
ADIC: An Extensible Automatic Di�erentiationTool for ANSI-C�Christian Bischof and Lucas RohMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439 USAfbischof,rohg@mcs.anl.govAndrew Mauer-OatsyDepartment of MathematicsUniversity of Illinois at Urbana-ChampaignUrbana, IL 61802mauer@math.uiuc.eduArgonne Preprint ANL/MCS-P626-1196 (revised May 1997)To appear in Software: Practice and Experience
�This work was supported by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Computational and Technology Research, U.S. Department of Energy, under Con-tract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Orders L25935D and L64948D,and by the National Science Foundation, through the Center for Research on Parallel Computation, underCooperative Agreement No. CCR-9120008.yThe work of this author was performed while he was a student research associate with Argonne NationalLaboratory. 1

Abstract. In scienti�c computing, we often require the derivatives @f=@x of a function f expressedas a program with respect to some input parameter(s) x, say. Automatic di�erentiation (AD) techniquesaugment the program with derivative computation by applying the chain rule of calculus to elementaryoperations in an automated fashion. This article introduces ADIC (Automatic Di�erentiation of C), a newAD tool for ANSI-C programs. ADIC is currently the only tool for ANSI-C that employs a source-to-sourceprogram transformation approach; that is, it takes a C code and produces a new C code that computes theoriginal results as well as the derivatives.We �rst present ADIC \by example" to illustrate the functionality and ease of use of ADIC and thendescribe in detail the architecture of ADIC. ADIC incorporates a modular design that provides a foundationfor both rapid prototyping of better AD algorithms and their sharing across AD tools for di�erent languages.A component architecture called AIF (Automatic Di�erentiation Intermediate Form) separates core ADconcepts from their language-speci�c implementation and allows the development of generic AD modulesthat can be reused directly in other AIF-based AD tools. The language-speci�c ADIC front-end and back-end canonicalize C programs to make them �t for semantic augmentation and manage, for example, theassociation of a program variable with its derivative object. We also report on applications of ADIC to asemiconductor device simulator, 3-D CFD grid generator, vehicle simulator, and neural network code.Key words. Automatic di�erentiation, derivatives, gradient, Jacobian, Hessian, Sage++, compiler,source transformation, semantic augmentation, AIF, ADIC.

1 IntroductionGiven a complex computational model of physical phenomena (such as interconnect proper-ties in semiconductors, air
ow around a wing, or chemical reactions in the atmosphere), weare often interested in sensitivity analysis, in other words, assessing the impact of changesin model input values on the model outputs. One way to do this systematically is to com-pute the derivatives of output variables with respect to input variables. If y is an outputvariable of the model, and x an input variable, the availability of @y=@x allows us to predictto �rst order the impact that changes in x will have on y. Thus, derivative informationcan be used to test the robustness of the model or to adjust, typically with the help of nu-merical optimization algorithms, certain model parameters so that the model agrees withexperimental results (this is typically called parameter identi�cation or data assimilation).Derivatives are also essential in other areas of nonlinear modeling, for example in nonlinearequation solving and design optimization [1, 4, 26].In general, given a code C that computes a function f : x 2 Rn 7! y 2 Rm with ninputs and m outputs, we may then require the derivatives of some of the outputs y withrespect to some of the inputs x. Thus, we would like to create from C a new code C0 thatcomputes f 0 = @y=@x. Ideally, C0 should be accurate and fast and should require littledevelopment time.The derivative code C 0 can be produced in a number of di�erent ways. It can bedeveloped by hand, which typically is laborious and error prone. On the other hand, askilled user can take advantage of domain-speci�c knowledge, which can result in verye�cient code. C0 can also be developed with the help of a symbolic mathematics packagesuch as Mathematica, Maple, or Reduce. While this approach works well for domain-speci�c languages (see, e.g., [31, 42]), it is not directly applicable to large computer codesin languages such as Fortran 77 or C. Another alternative, divided di�erences, does notdirectly produce a derivative code but rather approximates the derivatives by evaluating fat multiple input points. For the simplest case, one-sided di�erences, the derivative of fwith respect to the ith input xi is approximated by@ f@ xi � f(x��xi)� f(x)��xi :The main drawback of the divided di�erences technique is that inherent errors make it di�-cult to determine the accuracy of the approximation [30, 44]. In addition, the computationof n partial derivatives requires n + 1 function evaluations.Recently, automatic di�erentiation (AD) has been gaining popularity with the emer-gence of software tools such as ADIFOR [11, 12], ODYSSEE [48], or ADOL-C [34]. Givena code C, these tools can automatically produce an accurate and reasonably fast derivativecode C0. AD works by systematically applying the chain rule of di�erential calculus at theelementary operator level and thus does not incur the errors inherent in divided di�erence3

approximations. Also, if C changes, which is often the case during code development, anup-to-date C0 is produced by simply rerunning the tools. An overview of currently avail-able AD tools can be found at http://www.mcs.anl.gov/Projects/autodiff/AD Tools,as well as in the articles in [8].AD technology is still in its infancy; the development of better algorithms for exploitingchain rule associativity and their incorporation into AD tools promise signi�cant improve-ment in the performance of generated derivative codes. This article focuses on issues arisingin the design of an extensible AD tool that� fully supports the ANSI-C language,� lays the foundation for the rapid assimilation of algorithmic improvements, and� enables code reuse across di�erent AD tools.ADIC (Automatic Di�erentiation of C) is our AD tool that addresses these design issues. Aprototype of ADIC was successfully applied to CSCMDO [20], a 3-D volume grid generatorspeci�cally designed for use in multidisciplinary design optimization. The current ADIC hasbeen employed to generate derivative-enhanced versions of semiconductor device simulators,a 3-D motion control simulator, and a neural network model. These applications range insize from several hundred to more than 10,000 lines of code. The ADIC web page athttp://www.mcs.anl.gov/adic provides information about obtaining ADIC.In the following paragraphs, we set the stage for the remainder of the article by brie
yreviewing the algorithmic underpinnings of AD, highlighting the salient points of imple-mentation strategies for AD, and summarizing the novel aspects of our work on ADIC.1.1 The Algorithmic Aspect of Automatic Di�erentiationWe �rst de�ne certain terms that are commonly used in the automatic di�erentiation con-text:� Independent variables are program input variables with respect to which derivativesare desired.� Dependent variables are output variables whose derivatives are desired.� A derivative object represents some derivative information, such as a vector of partialderivatives (@z=@x1; : : : ; @z=@xn) of some variable z with respect to a vector x.� Any program variable with which a derivative object is associated is called an activevariable. A conservative strategy is to consider all program variables to be active, butonly variables that are on a computational path from an independent to a dependentvariable need to be active. 4

The execution of any program, no matter how complex, boils down to a series of el-ementary operations such as an arithmetic operator (e.g., add, multiply) or an intrinsicfunction (e.g., sine, cosine). Thus, a particular set of input values to the program inducesan execution path that transforms input values into the output values. The derivatives arecomputed by repeatedly applying the chain rule to combine the local partial derivatives ofeach executed operator.For example, let a and b be intermediate values that depend on some independentvariables x, and let g = f(a; b). Then, by using the chain rule, rxg, the derivative of gwith respect to x, is computed asg = f(a; b)) rxg = @ f@ a � rxa+ @ f@ b �rxb; (1)and a familiar incarnation is the product ruleg = a � b) rxg = b � rxa + a � rxb: (2)Note that this approach can easily be generalized to compute derivatives of arbitrary or-der [2, 7, 15].The chain rule is associative. If we are interested in computing f(g(x)), we could, forexample, explicitly compute df=dg and dg=dx and multiply the two derivatives (they willbe matrices in general), or �rst compute dg=dx and then directly df=dx by exploiting thelinearity of di�erentiation. Typically, there are many ways to combine derivatives, and eachdi�erent accumulation path may exhibit di�erent time and memory complexity. The classicforward mode of automatic di�erentiation accumulates derivatives as the computation pro-ceeds from the inputs to outputs. Another classic method, the reverse mode, accumulatesthe derivatives in the opposite direction|from the outputs to inputs. The reverse moderequires a reversal of the order of the original program execution, but is attractive whenone desires the computation of the derivatives of few output values with respect to manyinput values. These issues are discussed in more detail in [32, 35, 46]. For general problems,the choice of a good strategy depends on the time and memory constraints as well as theparticular program structure. The development of heuristics to exploit algorithmic andprogram structure, and hence to better exploit chain rule associativity, is the subject ofcurrent research (see, for example, [18, 19, 21, 27, 33, 36]).1.2 Implementation Strategies for Automatic Di�erentiation ToolsUnlike compilers or most program transformation systems, AD tools modify the semanticsof the underlying program by inserting, in a rule-based fashion, code for computing deriva-tives. In this section, we give a brief overview of two main approaches taken by automaticdi�erentiation tools to implement this semantic augmentation process.5

