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DISTANCE GEOMETRY OPTIMIZATION FOR PROTEINSTRUCTURESJorge J. Mor�e and Zhijun WuAbstractWe study the performance of the dgsol code for the solution of distance geometryproblems with lower and upper bounds on distance constraints. The dgsol code usesonly a sparse set of distance constraints, while other algorithms tend to work with adense set of constraints either by imposing additional bounds or by deducing boundsfrom the given bounds. Our computational results show that protein structures can bedetermined by solving a distance geometry problem with dgsol and that the approachbased on dgsol is signi�cantly more reliable and e�cient than multi-starts with anoptimization code.1 IntroductionDistance geometry problems for the determination of protein structures are speci�ed bya subset S of all atom pairs and by the distances between atoms i and j for (i; j) 2 S.In practice, lower and upper bounds on the distances are given instead of precise values.The distance geometry problem with lower and upper bounds is to �nd a set of positionsx1; : : : ; xm in R3 such thatli;j � kxi � xjk � ui;j ; (i; j) 2 S; (1.1)where li;j and ui;j are lower and upper bounds on the distances, respectively. Reviews andbackground on the application of distance geometry problems to protein structure deter-mination can be found in Crippen and Havel [4], Havel [11, 12], Torda and van Gunsteren[30], Kuntz, Thomason, and Oshiro [19], Br�unger and Nilges [3], and Blaney and Dixon [2].The distance geometry problem (1.1) can be formulated as a global optimization prob-lem. The standard formulation, suggested by Crippen and Havel [4], is in terms of �ndingthe global minimum of the functionf(x) = Xi;j2S pi;j(xi � xj); (1.2)where the pairwise function pi;j : Rn 7! R is de�ned bypi;j(x) = min2(kxk2 � l2i;jl2i;j ; 0)+ max2(kxk2 � u2i;ju2i;j ; 0) : (1.3)This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38 and by the Argonne Director's Individual Investigator Program.1



Clearly, x = fx1; : : : ; xmg solves the distance geometry problem if and only if x is a globalminimizer of f and f(x) = 0.In practice, distance geometry problems also impose chirality constraints on some ofthe atoms. These constraints can be handled by adding a term to the potential function(1.2) whenever chirality constraints are imposed on the atoms xi; xj ; xk; xl. The chiralityconstraint function (for example, Havel [11, 12]) is usually of the formci;j;k;l(x) = (vol(xi; xj; xk; xl)� vi;j;k;l)2 ;where vol is the oriented volume of the four atoms and vi;j;k;l is a target value. The approachin this paper can be extended to these chirality constraints, but since our aim is to developreliable algorithms for the distance geometry problem (1.1), we consider only the potentialfunction (1.2).The embed algorithm (Crippen and Havel [4], Havel [11, 12]) and the alternating pro-jection algorithm (Glunt, Hayden, and Raydan [7, 8]) are the most promising techniquesfor the solution of the distance geometry problem (1.2). For related work, see [1, 2, 3, 19].General global optimization techniques (multi-starts with a local optimization algorithm,simulated annealing, genetic algorithms) and molecular dynamics algorithms could also beused, but they have not been shown to be suitable for distance geometry problems.The algorithm that we propose in this paper works with the sparse set of distanceconstraints S. In contrast, other algorithms for distance geometry tend to work with adense set of constraints by either imposing additional bounds or by deducing bounds fromthe given bounds. For example, the �rst phase of the embed algorithm determines li;j andui;j by using the relationshipsui;j = min (ui;j ; ui;k + uk;j) ; li;j = max (li;j ; li;k � uk;j ; lj;k � uk;i) ;which can be deduced from the triangle inequality. Given a full set of bounds, distances�i;j 2 [li;j ; ui;j] are chosen, and an attempt is made to compute coordinates x1; : : : ; xm bysolving the special distance geometry problemkxi � xjk = �i;j ; (i; j) 2 S: (1.4)This attempt usually fails because the bounds �i;j tend to be inconsistent, but it can beused to generate an approximate solution. As a result, the embed algorithm may requiremany trial choices of �i;j in [li;j; ui;j ] before a solution to problem (1.4) is found.Other algorithms that work with a sparse set of distance constraints do not aim to solvethe distance geometry problem (1.1), but to minimize a potential energy function thatincorporates distance constraints and other information to determine the protein structure.For work in this direction, see [28, 15]. 2



