducted.

In 36 CPU-seconds, a proof of length 47 was found. The result, which vindicated the shortcut, is
-

l
indeed satisfying, if one takes into account that the best proof obtained with the basic methodology fol
owed by the use of super-loop has length 30.

The next target was DUAL-BA-2. The first experiment behaved as expected in regard to proof

i
length, completing a proof of length 135 in 55 CPU-seconds. The following clauses were then placed
n the hot list for the second experiment.

p
x + x@ = 1.
(x,x,y) = y.

.
p
p(x,y,y) = x
(x,y,x) = x.

Reminiscent of the preceding study, the second experiment required 229 CPU-seconds to complete a

p
proof, one of (not enticing) length 150. When 144 resonators were then adjoined, corresponding to
ositive deduced steps of the 150-step proof, 36 CPU-seconds were sufficient to find a proof of length

120.

Regarding further evidence, two additional theorems were studied with the two-step shortcut.
,

i
Each is found in [McCune96], and by proving each, an open question was answered. The first, QLT-1
s from quasilattices. The following clauses were used to attack this theorem.

x
x = x.

ˆ x = x.
.

(
x ˆ y = y ˆ x
x ˆ y) ˆ z = x ˆ (y ˆ z).

x
x v x = x.

v y = y v x.
.

(
(x v y) v z = x v (y v z)
x ˆ (y v z)) v (x ˆ y) = x ˆ (y v z).

.
x
(x v (y ˆ z)) ˆ (x v y) = x v (y ˆ z)

ˆ (y v (x ˆ z)) = x ˆ (y v z).
.

T

A ˆ (B v C) != (A ˆ B) v (A ˆ C)

he first nine clauses axiomatize quasilattices. The theorem asserts that the tenth clause is a new way
e

h
to express distributivity in quasilattices. The eleventh clause is the denial of distributivity. McCun
ad obtained a 47-step proof. In the three experiments with the shortcut methodology, I obtained

e
c
proofs of length 47, 46, and 61, respectively. The time required was 3, 6, and 5 CPU-seconds. Th
onclusion is that the shortcut was far from effective for this theorem.



H

24

owever, the results naturally led to an experiment in which the hot list was trimmed from the
following four members to just two, the first and the third.

x ˆ x = x.
.

x
x ˆ y = y ˆ x

v x = x.
.

T

x v y = y v x

his move led to a proof of length 19, completed in 5 CPU-seconds. Then when resonators were
-

s
adjoined that correspond to the positive deduced steps of the 19-step proof (to satisfy the natural curiou
ity), in 3 CPU-seconds, a proof of length 21 was found.

s
m

Finally, I thought one additional experiment must be run. The reasoning was that if progress wa
ade by trimming the size of the hot list, and if some of that progress was then lost, perhaps a reduc-

w
tion in maxiweight was in order with all other items left unchanged. After all, as noted in Section 3.1

ith the discussion of Tendency 1, the use of a smaller maxiweight tends to promote the finding of a
a

p
shorter proof. In 1 CPU-second, after changing the maxiweight from 19 to 15, OTTER completed
roof of length 8. (For the researcher who wonders how wild is the space of proofs, one of the experi-

p
ments focusing on this theorem yielded a proof of length 386, providing an impressive contrast to the
roof of length 8.)

One perhaps unfortunate conclusion from this ensemble of experiments focusing on QLT-1 is that
,

t
even the shortcut methodology benefits from tinkering. Yet, if one steps back from the study a bit
inkering should be expected, for mathematics and logic so seldom admit an algorithmic approach when

the prize is an elegant proof.

Before turning to the last theorem on which the promising shortcut was tested at this time, I

o
answer the following natural question that an experienced researcher might ask. What results are
btained if one conducts three experiments using the effective maxiweight (15) rather than that which

s
t
was originally used (19) and using the smaller hot list? If, in addition to testing the shortcut, one ha
he goal of finding an elegant proof, the new set of three experiments begins rather explosively, com-

a
pleting in 5 CPU-seconds a proof of length 25. The second experiment brings the excitement and the
ttempt to a halt, producing no proof when the smaller hot list is then added. Other paths are left as

research topics and challenges, especially where the goal is to find a proof of length strictly less than 8.

The final theorem that was studied in the context of the promising shortcut is denoted by McCune
e

s
as LT-8. This theorem from lattice theory says that the meet (intersection) operation is unique in th
ense that, given a set L of elements that have the same join (union) operation and two possibly

o
s
different meet operations, the two meet operations are the same. The following clauses were used t
tudy this theorem, again suggested by McCune.

%
x = x.

(v,ˆ) is a lattice.

x
x ˆ x = x.