Operator overloading: This approach overloads the basic arithmetic operators and in-trinsic calls with special routines that carry out the propagation of derivatives inaddition to the original operations or, alternatively, record information that allows asubsequent code reversal. The source program itself is only minimally changed, andmost of the complexity of derivative computations is embedded in a library. The op-erator overloading mechanism properly invokes these library routines as the executionproceeds. This approach works with languages that support operator overloading suchas C++ or Fortran 90.z Despite the elegance of this approach, its major disadvan-tage is the inability to exploit chain rule associativity because of the lack of contextinherent in operator overloading [12, 19]. In addition, some overhead is associatedwith the operator overloading itself. Examples of this approach are ADOL-C [34],ADOL-F [49], ADO1 [45], FADBAD [6], and OPTIMA [5, 24].Source-to-source transformation: This approach employs compiler techniques to trans-form a program source code into a new source code that explicitly carries out thederivative computation; hence, it is applicable to any language. The advantages ofthis approach are that the entire program context is available at compile time toexploit chain rule associativity and to gather information that could tighten conser-vative assumptions underlying AD algorithms. The disadvantage is the major e�ortrequired in implementing such a tool. ADIC, ADIFOR [11, 12], ODYSSEE [48], andTAMC [29] are examples of this approach.1.3 What's New in ADICOur goal was to build an e�cient AD tool for ANSI-C geared primarily toward the com-putation of �rst- and second-order derivatives. For e�ciency, we employ the source trans-formation approach.Figure 1 shows the logical stages of such a tool for AD.� Parsing: The source is parsed into an intermediate representation.� Canonicalization: The intermediate format is transformed into a semantically equiv-alent form more suitable for automatic di�erentiation.� Analysis (optional): This stage may, for example, determine which variables are activeand hence require associated derivatives (versus making the conservative assumptionthat all variable have this requirement).� Derivative Augmentation: The strategy for applying the chain rule is determined andthe source augmented with derivative computations.zIt is possible to take an ANSI-C program and compile it as a C++ program. However, since ANSI-C isnot a strict subset of C++, this approach is not infallible.6

Analysis

CODE

Parsing

Canonicalization

Unparsing

DERIVATIVE CODE

Optimization

Derivative AugmentationFigure 1: Anatomy of an AD translator� Optimization (optional): For example, certain low-level computational kernels maybe instantiated in an architecture-speci�c fashion. Traditional scalar and loop opti-mizations may also be performed here.� Unparsing: The transformed source is unparsed back into legal code in the originallanguage.Most existing AD tools operate on Fortran 77 or Fortran 90 programs. However, ANSI-C is also widely used in scienti�c and engineering applications, and thus robust AD toolsthat handle ANSI-C programs are needed. Two main features distinguish ADIC:� It is the �rst source transformation-based AD tool for ANSI-C. Developing a sourcetransformation-based tool for C is challenging because a number of issues arise (forexample, pointers and dynamically allocated memory) that do not occur in Fortran 77.� It employs a component architecture that insulates the derivative augmentation stagefrom the peculiarities of a particular input language and allows for the develop-ment and incorporation of language-independent \plug-in" AD modules. This isachieved through AIF (automatic di�erentiation intermediate form), which providesa language-independent abstraction of program fragments, as well as abstractions forcommon AD concepts. 7

While we are at this point primarily interested in derivatives, we note that ADIC actuallyprovides an infrastructure for arbitrary semantic augmentation of ANSI-C programs, forexample, with interval arithmetic.The rest of this article is organized as follows. The next section gives a short examplethat illustrates automatic di�erentiation in general, as well as ADIC's particular approach.Section 3 discusses in detail the issues that arise when one wants to associate additionalinformation and computation with an ANSI-C program, and how ANSI-C code needs tobe canonicalized to that end. In Section 4 we describe the AIF component architecture aswell as the philosophy behind it. Four applications that used ADIC to compute �rst-orderderivatives are presented in Section 5. In Section 6, we summarize the bene�ts of ADIC,and we mention areas for future development.2 ADIC in a NutshellADIC aims to provide AD functionality for general ANSI-C programs. ADIC supportsANSI-C language constructs including arbitrary calling sequences, data structures (e.g.,unions), pointers (e.g., function pointers and pointer arithmetic), and casts (e.g.,
oats tonon
oats and vice versa). In this section, we provide an overview of ADIC processing withan example.2.1 An ExampleADIC can be used as a \black box" to generate derivative code with minimal human e�ort.As an illustration, Figure 2 shows the listing of a simple function func contained in a �lefunc.c that we would like to di�erentiate.The invocation of ADIC with the command% adiC -d gradient func.cleads to the generation of �le func.ad.c shown in Figures 3 and 4.x The new functionad func generated by ADIC computes �rst-order derivatives in addition to the values orig-inally computed.Derivative Objects. We note that all double-precision variables and type declarationsthat were present in func.c have been redeclared to be of type DERIV TYPE. DERIV valdenotes the original double value for each variable of type DERIV TYPE. DERIV grad denotesthe vector of total derivatives with respect to the chosen independent variables (we will callit a gradient in the sequel) that is associated with an original double variable. ADIC alsogenerates an include �le ad deriv.h that instantiates these macros as shown in Figure 5.xThe code has been reformatted slightly for inclusion here.8

1 #include <math.h>2 typedef struct fooelement {3 double *value_ptr;4 char tag;5 } footype;67 double func(footype *a, double b, double x[], int n)8 {9 double r,t; int i;10 r = 1.0;11 for (i = 0; i < n; i++) {12 t = (*a->value_ptr)*x[i]*b;13 if (t >= 0.0) {14 r *= sqrt(t);15 }16 }17 return r;18 } Figure 2: File func.c containing function func.Here ad GRAD MAX is a compile-time constant indicating the maximum number of derivativesto be computed (the actual number of derivatives desired up to the maximum is determinedat runtime). ADIC generates a di�erent instantiation of these macros depending on themode of operation. The func.ad.c code shows that ADIC also changed the call interfaceto return the original double result through a new parameter; this step avoids unnecessarycopying of data due to the return value having been turned into a structure. Calls to funcin other �les submitted to ADIC would have been changed accordingly.We also mention that casts from
oat to non
oat are handled by just casting theDERIV val part, casts from non
oat to
oat are handled by assigning by DERIV val thecast of the non
oat, and assigning a zero gradient to DERIV grad.Derivative Code Generation. Conceptually, the strategy for computing �rst-orderderivatives as shown is the same one that currently underlies ADIFOR [11, 12] and thusallows the same
exibility with respect to \derivative seeding" to compute selected deriva-tives, chain derivatives, or exploit derivative sparsity that is described in these references.In particular, we use the forward mode overall at the level of statements, but use thereverse mode within an assignment statement. Control
ow of the derivative program thusmirrors that of the original code. For each assignment we compute the derivatives of theleft-hand side of the assignment with respect to a particular variable on the right-hand sideof the assignment. For example, ad loc 0, ad adj 0, and ad adj 1 computed in lines 2,9

1 #include "ad_deriv.h"2 #include <math.h>3 #include "adintrinsics.h"45 typedef struct fooelement {6 DERIV_TYPE *value_ptr;7 char tag;8 } footype;910 void ad_func(DERIV_TYPE *ad_var_, footype *a,11 DERIV_TYPE b, DERIV_TYPE x[], int n) {1213 double ad_loc_0, ad_loc_1;14 double ad_adj_0, ad_adj_1, ad_adji_0;15 DERIV_TYPE ad_var_0, r, t;16 int i;1718 static int g_filenum = 0;19 if (g_filenum == 0) {20 adintr_ehsfid(&g_filenum, __FILE__, "func");21 }2223 ad_grad_axpy_0(DERIV_grad(r));24 DERIV_val(r) = 1.0;Figure 3: First part of �le func.ad.c containing function ad func as generated by ADIC.
10

1 for (i = (0); i < n; i++) {2 ad_loc_0 = DERIV_val(*a->value_ptr) * DERIV_val(x[i]);3 ad_loc_1 = ad_loc_0 * DERIV_val(b);4 ad_adj_0 = DERIV_val(*a->value_ptr) * DERIV_val(b);5 ad_adj_1 = DERIV_val(x[i]) * DERIV_val(b);6 ad_grad_axpy_3(DERIV_grad(t), ad_adj_1, DERIV_grad(*a->value_ptr),7 ad_adj_0, DERIV_grad(x[i]),8 ad_loc_0, DERIV_grad(b));9 DERIV_val(t) = ad_loc_1;10 if (DERIV_val(t) >= 0.0) {11 DERIV_val(ad_var_0) = sqrt(DERIV_val(t));12 if (DERIV_val(t) > 0.0) {13 ad_adji_0 = 1.0 / (2.0 * DERIV_val(ad_var_0));14 }15 else {16 adintr_sqrt(1, g_filenum, __LINE__, & ad_adji_0);17 }18 ad_grad_axpy_1(DERIV_grad(ad_var_0), ad_adji_0, DERIV_grad(t));19 ad_loc_0 = DERIV_val(r) * DERIV_val(ad_var_0);20 ad_grad_axpy_2(DERIV_grad(r), DERIV_val(ad_var_0), DERIV_grad(r),21 DERIV_val(r), DERIV_grad(ad_var_0));22 DERIV_val(r) = ad_loc_0;23 }24 }25 ad_grad_axpy_copy(DERIV_grad(*ad_var_), DERIV_grad(r));26 DERIV_val(*ad_var_) = DERIV_val(r);27 return;28 }Figure 4: Second part of �le func.ad.c containing function ad func as generated by ADIC.typedef struct {double value;double grad[ad_GRAD_MAX];} DERIV_TYPE;#define DERIV_val(a) ((a).value)#define DERIV_grad(a) ((a).grad)Figure 5: Partial listing of �le ad deriv.h generated by ADIC.11