In our approach, we use Gaussian smoothing to transform f into a smoother functionwith fewer minimizers. An optimization algorithm (the limited-memory variable-metriccode vmlm) is then applied to the transformed function, and continuation techniques areused to trace the minimizers of the smooth function back to the original function. Animmediate advantage of our approach is that the work per iteration is proportional to S,which for sparse distance data should be proportional to the number of atoms m.Gaussian smoothing was �rst used, by Scheraga and coworkers [25, 16, 17, 18, 26], inthe di�usion equation method for protein conformation. In that application the Gaussiantransform is usually evaluated by approximating the function and then transforming theapproximation. On the other hand, Mor�e and Wu [22] showed that for distance geometryapplications we can evaluate the Gaussian transform of (1.2) directly if the potential pi;j isa radial function, that is, a function of the form pi;j(x) = hi;j (kxk).The aim of this paper is to show that continuation algorithms, based on Gaussiansmoothing, can be used to develop an e�cient and reliable code for the solution of thedistance geometry problem (1.1). The background needed to understand our code, dgsol, ispresented in Sections 2 and 3. Section 2 outlines the smoothing properties of the Gaussiantransform, while Section 3 presents our proposal to determine the Gaussian transform byusing a discrete Gauss-Hermite transform.We present an outline of dgsol in Section 4. Numerical results appear in Section 5. Wepay special attention to the choice of continuation parameters because this is an importantand unresolved issue in the use of Gaussian smoothing. Our numerical results, based on datadrawn from the PDB data bank, show that dgsol can be used to determine the structure ofprotein fragments with up to 200 atoms.We emphasize that the determination of protein structures from distance data requiresappropriate data and an algorithm to determine solutions to (1.1). The issue of whatdistance data is needed has been addressed in several recent papers [15, 28, 1, 20]. In thispaper we do not address this issue, but concentrate on showing that dgsol can be used toobtain solutions to the distance geometry problem (1.1) for a wide range of distance data.To our knowledge, no other algorithm can make this claim. We plan to conduct additionaltesting with larger protein fragments and more realistic distance constraints.2 Global SmoothingAn appealing idea for �nding the global minimizer of a function is to transform the functioninto a smoother function with fewer local minimizers, apply an optimization algorithmto the transformed function, and trace the minimizers back to the original function. Atransformed function is a coarse approximation to the original function, with small andnarrow minimizers being removed, while the overall structure of the function is maintained.This property allows the optimization algorithm to skip less interesting local minimizers3



and to concentrate on regions with average low-function values where a global minimizer ismost likely to be located.The smoothing transform, called the Gaussian transform, depends on a parameter �that controls the degree of smoothing. The original function is obtained if � = 0, whilesmoother functions are obtained as � increases. The Gaussian transform hfi� of a functionf : Rn 7! R is hfi�(x) = 1�n=2�n ZRn f(y) exp �ky � xk2�2 ! dy: (2.1)The value hfi�(x) is an average of f in a neighborhood of x, with the relative size of thisneighborhood controlled by the parameter �. The size of the neighborhood decreases as �decreases, so that when � = 0, the neighborhood is the center x. The Gaussian transformhfi� can also be viewed as the convolution of f with the Gaussian density function.The Gaussian transform is a linear, isotone (order-preserving) operator that reduces thehigh-frequency components of f . Moreover, the Gaussian transform commutes with di�er-entiation so that the Gaussian transform of the gradient (Hessian) is the gradient (Hessian)of the Gaussian transform. These properties of the Gaussian transform are not usuallyshared by other approaches to smoothing. For additional discussion of these properties, seeWu [31] and Mor�e and Wu [23, 24].We illustrate the transformation process in Figure 2.1 with a function that is the sumof four Gaussians. The original function (� = 0) is on the left while � = 0:3 is on theright. Note that the original function has four maximizers but that two of these maximizershave disappeared at � = 0:3, and another minimizer is likely to disappear if � is increasedfurther. Figure 2.1 shows that the original function is gradually transformed into a smootherfunction with fewer local maximizers and that the smoothing increases as � increases.
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Figure 2.1: The Gaussian transform of a function. The original function (� = 0) is on theleft, while � = 0:3 in on the right. 4