ˆ y = y ˆ x.
.

x
(x ˆ y) ˆ z = x ˆ (y ˆ z)

v x = x.
.

(
x v y = y v x
x v y) v z = x v (y v z).

x
x ˆ (x v y) = x.

v (x ˆ y) = x.
% equations to make (v,*) a lattice.

x
x * x = x.

* y = y * x.
.

x
(x * y) * z = x * (y * z)

* (x v y) = x.
.

A
x v (x * y) = x

ˆ B != A * B.
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McCune’s proof, used as a target, has length 19. In the first experiment (in which neither the hot

l
list strategy nor the resonance strategy was used), 50 CPU-seconds were required to produce a proof of
ength 19. For the second experiment, use of the hot list strategy was added with the following clauses

in the hot list.

x ˆ x = x.
.

x
x v x = x

ˆ y = y ˆ x.
.

T

x v y = y v x

he required time increased to 119 CPU-seconds, completing a proof of length 18. For the third exper-
.

A
iment, 18 resonators were adjoined, the correspondents of the deduced steps of the just-cited proof

lthough but 1 CPU-second sufficed, the resulting proof still has length 18; in that it has a different

1
level, the proof is different from the 18-step proof yielded by the second experiment. In the second
8-step proof, commutativity of join was not required. Of the deduced steps, five are not shared by the

two 18-step proofs.

Annoyed by the insignificant decrease in proof length, influenced by what occurred in the study
e

o
of QLT-1, and motivated by the objective of presenting McCune with a more elegant proof and th
bjective of offering an interesting challenge, I conducted two tightly coupled additional experiments.

s
First, I removed from the hot list the two clauses that encode commutativity. Such an action is in the
pirit of Tendency 5 of Section 3.2. In 55 CPU-seconds, OTTER produced a 19-step proof. The proof

r
t
contains the same deduced clauses as the 19-step proof obtained when neither the hot list strategy no
he resonance strategy was used. Then, I used the 19 deduced steps as resonators, noting that three of

.
S
them are not among the 18 that were used in the third experiment (that which yielded an 18-step proof)

uccess occurred: In 1 CPU-second, a proof was completed, one of length 14. Immediately, this
.

W
advance motivated me to tinker just a bit more, seeking an extra drop (or perhaps more) of satisfaction

hen the pickigiveniratio (which had been assigned the value 4) was commented out, causing OTTER
p

p
to choose as the focus of attention clauses by weight only, 1 CPU-second sufficed to complete a 13-ste
roof.

8. Research, Review, and Remarks

The focus in this article has been on automating the search for elegant proofs. Although a precise
e

a
definition of elegance is debatable, four properties are studied: proof length, term structure, variabl
bundance, and deduced-step complexity. The first of these four is featured.

8.1. Proof Length—Hazy and Complicated

Clearly, proof length is somewhat hazy. For example, frequently in a mathematics book, one
r

u
finds a proof in which symmetry and transitivity of equality are used implicitly only. For OTTER, thei
se would normally be explicit and, if used, add to the proof length. On the other hand, the use of

-
b
demodulators (rewrite rules, for example, in the context of canonicalization) does not ordinarily contri
ute to proof length, for mathematics or for OTTER. Proof length in this article and for OTTER meas-

c
ures the number of specific steps that are present but that are not part of the input. (Sometimes, the
ited length of a proof is not what is expected, for proof length does not measure, for example, the

f
d
number of equality substitutions; in particular, as noted, the substitutions resulting from the use o
emodulators do not contribute to proof length. If one wishes to see explicitly all substitutions and

e
n
their effect, as one might with a preference for a different definition of proof length, OTTER offers th
eeded feature, namely, buildiproofiobject, which gives all of the gory details.) Therefore, here most or

all ambiguity regarding this aspect of elegance is removed.

Proof length—especially when the goal is to find a ‘‘short’’ proof—naturally brings one face to
.

F
face with cul de sacs and, most piquant, the need to follow a tortuous path that is often indeed narrow

or example, some experiments yield no proof at all unless the pickigiveniratio is assigned the value

l
11; all other values yield nothing. For a second example—especially because of the appeal of proving
emmas early—intuitively, one might conjecture that it is always profitable to have the program focus

-
i
on the clauses in the initial set of support before focusing on any deduced clause (to drive the reason
ng); in fact, such a move sometimes leads to finding no proofs at all. Still, as discussed in Section 3,
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.tendencies do exist regarding the values assigned to parameters and the choice and use of strategies

One might wonder why the task of seeking shorter proofs is so complicated. At least for prob-
,

e
lems in which equality is featured, the answer rests in part with demodulators (rewrite rules). Indeed
ven a small change in the order in which demodulators are found and applied can dramatically change

e
b
the program’s performance, the paths pursued, and the results obtained. Nevertheless, such divers
ehavior is typically what is required, if the objective is to find ‘‘short’’ proofs. Often, the objective is

reached only by radically perturbing the search space.