4, and 5 of Figure 4 corresponds to @ t@ b , @ t@ x[i] , and @ t@ *a->value ptr , respectively. Thecall to the ad grad axpy * routines denotes a vector linear combination; for example, thegrad axpy 3 invocation on lines 6 to 8 of Figure 4 corresponds toDERIV_grad(t) = ad_adj_1 * DERIV_grad(*a->value_ptr)+ ad_adj_0 * DERIV_grad(x[i])+ ad_loc_0 * DERIV_grad(b);This is a particular instantiation of the chain rule, namely,rt = @ t@ z � rz + @ t@ x[i] � rx[i] + @ t@ b � rb; (3)where z denotes the value of *a->value ptr.The use of DERIV grad, DERIV val, DERIV TYPE, and grad axpy * provides abstractionas well as considerable
exibility in how to associate a gradient with a memory locationcontaining a double (this issue is explored in more detail in Section 3.1), what data struc-tures to use for implementing a derivative object, and how to implement the vector linearcombination with the chosen data structure.For example, we can provide the ad grad axpy 3 functionality through either a macroor a function call. This is shown in Figures 6 and 7. The ad grad.h �le included inad deriv.h supplies the appropriate macro de�nitions or external declarations. Theremay also be several implementations of the functions, each tailored to a particular type ofproblems. The decision on which approach to use can be deferred to compile or link time.#define ad_grad_axpy_3(gz, ca, ga, cb, gb, cc, gc) {\int g_i_;\for (g_i_ = 0; g_i_ < DERIV_SIZE; g_i_++) {\gz[g_i_] = + (ca)*ga[g_i_] + (cb)*gb[g_i_] \+ (cc)*gc[g_i_];\}\} Figure 6: Macro instantiation of ad grad axpy 3.Handling Intrinsics. The sqrt(x) intrinsic function is not di�erentiable when x equalszero. To alert the user to such an occurrence, ADIC checks for this occurrence and prints awarning message. The �le adintrinsics.h that is included in line 3 in Figure 3 providesde�nitions for the adintr ehsfid (line 20 in Figure 3) and adintr sqrt (line 16 in Figure 4)12

void grad_axpy_3(double* dest, double adj_1, double* grad_1,double adj_2, double* grad_2,double adj_3, double *grad_3){ int i;for (i = 0; i < DERIV_SIZE; i++) {dest[i] = adj_1 * grad_1[i] + adj_2 * grad_2[i]+ adj_3 * grad_3[i];}} Figure 7: Subroutine instantiation of ad grad axpy 3.functions that set up an error handler for this �le and report the occurrence of sqrt(0),respectively. The latter function also provides a reasonable default value for the local partialderivatives (e.g., ad adji 0) so that the execution can proceed. These functions are partof an ANSI-C instantiation of the ADIntrinsics subsystem [13]. While most of the time theevaluation of an intrinsic at a point of nondi�erentiability does not compromise the overallresult, subtle issues may arise whose satisfactory solution does depend on the particularapplication context [9, 14].2.2 The ADIC ProcessIn this subsection, we explain in more detail how the ADIC process relates to the genericanatomy of an AD tool brie
y outlined in subsection 1.3. The automatic di�erentiationprocess with ADIC is shown in Figure 8. The user submits the code to be di�erentiated,as well as optional control scripts. The control scripts may indicate optional con�gurationitems such as the pre�x that is used to generate new �le and function names (all theexamples in this article use \ad " as the pre�x) or decide whether to inline certain utilityfunctions to improve performance but at the expense of code expansion. For more details,see [17].Transforming Using ADIC. The ADIC translator generates the derivative code fromthe code submitted by the user and consists of four components:� Preprocessor: The preprocessor processes the C preprocessor directives and expandsmacros embedded in the source code. It also marks up the source code so that someof the original C preprocessor directives and macros can later be recovered. Theseissues are further discussed in Subsection 3.4.13

Control
Files

Processor
Pre- Main

Processor
Post-
Processor

AIF
Modules

ADIC Translator

 - SparsLinC
 - ADIntrinsics

Libraries, e.g.,
 - AIF Module Libraries

User’s

Driver
Derivative

Program
Derivative

Compile/
Link

Code
ANSI-C ANSI-C

Code with
Derivatives

Figure 8: Generating derivative code with ADIC.
14

� Main Processor and AIF Modules: This part of the system is our speci�c instantiationof the generic AD translator shown in Figure 1. We discuss it in more detail below.� Postprocessors: A postprocessor provides the ability to perform a further textualtransformation on the generated source. For example, one postprocessor may inlinecertain calls using templates. Another postprocessor that is routinely used is purse-c,a component of the ADIntrinsics system.The ADIC main processor and the AIF modules perform the following functions:� Parsing: The marked-up source �les are parsed into an intermediate form. To thisend, we employ the Sage++ [22] parser.� Canonicalization: At this stage, we canonicalize the intermediate form by addressingANSI-C-speci�c issues such as side-e�ects and pointers. The subtle issues arising inthis context are described in Section 3.� Analysis: ADIC currently does not employ data
ow or dependence analysis for im-proving derivative generation. In particular, unlike ADIFOR, ADIC does not performan interprocedural data
ow analysis to determine which variables need to be active,but makes the conservative assumption that all variables are active. Pointer analysisof ANSI-C programs remains an active research area (see, e.g., [43, 47, 53]); in thefuture we hope to able to assimilate emerging tools from the compiler community toprovide some of these capabilities.� Derivative Augmentation: ADIC's current default strategy is the forward mode. How-ever, as shown in [19, 21, 38], considerable improvements can be obtained by varyingstrategies at lower levels within a code. To enable this, we identify code fragmentsthat can be mapped to the simple language underlying the AIF abstraction. As willbe shown in Section 4, at the very least assignment statements can be abstractedinto AIF, allowing, for example, the statement-based hybrid derivative generationapproach underlying the example in Section 2.1. AIF code fragments are augmentedwith derivative computations based on the strategies present in the AIF modules.� Optimization: Since ADIC inserts derivative computations into the code, we know alot about the resulting code. Thus, we are in a position to potentially communicate afair amount of information to code restructuring systems aimed at generating codestuned for a particular architecture.� Unparsing: We unparse the intermediate form (represented as a combination of AIFand Sage++ intermediate form) to legal ANSI-C code.15

Linking with ADIC Runtime Libraries. After the derivative code is generated, itmay need to be linked with the following runtime libraries.� Libraries Invoked by AIF Modules: Automatic di�erentiation programs rely heavily onkernels that implement the vector or matrix operations that are implied by the chainrule. Typically these kernels are provided both as macros and as library functions(e.g., ad grad axpy 3 from Figure 7).� SparsLinC: SparsLinC (Sparse Linear Combination Library) provides implementa-tions of vector linear combinations such as ad grad axpy 3 with data structures thatare suitable when the gradients are large and contain many nonzero entries. In thiscase, SparsLinC provides a much more suitable implementation than the dense loopsshown in Figures 6 and 7. SparsLinC, which is written in ANSI-C, was originally de-veloped in the context of the ADIFOR project and has been successfully employed inlarge-scale nonlinear modeling [10, 16, 21, 18]. Since SparsLinC employs dynamic datastructures, from a user's perspective it allows the exploitation of derivative sparsitywithout any a priori knowledge of the sparsity structure in a transparent fashion.� ADIntrinsics: The ADIntrinsics system provides (1) a reasonable default behaviorfor all cases where the derivative of a standard C intrinsic is not de�ned and (2) anerror-reporting mechanism that gives users control over the amount of detail reportedwhen exceptions do occur. To compute the elementary derivative of an intrinsicfunction, the ADIC main processor inserts a call to an intrinsic template function.The purse-c postprocessor expands the template call into an appropriate C code,depending upon the error-reporting level desired. A set of user-extensible templates�les provide the blueprints for expanding the template calls. Finally, the error handlerlibrary provides a collection of routines used to record and report runtime errors andto change certain default values.Writing and Linking the Driver. The user provides a driver that speci�es, at runtime,the input variables with respect to which derivatives actually need to be computed. In fact,with proper initialization, we can compute directional derivatives (this process is termed\derivative seeding;" see [11, 12]).We show a simple driver for func.ad.c (from Figures 3 and 4) in Figure 9. Variablesthat used to be of type double are now declared to be of type DERIV TYPE, and their valuesare referred to via the DERIV val macro. The ad AD SetIndepArray utility function setsup size elements of array x as independent variables. The ad AD SetIndep utility setsup a scalar variable as independent variable. The foo->value ptr variable is set to pointto the last element of x; hence there is no need to explicitly initialize its gradient (thisinitialization was chosen to demonstrate the fact that aliasing does not present a problem).16