3 Computing the Gaussian Transform of Distance Geometry FunctionsComputing the Gaussian transform requires the evaluation of n-dimensional integrals, butfor many functions that arise in practice, it is possible to compute the Gaussian transformexplicitly in terms of one-dimensional transforms. In particular, we now show that we cancompute the Gaussian transform for distance geometry functions of the form (1.2) if thepotential pi;j is a radial function, that is, a function of the form pi;j(x) = hi;j (kxk).Mor�e and Wu [22] showed that the Gaussian transform for the distance geometry func-tion (1.2) can be expressed in the formhfi�(x) = Xi;j2S 1p2� ri;j Z +1�1 (ri;j + �s)hi;j(ri;j + �s) exp��12s2� ds (3.1)where ri;j = kxi � xjk. This expression is valid for all pairwise potentials of the formpi;j(x) = hi;j (kxk). We are interested in the case where the pairwise potential pi;j is givenby (1.2), so that the function r 7! hi;j(r) is de�ned byhi;j(r) = min2(r2 � l2i;jl2i;j ; 0)+max2(r2 � u2i;ju2i;j ; 0) : (3.2)The one-dimensional integrals that appear in (3.1) can be evaluated explicitly in specialcases. In particular, when li;j = ui;j for all (i; j) 2 S, the Gaussian transform can beexpressed [23] in the formhfi�(x) = Xi;j2S h(kxi � xjk2 � �2i;j)2 + 10�2kxi � xjk2i+ 
;where 
 is a constant that depends on �.An interesting property of the Gaussian transform is that the Gaussian transform (3.1)is in�nitely di�erentiable whenever � > 0. On the other hand, the original potential (1.2),with the pairwise potential pi;j de�ned by (1.3), is only piecewise twice di�erentiable. Mor�eand Wu [23, 24] provide additional information on the properties of the Gaussian transform.The one-dimensional integrals that appears in the Gaussian transform (3.1) can beapproximated by Gaussian quadratures. If we use a Gaussian quadrature with q nodes, weobtain the Gauss-Hermite approximationhfi�;q(x) = Xi;j2S 1ri;j qXk=1wk(ri;j + �sk)hi;j(ri;j + �sk); (3.3)where wk and sk are standard weights and nodes for the Gaussian quadrature for integralsof the form 1p2� Z +1�1 g(s) exp��12s2� ds:5



The weights and nodes can be found in the tables of Stroud and Secrest [29] or computedwith the gauss subroutine in ORTHOPOL [6].All of our numerical results are based on the Gauss-Hermite transform (3.3). We cangain insight into this transformation by noting thathfi�;q(x) = Xi;j2S[hi;j ]�;q(ri;j);where [h]�;q is a function of the distance r de�ned by[h]�;q(r) = 1r qXk=1wk(r+ �sk)h(r+ �sk):The function [h]�;q agrees with the piecewise twice-di�erentiable functionh(r) = min2(r2 � l2l2 ; 0)+max2(r2 � u2u2 ; 0) (3.4)for � = 0, but as � increases, we obtain a smoother version of the function. This can beseen clearly in Figure 3.1, where we have plotted [h]�;q for � = k=2 with 0 � k � 3, q = 10.
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3 � = 0:0� = 0:5� = 1:0� = 1:5Figure 3.1: The function [h]�;q for � = 0; 0:5; 1:0; 1:5 and q = 10Figure 3.1 suggests that [h]�;q is convex for � � �c for some �c > 0. This is not truein general, but holds when h is de�ned by (3.4). The value of �c depends on the bounds land u, but we do not fully understand this relationship. For l = u, it is easy to show that�c = u=p5. Plots of [h]�;q for l < u suggest that �c � p2u, and therefore�c 2 � up5 ;p2 u� :This is consistent with Figure 3.1, where l = 1, u = 2, and [h]�;q is convex for � = 1:5.6