Fortunately, an iterative methodology (featured in this article) now exists for automating the

a
search for shorter proofs. Although the methodology is clearly not an algorithm—a practical algorithm
ppears to be out of reach—the evidence given here suggests that the methodology can be indeed

e
t
effective. One of the more graphic illustrations concerns starting with a proof of length 816 (of th
heorem DUAL-BA-3) and, by applying the approach, eventually obtaining a proof of length 100. The

e
approach relies heavily on OTTER, McCune’s automated reasoning program. In Section 4, the key
xperiments from among the 26 fully covered in [Wos97] are detailed with commentary; they are sum-

8

marized in Table 1 at the end of that section.

.2. Research Problems

To add to the interest in the study of automating the search for elegant proofs, I offer here several

s
challenging research problems. Solutions to these problems will increase the power of automated rea-
oning programs.

Research Problem 1. My main research, in the context of elegance, has focused on theorems in which
-

m
equality was the only or the dominant relation and on theorems featuring the use of condensed detach

ent. The research problem to solve (and one that is related to the material in this article) asks for
-

c
techniques for finding elegant proofs when the equality relation is heavily mixed with relations not con
erned with equality, as occurs, for example, in the study of set theory. Just as reported here, this area

t
of research most likely will meet with cul de sacs and occasionally require reliance on a proof far from
he best in hand. Such is the nature of searching for elegant proofs.

e
k
Research Problem 2. One of the most difficult problems to solve concerns correctly identifying th
ey ingredient for finding elegant proofs, for proving a new theorem, and for completing a difficult

,
m
assignment when one is relying on the assistance of an automated reasoning program. As one expects

y answer is access to a variety of strategies, some to restrict the reasoning and some to direct it. For
evidence, the following experiment suffices.

Again, the theorem in focus is DUAL-BA-5, but with three changes from the earlier discussion.

o
The restriction on paramodulation that blocks paramodulation into nonunit clauses was removed, the use
f what is called basic paramodulation [Bachmair92] was added, and the focus was changed to a proof

p
of distributivity only. Using one of his automated reasoning programs, McCune produced an 18-step
roof. He then used Veroff’s hints strategy [Veroff96], using as hints the steps from the 18-step proof,

(
and obtained a 17-step proof of DUAL-BA-5. Finally, I then used super-loop with McCune’s approach
of relying on hints), and OTTER found a 16-step proof of DUAL-BA-5; OTTER also found a 13-step

R

proof of distributivity.

esearch Problem 3. Regarding research of a more general nature, (in the context of automated rea-

t
soning) clearly merited is solving the problem of formulating strategies aimed at dramatically reducing
he CPU time required to complete proofs. Admittedly, such reductions do not impress all researchers.

w
However, often overlooked is the fact that theorems and, even more significant, open questions that

ere out of reach will become within reach of such a program as the required CPU time decreases
sharply.

Rather than with the reduction in time—which one might suggest is obtainable merely by using a
e

s
more powerful computer—the significance rests with the cause of the reduction. Specifically, if th
aving in time results from sharply reducing the number of paths to be traversed—which is not address-

able with a faster computer—progress is occurring. Indeed, as Bledsoe remarked more than once, the
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fastest computer is not the solution, for the space of possible conclusions to be deduced is indescribably
large.

Were it not for access to strategy, (it seems clear to me) an attack on deep questions or hard
f

e
problems would almost always fail, for there exist far too many ways to get lost. Despite years o
xperience and the accrued intuition, even the talented mathematician or logician can get lost, often

s
t
pursuing one false lead after another. The use of strategy, such as the set of support strategy, decrease
he likelihood of the program getting lost and tends to focus its attention on more profitable paths of

f
s
inquiry. Ideally, additional strategies offering power somewhat comparable to that offered by the set o
upport strategy would mark a most significant advance for automated reasoning.

8.3. Three Key Themes

Three themes are central to the research presented in this article. First, without the use of a pro-

g
gram such as OTTER, many elegant proofs would remain undiscovered. Second, I am certain that the
reatest advances in automated reasoning when measured by the power to prove a theorem will result

,
O
from the formulation of yet more strategies, some to restrict the reasoning and some to direct it. Third

TTER functions as an invaluable research assistant for the study of mathematics or logic.

e
m

I can say with conviction that if one learns how to use OTTER, one will in the long run sav
any more hours than one spends in the learning, especially if one’s interest is an area of abstract alge-

A

bra.
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