1 #include <stdio.h>2 #include <stdlib.h>3 #include "ad_deriv.h"45 typedef struct fooelement { DERIV_TYPE *value_ptr; char tag; } footype;67 void ad_func(DERIV_TYPE *result, footype *, DERIV_TYPE, DERIV_TYPE [], int);89 int main() {10 footype foo; DERIV_TYPE bias, *x, result; int i, j, size;1112 ad_AD_Init(); /* Initialize AD Data Structures */1314 /* Allocate and read in vector x. */15 /* Initialization to make derivatives numbered 0, .., size-1 */16 /* correspond to derivatives w.r.t. x[0], ... , x[size-1] */17 scanf("%d",&size); x = (DERIV_TYPE *) malloc(size*sizeof(DERIV_TYPE));18 for (i = 0; i < size; i++) { scanf("%le",&DERIV_val(x[i])); }19 ad_AD_SetIndepArray(x,size);2021 /* Read in bias. Initialization to make derivative numbered */22 /* size correspond to derivative w.r.t. bias */23 scanf("%le",&DERIV_val(bias));24 ad_AD_SetIndep(bias);2526 foo.value_ptr = x+size-1; /* No need to initialize gradient of */27 foo.tag = 'c'; /* foo since it is an alias */2829 ad_AD_SetIndepDone(); /* Done nominating independent var's. */3031 ad_func(&result, &foo, bias, x, size);3233 ad_AD_ReportExceptions(); /* Check for AD Intrinsic Exceptions */3435 /* Print value and derivatives of result */36 printf("result is %e\n",DERIV_val(result));37 for (i = 0; i < ad_AD_GetTotalGradSize(); i++) {38 printf("g_result(%d) = %e\n",i,DERIV_grad(result)[i]); }3940 ad_AD_Final(); /* Clean up AD Data Structures */41 } Figure 9: A driver for func.ad.c from Figures 3 and 4.17

The call to ad func then computes the derivatives of result, the result of the originalfunction, with respect to the entries of x. The ad AD ReportExceptions utility prints asummary of exceptions that occurred evaluating ANSI-C instrincics such as sqrt(). Thead AD GetTotalGradSize utility returns the total number of derivatives that currently arecomputed (size + 1 in our example). Entries 0, ..., size-1 of DERIV grad(result)are derivatives with respect to x[0], ..., x[size-1], DERIV grad(result)[size] is thederivative with respect to bias.3 Handling the C LanguageIn this section, we focus on the fundamental issues that must be resolved to enable the au-tomatic di�erentiation of computer programs and illustrate them with examples from theC language. Automatic di�erentiation is a particular instantiation of a semantic augmen-tation process that inserts additional computations related to the part of the program thatdeals with
oating-point numbers. We can view the \derivative space" as an additionaladdress space containing derivative objects (e.g., �rst, second, or higher-order derivatives).The access patterns of the derivative space conceptually mirror those of the original pro-gram, in that whenever a
oating-point value is changed, we need to update the derivativeassociated with that value in an analogous fashion. If we let the term a \
oat object" denotea memory location that holds a
oating-point variable, then the above informal statementsuggests that we need to be concerned about three issues:Derivative Object Association: We need to be able to �nd, for a given
oat object, itsassociated derivative object.Side E�ects: To be able to do analogous actions in the derivative world, we need to beable to repeatedly refer to subexpressions representing indices and addresses. Thus,we need to isolate side e�ects to make this possible.Expressivity: Complex operations may be represented in a compact form (e.g., if ((c=a)|| (d=c=b)) f ... g). When augmenting the code, the derivative generation pro-cess must respect various syntactic limitations; for example, we cannot simply insertstatements to update derivatives inside the control expression.We will address these issues in the next subsections.An important practical issue is the portability of the code generated by ADIC. Manyimplementation details of the ANSI-C standard are platform dependent; see, for example,the function and data structures in <stdio.h>. Thus, for ADIC to be usable as a cross-translator, we need to retain some of the C preprocessor directives and macros embedded inthe original source code whose expansions, however, are necessary to parse (understand) theprogram. In the last subsection we brie
y discuss issues that arise from C's preprocessing.18

3.1 Derivative Object AssociationIn C,
oat objects may be created either explicitly (through variable declarations or dynamicmemory allocation) or implicitly (through function returns or by casting). An lvalue issimply an expression that, when evaluated, describes a
oat object; examples from Figure 2are *a->value ptr, x[i], and b.For automatic di�erentiation to work, we must be able to associate a unique derivativeobject with each
oat object used in a computation. The lifetime of the derivative objectmust be at least that of its associated
oat object; if two
oat objects have non-overlappinglifetimes, the same derivative object might be used for both to save space.This association is rendered di�cult by aliasing, that is, two di�erent lvalue expressionsmay refer to the same
oat object. Thus, choices of association schemes are fundamentallydetermined by our ability to resolve aliasing. If we can statically resolve aliasing (as, forexample, in Fortran 77), we can trace each lvalue expression back to the point of declarationof the
oat object denoted by it, and thus we may associate a
oat object and its derivativeobject by name; for example, we associate a vector g x(:) with the variable x. If x andy are aliases of each other, we also alias g x and g y. Such an approach is taken byADIFOR [11, 12].This approach is generally not feasible for C, however, because of the unrestricted useof pointers. Nevertheless, since an lvalue expression evaluates to a unique address, we canuse the address as the basis of an association scheme. That is, for any
oat object x andits associated derivative object rx, we choose &rx = F(&x), where F speci�es a mappingfunction and & represents the address of an object. Implicit here is the ability to use &xtwice|once in the context of the original program, and another time to determine thelocation of its associated derivative object. This is a problem for implicitly created
oatobjects, which are accessible only once at their creation. ADIC handles this during thecanonicalization stage by creating a temporary and copying the implicit
oat object to it.Figure 10 shows an example. Since ADIC knows that the extent that such a temporary(as well as the ad temporaries used in the derivative code) is live, it can recycle thesetemporaries so that even for a large code, the number of additional temporaries that needto be allocated typically is quite small.The easiest way to implement the by-address association scheme was illustrated bythe example in Section 2.1, where the
oating-point variables were changed to structurescontaining the original value and a �xed-size array for the associated derivative object(see Figure 5). Here the mapping is very simple: F(&x) = &x+ c for some constant c.As a variant of this method, instead of storing the derivative object directly in thestructure itself, we may store only a pointer to the derivative object, as shown in Figure 11.This approach is necessary if we want to use dynamic data structures such as those usedby SparsLinC. In addition, this scheme allows memory savings through lazy allocation ofderivative objects, and computational savings through special representations of vectors19

Original Code:unsigned long get_information (int key);double x,y;int key;y = x * (double) get_information (key);Canonicalized Code:unsigned long get_information (int key);double tmp,x,y;int key;tmp = (double) get_information (key);y = x * tmp;Figure 10: Implicit
oat object represented by the cast expression is made explicit by savingit to a temporary.struct DERIV_TYPE {double value;derivative_structure* grad;};Figure 11: Di�erent methods of associating a gradient vector by modifying
oat types.20

that are all zeros (e.g., through a NULL pointer). Note that with this approach, pointerarithmetic with doubles naturally turns into pointer arithmetic with derivative objects. Themajor di�culty with this approach lies in the prevention of memory leaks|all allocatedderivative objects must be deallocated when the associated
oat objects are deallocatedor goes out of scope. This is possible if we can statically determine the lifetime of a
oat object, but is generally impossible to resolve automatically for dynamically allocatedmemory which can potentially be freed anywhere in the program. We are developing amechanism for dealing with potential memory leaks via user directives. In this context,garbage collection mechanisms such as the one described in [23] may play a useful role.This approach of rede�ning double in the derivative code cannot be used, however, inthe following circumstances:� We cannot statically determine that a particular memory location will be used tohouse a double. While we expect that a programmer would writemalloc(k*sizeof(double)), which allows us to adjust the memory allocation, acall to malloc(1024) and a cast to a double* somewhere later in the program arealso possible.� A data structure containing a double cannot be changed for a variety of reasons|itmay be a memory-mapped I/O port, or it may be used by an additional code linkedwith the derivative code. This issue may be resolved by retaining both the originaland augmented data structures and copying values back and forth as needed.At this point, ADIC employs the schemes shown in Figures 5 and 11, but withoutaddressing the memory leak question associated with the latter. We are working on anassociative scheme that does not modify the original data structure, to avoid the need forduplication of data structures. The associative map is based on a dynamic data structurethat tries to take advantage of the locality of data accesses. This is the most expensiveapproach, but it is always feasible. Our goal is to develop an infrastructure for ANSI-Cthat allows us to correctly augment arbitrary programs and to use a combination of staticanalysis and user directives to adaptively choose the least expensive approach. We alsonote that a lot of the issues that are troublesome would not arise in a language like Javawhich has built-in garbage collection and strict type conversion rules.3.2 Handling Side E�ectsFor the derivative augmentation process to work,
oat objects and their associated deriva-tive objects must be accessed in the same fashion. Side e�ects obstruct this \parallel"behavior. As a simple case, consider x[i++] = y[i]. If we simply substitute the lvaluex[i++], e.g., refer to DERIV val(x[i++]) and DERIV grad(x[i++]), these references referto di�erent variables. Thus, we need to rewrite the code to ensure that lvalues referring to
oat objects are free of side e�ects. 21