The value of �c is important because if [hi;j ]�;q is monotone and convex for r > 0 and(i; j) 2 S, then the Gauss-Hermite transform (3.3) is convex. This is usually undesirable;a preferable strategy is to choose � so that only some of the functions [hi;j ]�;q are convex.We will return to this point when we discuss numerical results.4 Optimization AlgorithmsThe algorithm that we use to solve the distance geometry problem (1.1) searches for a globalminimizer of the function de�ned by (1.2) and (1.3) with a continuation algorithm basedon the Gauss-Hermite transform hfi�;q. Given a sequence of smoothing parameters�0 > �1 > � � � > �p = 0;the continuation algorithm uses a local minimization algorithm to determine a minimizerxk+1 of hfi�k;q. The local minimization algorithm uses the previous minimizer xk as thestarting point for the search. In this manner a sequence of minimizers x1; : : : ; xp+1 isgenerated, with xp+1 a minimizer of f and the candidate for the global minimizer. Algorithmdgsol speci�es the continuation algorithm.Algorithm dgsolChoose a random vector x0 2 Rm�3.for k = 0; 1; : : : ; pDetermine xk+1 = locmin (hfi�k;q; xk).end doIn our notation, locmin (hfi�k;q; xk) is the minimizer generated by a local minimizationalgorithm with the starting point xk. The local minimization algorithm has to be chosenwith some care because hfi�;q is not twice continuously di�erentiable. The Hessian matrixis discontinuous at points where the argument of hi;j coincides with either li;j or ui;j . Wecannot expect to avoid these discontinuities, in particular, if li;j and ui;j are close.For locmin we used a limited-memory variable metric algorithm of the formxk+1 = xk � �kHkrf(xk);where �k > 0 is the search parameter, and the approximation Hk to the inverse Hessianmatrix is stored in a compact representation that requires the storage of only 2nv vectors,where nv is chosen by the user. The compact representation of Hk permits the e�cientcomputation of Hkrf(xk) in (8nv +1)n 
ops, where n = 3m is the number of variables; allother operations in an iteration of the algorithm require 11n 
ops.We used the variable-metric limited-memory code vmlm in MINPACK-2. For additionalinformation on this code, seehttp://www.mcs.anl.gov/home/more/minpack27