To this end we evaluate all lvalues that may cause side e�ects only once by hoisting themout of expressions during the canonicalization stage. We make sure that the transformationsdo not change the semantic meaning of the program. Figure 12 shows an example for anautoincrementing address.Original Code:data[i++] *= scale;Canonicalized Code:data[i] *= scale;i++; Figure 12: Handling side e�ectsFigure 13 shows another example where an lvalue expression on the left-hand sidecontains a function call (with potential side e�ects). The function returns a pointer to adouble, which is then dereferenced. Essentially any action can occur in a function, so thereis no hope of \understanding" the side e�ects, as in the previous cases. Since the function'simmediate result (before being dereferenced) is being used only as a value, not as a storagelocation, this value can be hoisted to a temporary.Original Code:(*f(x)) /= y;Canonicalized Code:t1 = f(x);(*t1) = (*t1) / y;Figure 13: Example of hoisting a function call with potential side e�ects3.3 ExpressivityThe C language provides a rich set of operators and syntactic constructs to compactlydescribe computations. This compactness makes the automatic di�erentiation process moredi�cult by hiding access to certain values. For example, in statement y *= x, the variabley plays two roles: its original value appears on the right-hand side of the assignment, and22

it is a lvalue that will be modi�ed after the operation. In this particular case (see alsoFigure 13), rewriting it into y = y � x is su�cient.Original Code:for (z = 0.0; func(z) > 1.0; z += 2.0) {[...]if (k) {continue;}[...]}Canonicalized Code:z = 0.0;for (; func(z) > 1.0;) {[...]if (k) {goto label;}[...]label:z += 2.0;}Figure 14: The loop is rewritten before the derivative augmentation step.However, things may not be as simple. Consider, for example, the code fragment labeled\original code" in Figure 14. The upper part of Figure 14 shows a loop that contains acontinue statement. When the continue statement is executed, the execution immedi-ately skips to the next iteration by executing the iterative expression (z += 2.0) and thenperforms the loop test. Since we cannot add statements that perform derivative compu-tations inside the expression part of the loop statement, we hoist the initial expression ofthe for loop out of the loop and the iterative expression to the bottom of the loop. Topreserve the original semantic, we change the continue into a goto. Hence, ADIC rewritesthe computation to make all operations explicitly visible as is shown in the part labeled\canonicalized code" in Figure 14. If the lower bound or increment expressions containsside e�ects, they would be further treated as previously described.Another potential problem arises from C operators that have implicit control
ow. Forexample, the logical OR operator in (a=x) || (b=x) will short-circuit (i.e., not execute23

Original Code:if (((a = b) == x) || ((a = c) == y)) {x = k;}Canonicalized Code:int flag;[...]a = b;if (a == x) {flag = TRUE;}else {flag = FALSE;a = c;}if (flag == TRUE || a == y) {x = k;}Figure 15: Implicit control
ow operations are made explicit.
24

the second assignment), if the �rst assignment expression is nonzero. When propagatingderivatives, the derivative code must behave accordingly. As shown in Figure 15, ADICrewrites the code during the canonicalization phase to make the control
ow explicit andisolates the a = c side e�ect.3.4 Preprocessor IssuesThe C preprocessor expands macros and handles other directives embedded in the source.The portability and
exibility of C programs stem in part from this preprocessing facility.Unfortunately, this
exibility can signi�cantly complicate source-to-source transformationsystems, since directives and macro usage will be lost in the preprocessed source �le.In most instances, no problem results. However, in some instances such a capabilityis very useful. To this end the pre-processor component of ADIC provides the followingfacilities:� include directives typically are used to include the contents of the standard or userheader �les into the source. Since the included standard headers (like <stdio.h>or <math.h> are determined at transformation time, the transformed source is notportable across platforms. To handle the include directives, ADIC marks up thelocations of any included text and stores the names of the original header �les. WhenADIC generates the augmented source, the entire contents of the standard headers(which are needed during the augmentation process) are replaced with the originaldirectives. ADIC also provides an option to restore the user include directives.� A macro can represent any text. A function-like macro can also take arguments,performing argument substitutions during the preprocessing stage. Wherever themacro name occurs in the source, it gets expanded. The expanded macros may notbe portable across machines or even across compilers, since they may be systemdependent (e.g., FILE de�ned in stdio.h). ADIC allows the user to specify macrosthat should not be expanded through its control �le mechanism. This facility can alsobe used to handle function-like macros and type de�nitions.These preprocessor issues are discussed in more detail in [17].4 AIF { The Automatic Di�erentiation Intermediate FormThe preceding sections discussed how to prepare an ANSI-C code for derivative augmen-tation. In this section, we discuss the mechanism for achieving this augmentation. Asmentioned previously, automatic di�erentiation is a �eld in its infancy. Hand-translationschemes (for small codes) have shown the promise of going further beyond either the tradi-tional forward and reverse modes or the static hybrid scheme used in ADIFOR. However,25

changing the underlying AD approach typically implied considerable e�ort, since the im-plementations of AD algorithms in existing AD tools are deeply tied to the implementationinfrastructure of a particular tool. Thus, these implementations of AD algorithms su�erfrom two limitations.Lack of Abstraction: From the perspective of an AD algorithm, the two assignmentstatementsz = 2.0 + x * yfoo->struc.z = 2.0 + bar->x * q[c]are identical in that both representvar_1 = const + var_2 * var_3where var * are
oating-point variables, and const is a constant.Lack of Portability: AD algorithms augment only the
oating-point computations of aprogram and are, except for the purpose of static analysis, oblivious of the remainder.Thus, as suggested by the algorithmic commonality of ADIFOR and ADIC, there ismuch scope for bringing the very same algorithms to bear on both Fortran and Ccodes, for example. However, previously this meant replication of the coding e�ort inboth language contexts, although libraries such as SparsLinC could be shared.Concurrent with the development of ADIC, we have developed AIF (automatic di�er-entiation intermediate form) to provide an infrastructure that allows experimentation withAD algorithms in a language-independent fashion and promotes software reuse. We de�neda simple language for AD to which we can map program fragments written in languagessuch as C and Fortran. The AIF language has the usual notion of functions, statements,and expressions. It de�nes canonical forms of various control
ow constructs such as loopsand conditionals available in most high-level languages. In addition, it de�nes several datatypes (e.g., integer, double-precision
oat) and the usual arithmetic operators. Our goal isnot to make it so feature-rich that it ends up being a full C/Fortran intermediate form but,rather, provide a useful set of canonical language features to enable us to map fragmentsof programs. Since many constructs are not relevant in the AD context, the AIF languagealso de�nes a NO-OP expression and statement, which are not interpreted and serve only asplaceholders (used to map back into the original language). Hence, many low-level notionsare either abstracted away (e.g., foo->struc.z becomes VAR T, denoting the reference toa variable) and code fragments such as a | b that do not a�ect automatic di�erentiationare hidden inside a NO-OP placeholder.For a given input C or Fortran program, then, we can map it into a set of AIF code frag-ments. The size of each fragment depends on the particular structure and well-behavedness26

of the program; but at the least, we can convert a single statement at a time (e.g., a func-tion call or assignment) into AIF. A derivative module takes an AIF code fragment andaugments it with derivative computations according to the strategy built into the module.Hence the derivative module works at the abstract level of the program fragments. Themain tool (called the host) then glues these augmented fragments together to form the �nalderivative code. A simpler derivative module may handle only a statement fragment ata time, whereas a more sophisticated module may handle a basic block or an even largerfragment. Hence, depending on the sophistication of a particular derivative module, wemay need to tailor the size of AIF fragments to be no greater than what the module canhandle. Generally, the larger the code fragment, the more sophisticated the AD algorithmsthat are potentially applicable.The mechanism just described is used by ADIC to perform the derivative augmenta-tion. We have built a gradient module for �rst-order derivatives, and we are working ona hessian module for second-order derivatives [2]. These modules process one statementfragment at a time. Each derivative module is a separate executable program that com-municates with the host via �les. In addition to the AIF code fragments, the standard ap-plication programming interface (API) also de�nes a channel for passing meta-informationbetween the derivative modules and the host. For example, the host may pass along someinformation about the program (e.g., that its variables are guaranteed not to be aliased),or the derivative module may notify the host that certain additional �les (e.g., headers orlibraries) are required to compile the generated AIF code fragment.With regard to implementation, both the AIF code fragments and controls are repre-sented as annotated abstract syntax trees (AST's). The AST is represented in a child-siblingrelationship|the down link of a node represents its �rst child, and the right link of thenode represents its right sibling. Each node may contain one or more attributes that specifyadditional information about the node. AIF de�nes a standard set of these attributes butis fully extensible. Various data
ow facts (e.g., def-use chains) can also be embedded intoAIF trees as attributes. As AIF develops, we expect to further de�ne a standard set ofattributes for expressing data
ow and dependence information. ADIC also uses additionalattributes to store low-level information associated with a node (for example, a pointer to asymbol table entry), which are ignored by the derivative modules. A document describingAIF in detail is in preparation.As an illustration, an assignment a = b * c is converted into AIF to be sent to thegradientmodule. Figure 16 shows the AIF in graphical format. In the �gure, the italicizedwords represent attributes and their values. The BIND T node has various attributes thatrepresent the API requests from the host. In this case, we specify the AIF language version,the AD transformation desired (�rst-order derivatives), the pre�x ad used in naming aux-iliary variables, as well as the fact that we do not want to inline gradient calls, that we wantto compute at most �ve directional derivatives. The ASSGN T denotes an assignment, VAL Tdenotes the reference to a value, VAR T denotes a
oating-point variable, and MUL T denotes27

AD_AIF_VERSION=13

AD_DERIV_ORDER=1
AD_PREFIX=ad_
GRAD_INLINE=no
GRAD_MAX=5

NAME_A=982

BIND_T ASSGN_T

VAL_T

VAR_T VAL_T

MUL_T

VAL_T

VAR_TVAR_T
NAME_A=912 NAME_A=882Figure 16: Input AST representing the assignment a = b*c for processing by the gradientmodule.the multiplication. The NAME A attributes of VAR T are actually pointers to an internal datastructure that identi�es the variable.The gradient module then transforms this representation into a new AIF fragmentthat also contains derivative computations, as shown in Figure 17. The new AIF fragmentrepresents the statementsad_loc_0 = DERIV_val(b) * DERIV_val(c);ad_grad_axpy_2(DERIV_grad(a), DERIV_val(c), DERIV_grad(b),DERIV_val(b), DERIV_grad(c));DERIV_val(a) = ad_loc_0;The BIND T node speci�es various declarations and also the return API requests from themodule. The attribute-value pairAD CONST ad GRAD MAX = type=integer default=5 shape=scalarspeci�es that an integer constant named ad GRAD MAX be declared with the default value of5. The attribute-value pairAD TYPE loc = scope=local type=float shape=scalarrepresents a type declaration that speci�es that all local names that begin with !!locare to be properly declared as double and to have local scope. The pre�x !! is usedto distinguish module generated variables from the original program variables. The localscope speci�cation is just a hint to the host that the usage of the variable will be limitedto the local code block and therefore the variable name can be recycled afterwards. TheLOC T node corresponds to the use of such a temporary variable (identi�ed with the name28

Stmt 3
ASSGN_T

VAL_T

VAR_T
NAME_A=982

LOC_T
NAME_A=!!loc_0

BIND_T STMTS_T

Stmt 1 Stmt 2 Stmt 3

AD_CONST_ad_GRAD_MAX = type=integer default=5 shape=scalar

AD_HEADER = ad_grad

AD_TYPE_loc = scope=local type=float shape=scalar

NAME_T LIST_T

VAL_T

VAR_TVAR_T

VAL_T

VAR_TVAR_T VAR_T

DERIV_T DERIV_T DERIV_T
NAME_A=grad NAME_A=grad

NAME_A=982

NAME_A=grad

NAME_A=882 NAME_A=912NAME_A=912 NAME_A=882

VAL_T

MUL_T

VAL_T

VAR_TVAR_T
NAME_A=912 NAME_A=882

LOC_T

ASSGN_T

Stmt 1

VARS_A = !!loc_0

CALL_T

Stmt 2NO_SIDE_EFFECT_A = 1

NAME_A =
 ad_grad_axpy_2

NAME_A=!!loc_0

AD_DERIV_grad = type=float shape=array,ad_GRAD_MAX

Figure 17: Output AST after processing by the gradient module.29

!!loc 0). The attribute-value pairAD DERIV grad = type=float shape=array,ad GRAD MAXspeci�es that a derivative object (associated with all
oating-point variables) named gradbe de�ned as an array of ad GRAD MAX doubles. The AD HEADER attribute speci�es thename of the header �le to be included in ad deriv.h. The STMTS T node represents astatement block containing the two assignments and a call. A DERIV T node indicates thereference to a derivative object named grad associated with a particular
oat variable. TheVARS A attribute of STMTS T summarizes the new local variables that have been requestedby the gradient module in a statement block. The NO SIDE EFFECT A attribute of CALL Tspeci�es that we know the call to ad grad axpy 3 to be free of side e�ects. These attributesprovide useful information when further transformations, such as optimizations, are to beperformed.This example illustrated the following features of AIF:Abstraction: By abstracting away language-speci�c ways for referring to
oat objects, wearrived at a much simpler representation of the program. Also, we could easily referto \gradients associated with a particular
oat value" or \local variables" withoutconcern for the actual implementation of these concepts.Language Independence: The AIF language does not prescribe how variables need to beallocated or how derivative associations need to be maintained. Instead, the use of astandard API provides a language-independent way to request information or servicesbetween modules and hosts. Thus, the AIF representation tries to provide a platformfor experimentation with AD algorithms, allowing, for example, the interfacing of thesame AIF derivative module to di�erent AD front-ends.Flexibility: Instead of the gradient module, we could have easily invoked a di�erentmodule, for example, the hessian module, in which case the augmented AIF wouldcompute the second-order derivatives. In fact, a given module may perform context-sensitive transformations rather than the same transformation algorithm to everystatement, but the change of algorithms is transparent to the surrounding tool layers(see, for example, [2]).To assist developers in writing AIF modules, we have created a toolkit that providesa library of C++ classes insulating the developer from various interfacing issues and pro-vides the AST node de�nitions, the attribute mechanism, and a set of tree manipulationroutines in additon to various utilities. The library takes care of encoding and decodingthe API and transparently handles communication with the invoking tool via �les. Eventhough the derivative generation speed is currently not a factor, the toolkit does providefor direct linking of a module to the host to eliminate the latency associated with �le-basedcommunication. However, this change is transparent to users of the AIF toolkit. In our30

project, the �le-based AIF toolkit interface provided considerable stability to developersof transformation tools, even though the AIF representation itself changed several times.We are doubtful that such development stability could have been achieved if a programrepresentation representation had been directly manipulated in Scheme [28] or CAML [52].In summary, AIF allows us to decouple the world of the language-dependent AD fron-tend and the world of the AD transformation developer (which sees a simple, language-independent representation of program fragments). In this fashion, we hope to accelerateprogress in AD algorithms and accelerate the incorporation of new ideas into robust tools.5 ApplicationsWe present four applications that show that ADIC can be used to reliably augment ANSI-C codes with derivatives. The variety of application domains attests to the generalityof automatic di�erentiation as well as ADIC. All experiments were performed on a SunSPARCstation 20 running Solaris 2.5 and compiled with gcc. For each problem, we reportthe runtime of the original (unmodi�ed) code, the ratio between the derivative computationand the original code, (labeled time(rf)time(f)), and the ratio of the runtime of central divided dif-ferences to the ADIC-generated code (labeled time(CD)time(AD)). Central di�erences, which usuallydeliver acceptable derivative approximations, would have required 2p+ 1 function evalua-tions to compute p derivatives. Central di�erence approximations with varying stepsizeswere also used to verify the ADIC-generated derivatives. Since ADIC currently augmentsall double variables with an array for the gradient object, memory requirements of theADIC-generated code scale linearly with p.5.1 The CSCMDO 3-D Volume Grid GeneratorCSCMDO is a general-purpose, multi-block, three-dimensional, structured volume gridgenerator with specialized features for grid modi�cations that occur in multidisciplinarydesign optimization contexts [39]. It has been used, for example, with the RAPID 2-Dsurface grid generator [50] and the TLNS3D 3-D CFD solver [51] in design optimizationstudies at NASA for the high-speed planes.CSCMDO consists of 16,500 lines of ANSI-C; the unmodi�ed code runs for 49 seconds.As shown in Table 1, ADIC-generated code is faster than central di�erences, and its advan-tage improves as the number of derivatives increases. This result is not surprising becausethe hybrid forward/reverse AD approach used in ADIC incurs a �xed overhead for thescalar reverse mode computations, which it tries to amortize over loops that compute alldesired derivatives at once. 31

Derivatives 1 2 3 4 5 6time(rf)time(f) 2.4 3.1 4.0 5.2 6.3 7.4time(CD)time(AD) 1.3 1.6 1.7 1.7 1.7 1.7Table 1: Timing Results for CSCMDO5.2 The FCAP2 Circuit Interconnect SimulatorThe FCAP (Fast Capacitance Extraction) suite of codes has been under development byHewlett-Packard Laboratory since the 1980's [25]. These codes are used in the contextof simulating capacitance and thermal properties of devices as well as on-chip/o�-chipinterconnects. They were also incorporated into the RaphaelTM capacitance extractionsoftware that is marketed by TMA (Technology Modeling Associate) Inc. FCAP2 consistsof 7,680 lines of ANSI-C code.For our experiments, we use two input models that compute (1) potentials of a couple oftrace lines sandwiched between layers of metal planes and dielectrics, and (2) capacitanceof �ve parallel traces between two planes and dielectrics. The runtime for the original codewas 6.2 seconds for Model 1 and 7.5 seconds for Model 2.# Derivatives 1 2 3 4 5 6 7 8 9 10Model 1time(rf)time(f) 2.9 5.2 7.4 9.2 11.7 13.2 15.0 16.6 18.7 20.7time(CD)time(AD) 1.03 0.97 0.94 0.98 0.95 1.00 1.02 1.01 1.01 1.01Model 2time(rf)time(f) 2.3 3.6 5.0 6.2 7.5 8.4 9.6 10.6 11.9 13.1time(CD)time(AD) 1.31 1.38 1.40 1.46 1.46 1.55 1.55 1.60 1.60 1.60Table 2: Timing Results for FCAP2The results in Table 2 show that for the �rst case, ADIC-generated code is not fasterthan central di�erence approximations, while for the second case it is up to 1.6 times faster.These results are due to di�erent execution paths through the code in the two cases (sincethe derivative code used is identical in both cases). The example shows that, in general,it is somewhat di�cult to predict the speedup gained from automatic di�erentiation. Theexample also corroborates the need for more context-sensitive di�erentiation strategies,since the same AD strategy seems to be working better in one case than in the other.32

Nevertheless, the main bene�t is that AD is guaranteed to deliver correct derivatives.With central di�erences, for FCAP2, smaller grid sizes (and thus more computations) areoften required to achieve the desired level of accuracy, and then ADIC generated code isstill a faster solution.5.3 Stewart PlatformIn the design of vehicle simulators, which move around a fair amount to simulate actualdriving conditions, one is interested in determining their operational envelope, namely, theset of points in space that could be occupied by the simulator. In the context of such work,we were presented with a model for the so-called Stewart platform (the model derivation isdescribed in [3]). The Stewart platform consisted of 763 lines of code and the unmodi�edcode took 1.7 seconds to complete. The results in Table 3 show that ADIC-generated codeis roughly two times faster than central di�erence approximations throughout.# Derivatives 5 10 15 20 25 30time(rf)time(f) 5.5 9.7 14.4 19.2 22.8 28.3time(CD)time(AD) 2.0 2.1 2.2 2.1 2.2 2.1Table 3: Timing Results for Stewart Platform5.4 Neural Network ModelOur last example is a generic neural network with n inputs, k hidden layers, a single output,and sigmoidal activation functions (as described on p. 279 in [40]). The model consists of73 lines of ANSI-C. The training of these networks gives rise to an optimization problemthat requires a gradient of the model for its solution. The data in Table 4 are based onthe time for 1000 executions of the model. For this problem, ADIC-generated code is onaverage 2.4 times faster than central di�erences.6 ConclusionsThe need for accurate and fast derivatives for models presented as computer codes is ubiq-uitous in computational science. Automatic di�erentiation provides a mechanism for com-puting those derivatives accurately with minimal human e�ort. In this article, we presentedthe design and workings of ADIC, a tool for augmenting ANSI-C programs with derivativecomputations. 33

Inputs # Hidden Layers # Derivatives time(f) Time(rf)Time(f) Time(CD)Time(AD)3 1 15 0.01 16.3 1.93 2 24 0.03 18.8 2.63 3 33 0.04 24.5 2.74 1 24 0.02 22.8 2.14 2 40 0.03 32.5 2.54 3 56 0.05 42.4 2.75 1 35 0.02 31.4 2.35 2 60 0.04 50.4 2.45 3 85 0.06 74.1 2.3Table 4: Timing Results for Neural Network ModelAutomatic di�erentiation is a �eld very much in its infancy. Recent work has shownthat AD tools can reliably augment large computer codes, but much work still needs to bedone to realize the algorithmic speedups promised by the associativity of the underlyingchain rule of di�erential calculus. The design of ADIC is geared toward accelerating thisprogress. It combines an ANSI-C-speci�c frontend with a language-independent AD trans-formation engine. The ADIC frontend addresses issues such as language canonicalization tomake a C code \augmentable" and provide language-speci�c implementations for abstrac-tions such as \the derivative object associated with a particular variable." The automaticdi�erentiation intermediate form (AIF), a canonical representation of computer fragmentsthat are relevant for AD, together with the corresponding toolkit, enables programming ofthe AD transformation engine at a high level of abstraction easily and independent of aparticular platform. In addition, this paradigm promotes software reuse.Application examples have shown that, in its current form, AD for ANSI-C programsas implemented by ADIC already delivers competitive performance in that the runtime ofthe code generated is typically better than divided di�erence approximations of derivatives,but no user �ddling with stepsizes is required. Enhancements in underlying AD algorithmswill further improve this performance, either through algorithmic improvements in theapplication of the chain rule or through backend optimizations such as loop unrolling.We also stress that, as illustrated by the example shown, ADIC is easy to use. We onlydi�erentiated a toy problem, but since ADIC happily grinds through codes of arbitrarysize, processing of a larger code is very similar. The user only need to be concerned withproviding a suitable driver, the size of which typically does not depend on the complexityof the code for which derivatives are computed. Information on obtaining ADIC can befound at http://www.mcs.anl.gov/adic. 34

ADIC already provides some support for C++ codes, and we expect future extensions tohandle most of C++ language features including templates and exceptions. C++ also o�ersadditional mechanisms that are useful in producing derivative code. For example, we canuse the class constructor/destructor facility to automatically handle allocation/deallocationof derivative objects.Automatic di�erentiation tools also o�er promising avenues for the application of re-search typically done in the compiler and runtime system communities, for instance, in
owanalysis and performance prediction. As mentioned, for example, in [12, 21], AD providesample opportunities for exploiting parallelism, from threads in shared-memory program-ming models (e.g., [41]) to the typically coarser-grained communication paradigms (e.g.,MPI [37]) used in distributed-memory paradigms.AcknowledgmentsWe thank Jason Abate of the University of Texas at Austin and Alan Carle of Rice Univer-sity for their insightful comments and Po-Ting Wu of Argonne National Laboratory for hishelp in debugging ADIC. We are also indebted to William Jones of Nasa Langley, NormanChang of Hewlett-Packard Research Labs, Frederick Adkins of the University of Iowa, andDavid Juedes of Ohio University for providing us with application problems and assistingus in their operation and veri�cation.References[1] Proceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on MultidisciplinaryAnalysis and Optimization, Panama City, Florida, American Association of Aeronau-tics and Aerospace Engineers, 1994.[2] Jason Abate, Christian Bischof, Alan Carle, and Lucas Roh. Algorithms and designfor a second-order automatic di�erentiation module. Preprint ANL/MCS-636-0197,Mathematics and Computer Science Division, Argonne National Laboratory, 1997. Toappear in Proc. Int. Symposium on Symbolic and Algebraic Computing (ISSAC) '97.[3] Frederick A. Adkins and Edward J. Haug. Operational envelope of a Spatial stewartplatform. To appear as Technical Brief in ASME J. of Mechanical Design, May 1996.[4] N. Alexandrow and M. Hussaini, editors. Multidisciplinary Design Optimization.SIAM, Philadelphia, 1997.[5] M. Bartholomew-Biggs. OPFAD - a users guide to the OPtima Forward AutomaticDi�erentiation tool. Technical report, Numerical Optimization Centre, University ofHertfordsshire, 1995. 35

[6] Claus Bendtsen and Ole Stauning. FADBAD, A Flexible C++ Package for Auto-matic Di�erentiation, Using the Forward and Backward Methods. Technical ReportIMM-REP-1996-17, Department of Mathematical Modelling, Technical University ofDenmark, August 1996.[7] M. Berz. High-Order Computation and Normal Form Analysis of Repetitive Systems,volume AIP 249, page 456. American Institute of Physics, Woodbury, NY, 1991.[8] Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank. ComputationalDi�erentiation: Techniques, Applications, and Tools. SIAM, Philadelphia, 1996.[9] Christian Bischof. Automatic di�erentiation and numerical software design. In RonaldBoisvert, editor, The Quality of Numerical Software: Assessment and Enhancement,pages 287{299, London, 1997. Chapman & Hall.[10] Christian Bischof, Ali Bouaricha, Peyvand Khademi, and Jorge Mor�e. Computinggradients in large-scale optimization using automatic di�erentiation. Preprint MCS-P488-0195, Mathematics and Computer Science Division, Argonne National Labora-tory, 1995. To appear in INFORMS Journal of Computing.[11] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland.ADIFOR: Generating derivative codes from Fortran programs. Scienti�c Programming,1(1):11{29, 1992.[12] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR 2.0:Automatic di�erentiation of Fortran 77 programs. IEEE Computational Science &Engineering, 3(3):18{32, 1996.[13] Christian Bischof, Alan Carle, Peyvand Khademi, Andrew Mauer, and Paul Hovland.ADIFOR 2.0 user's guide (Revision C). Technical Memorandum ANL/MCS-TM-192,Mathematics and Computer Science Division, Argonne National Laboratory, 1995.(also CRPC Technical Report CRPC-95516-S).[14] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception han-dling. Technical Report ANL/MCS-TM-159, Mathematics and Computer Science Di-vision, Argonne National Laboratory, 1991.[15] Christian Bischof, George Corliss, and Andreas Griewank. Structured second- andhigher-order derivatives through univariate Taylor series. Optimization Methods andSoftware, 2:211{232, 1993.[16] Christian Bischof, Peyvand Khademi, Ali Bouaricha, and Alan Carle. E�cient compu-tation of gradients and Jacobians by transparent exploitation of sparsity in automaticdi�erentiation. Optimization Methods and Software, 7(1):1{39, July 1996.36

[17] Christian Bischof and Lucas Roh. ADIC user guide. Technical MemorandumANL/MCS-TM-225, Mathematics and Computer Science Division, Argonne NationalLaboratory, 1997.[18] Christian Bischof and Po-Ting Wu. Time-parallel computation of pseudo-adjoints for aleapfrog scheme. Preprint ANL/MCS-P639-0197, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1997.[19] Christian H. Bischof and Mohammad R. Haghighat. On hierarchical di�erentiation. InMartin Berz, Christian Bischof, George Corliss, and Andreas Griewank, editors, Com-putational Di�erentiation: Techniques, Applications, and Tools, pages 83{94. SIAM,Philadelphia, 1996.[20] Christian H. Bischof, William T. Jones, Andrew Mauer, and Jamshid Samareh. Experi-ences with the application of the ADIC automatic di�erentiation tool to the CSCMDO3-D volume grid generation code. In Proceedings of the 34th AIAA Aerospace SciencesMeeting, AIAA Paper 96-0716. American Institute of Aeronautics and Astronomics,1996.[21] Christian H. Bischof and Po-Ting Wu. Exploiting intermediate sparsity in computingderivatives of a leapfrog scheme. Preprint ANL/MCS-P572-0396, Mathematics andComputer Science Division, Argonne National Laboratory, 1996.[22] Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Goutwals, Srinivas Narayana,Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented toolkit and classlibrary for building Fortran and C++ restructuring tools. In Proceedings of the SecondAnnual Object-Oriented Numerics Conference. IEEE, 1994.[23] H.-J. Boehm. Space e�cient conservative garbage collection. SIGPLAN Notices,28(6):197{206, June 1993.[24] S. Brown. OPRAD - a users guide to the OPtima Reverse Automatic Di�erentiationtool. Technical report, Numerical Optimization Centre, University of Hertfordsshire,1995.[25] K. M. Cham, S.-Y. Oh, D. Chin, J. Moll, K.Lee, and P. V. Voorde. Parasitic ElementsSimulation, pages 129{140. Kluwer Academic Publishers, Boston, 2nd edition, 1988.[26] H. Engl and J. McLaughlin. Proceedings of the Symposium on Inverse Problems andOptimal Design in Industry, Teubner Verlag, Stuttgart, 1994.[27] Christ�ele Faure. Splitting of algebraic expressions for automatic di�erentiation. InMartin Berz, Christian Bischof, George Corliss, and Andreas Griewank, editors, Com-37

putational Di�erentiation: Techniques, Applications, and Tools, pages 117{128. SIAM,Philadelphia, 1996.[28] Daniel P. Friedman and Matthias Felleisen. The Little Schemer. MIT Press, Cam-bridge, 4th edition, 1996.[29] Ralf Giering. Tangent linear and adjoint model compiler, users manual. UnpublishedInformation, Max-Planck Institut f�ur Meteorologie, Hamburg, Germany, 1996.[30] Phillip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.Academic Press, London, 1981.[31] Victor V. Goldman and Gerard Cats. Automatic adjoint modeling within a programgeneration framework: A case study for a weather forecasting grid-point model. InMartin Berz, Christian Bischof, George Corliss, and Andreas Griewank, editors, Com-putational Di�erentiation: Techniques, Applications, and Tools, pages 185{194. SIAM,Philadelphia, 1996.[32] Andreas Griewank. On automatic di�erentiation. In Mathematical Programming:Recent Developments and Applications, pages 83{108, Amsterdam, 1989. Kluwer Aca-demic Publishers.[33] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexityin reverse automatic di�erentiation. Optimization Methods and Software, 1(1):35{54,1992.[34] Andreas Griewank, David Juedes, and Jean Utke. ADOL-C, a package for the auto-matic di�erentiation of algorithms written in C/C++. ACM Transactions on Mathe-matical Software, 22(2):131{167, 1996.[35] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices bythe Markowitz rule. In Andreas Griewank and George F. Corliss, editors, AutomaticDi�erentiation of Algorithms: Theory, Implementation, and Application, pages 126{135. SIAM, Philadelphia, 1991.[36] Jos�e Grimm, L�oc Pottier, and Nicole Rostaing-Schmidt. Optimal time and minimumspace time product for reversing a certain class of programs. In Martin Berz, ChristianBischof, George Corliss, and Andreas Griewank, editors, Computational Di�erentia-tion, Techniques, Applications, and Tools, pages 95{106. SIAM, Philadelphia, 1996.[37] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI { Portable ParallelProgramming with the Message Passing Interface. MIT Press, Cambridge, 1994.38

[38] Paul Hovland, Christian Bischof, Donna Spiegelman, and Mario Casella. E�cientderivative codes through automatic di�erentiation and interface contraction: An ap-plication in biostatistics. Preprint MCS-P491-0195, Mathematics and Computer Sci-ence Division, Argonne National Laboratory, 1995. To appear in SIAM J. Scienti�cComputing, 18(4) (July 1997).[39] William T. Jones and Jamshid Samareh-Abolhassani. A grid generation system formultidisciplinary design optimization. In Proceedings of the Workshop on SurfaceModeling, Grid Generation, and Related Issues in CFD Solutions, pages 11{21, 1995.NASA-CP3291.[40] David W. Juedes and Karthik Balakrishnan. Generalized neural networks, computa-tional di�erentiation, and evolution. In Martin Berz, Christian Bischof, George Corliss,and Andreas Griewank, editors, Computational Di�erentiation: Techniques, Applica-tions, and Tools, pages 273{286. SIAM, Philadelphia, 1996.[41] Bil Lewis and Daniel J. Berg. Threads Primer. SunSoft Press, 1996.[42] Michael Monagan and Rene R. Rodoni. An implementation of the forward and reversemode of automatic di�erentiation in Maple. In Martin Berz, Christian Bischof, GeorgeCorliss, and Andreas Griewank, editors, Computational Di�erentiation: Techniques,Applications, and Tools, pages 353{362. SIAM, Philadelphia, 1996.[43] Heman Pande. Compile-Time Analysis of C and C++ Systems. PhD thesis, Dept. ofComputer Science, Rutgers University, 1996. Technical Report LCSR-TR-260.[44] William H. Press and Saul A. Teukolsky. Numerical calculation of derivatives. Com-puters in Physics, 5(1):88{89, Jan./Feb. 1991.[45] J. D. Pryce and J. K. Reid. AD01 { a Fortran 90 code for automatic di�erentiation.Unpublished information, Rutherford Appleton Laboratory, Oxon, U.K., 1996.[46] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 ofLecture Notes in Computer Science. Springer Verlag, Berlin, 1981.[47] Martin Rinard and Pedro Diniz. Commutativity analysis: A new analysis frameworkfor parallelizing compilers. In Proceedings ACM SIGPLAN Conference on Program-ming Language Design and Implementation (PLDI'96), pages 54{67, New York, 1996.ACM.[48] Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic di�erentiation inOdyssee. Tellus, 45a(5):558{568, October 1993.39

[49] Dimitri Shiriaev and Andreas Griewank. ADOL-F: Automatic di�erentiation of For-tran codes. In Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank,editors, Computational Di�erentiation: Techniques, Applications, and Tools, pages375{384. SIAM, Philadelphia, 1996.[50] Robert E. Smith, Malcolm G. I. Bloor, Michael Wilson, and Almuttil M. Thomas.Rapid airplane parametric input design (RAPID). In Proceedings of the 12th AIAAComputational Fluid Dynamics Conference, San Diego, AIAA 95-1687. American In-stitute of Aeronautics and Astronautics, 1995.[51] V. N. Vatsa, M. D. Sanetrik, and E. B. Parlette. Development of a
exible and e�cientmultigrid-based multiblock
ow solver. In Proceedings of the 31st AIAA AerospaceSciences Meeting, AIAA 93-0677. American Institute of Aeronautics and Astronautics,1993.[52] P. Weis, M. Mauny, A. Laville, and A. Suarez. The CAML Reference Manual, 1990.See also http://pauillac.inria.fr/caml.[53] Robert P. Wilson and Monica S. Lam. E�cient context-sensitivity pointer analysis forC programs. In Proceedings of the ACM SIGPLAN'95 Conference on ProgrammingLanguage Design and Implementation, pages 1{12, New York, 1995. ACM Press.

40