The performance of the vmlm code depends on the amount of memory speci�ed by nv and onthe tolerances �r and �a. We used nv = 10. The tolerances �r and �a specify the accuracy ofthe minimizer; vmlm terminates with an iterate x if the code decides that either the relativeconvergence test jf(x)� f(x�)j � �rjf(x�)jor the absolute convergence testmax fjf(x)j; jf(x�)jg � �ais satis�ed for some minimizer x� of f . In our numerical results we used �r = �a = 10�8,which are not considered stringent values.The random vector x0 2 Rm�3 used for algorithm dgsol depends on the distance data.In particular, we chose the coordinates xi 2 R3 of the starting point so that kxi�xjk = �i;jfor some (i; j) in S. Algorithm struct speci�es the starting point.Algorithm structSet L = f1; : : : ; mg.do until L is emptyChoose i 2 L.Set Mi = fj : (i; j) 2 S; j 2 Lg.For each j 2 Mi, generate xj 2 R3 such that kxi � xjk = �i;j .Remove i from L.end doThe starting point generated by this algorithm satis�es at least m� 1 distance constraints,where m is the number of atoms. Thus, the starting point is a solution to the distancegeometry problem if S contains less than m constraints.We also experimented with starting points that were chosen randomly, but since ourresults were not strongly dependent on the method used to generate the starting points, wepresent results for only the method speci�ed above.5 Computational ExperimentsIn our computational experiments we studied the distance geometry problem (1.1) with thepairwise potential pi;j de�ned by (1.3). We used the dgsol algorithm as outlined in Section 4and the Gauss-Hermite transform (3.3) with q = 10 nodes in the Gaussian quadrature.We tested dgsol on data derived from protein fragments of a DNA-binding protein [10, 27]available (ID code 1GPV) in the PDB data bank. We considered protein fragments with100 and 200 atoms. For each fragment, we generated a set of distances f�i;jg by using alldistances between the atoms in the same residue as well as those in the neighboring residues.8



Formally, if Rk is the kth residue, thenS = f(i; j) : xi 2 Rk; xj 2 (Rk [Rk+1)g (5.1)speci�es the set of distances. This is not the only way to generate the sparse set S. Forexample, Le Grand, Elofsson, and Eisenberg [20] generate S by settingS = f(i; j) : kxi � xjk � cg (5.2)for some cuto� c > 0.The main aim of the computational experiments is to show that the dgsol code, whichis based on Gaussian smoothing, provides a reliable and e�cient approach to the solutionof the distance geometry problem (1.1). In our computational results, a set of coordinatesx 2 Rm�3 solves the distance geometry problem (1.1) if(1� �d)li;j � kxi � xjk � ui;j(1 + �d); (i; j) 2 S; (5.3)for some tolerance �d. We used �d = 10�2 since this tolerance re
ects the accuracy availablefor bonds lengths [5].A secondary aim of the computational experiments is to study the dependence of thesolution structures on variations on the bounds li;j and ui;j . For this reason we formulateddistance geometry problem with lower and upper bounds li;j and ui;j by settingli;j = (1� ")�i;j ; ui;j = (1 + ")�i;j ; (5.4)for some " 2 (0; 1). With this formulation, we are able to study the behavior of thestructures as " varies over (0; 1). We varied " over [0:04; 0:16] since this translates into a4 � 16% deviation from the expected value for the bond length. These variations seem tobe typical [5].In many of our numerical results we examine the performance of dgsol as " and � vary.In dgsol we use uniformly spaced smoothing parameters�k = �0�1� kp� ; 0 � k � p:The number p of continuation steps was set top = d20�0e:This choice implies that the separation �k+1��k between consecutive smoothing parametersis about 0:05.The choice of �0 is important. If we start with �0 large, then all the information inthe function is destroyed, and it is di�cult to trace multiple paths. If we choose �0 small9



then hfi�0;q will have many minimizers. Choosing �0 so that hfi�0;q has a few minimizersallows us to trace multiple paths, and thus increases the chances of determining a globalminimizer.A reasonable �0 is obtained if half of the [hi;j ]�0;q are not convex. This provides anautomatic choice for �0 that is not large and that works well. We can determine �0 byrecalling that (see Section 3) for each function hi;j there is a �i;j such that [hi;j ]�;q is convexfor � � �i;j . We use�i;j = � 1p5�i;j +p2(1� �i;j)�ui;j ; �i;j = li;jui;j ;which speci�es that �i;j is a convex combination of 1=p5 and p2. If li;j = ui;j then�i;j = 1=p5, which we know guarantees convexity of [hi;j ]�;q. This observation is importantbecause in our data li;j � ui;j . We have veri�ed, by plots of [hi;j ]�;q similar to those inFigure 3.1, that for this choice of �i;j , the function [hi;j ]�;q is convex for � � �i;j. It wouldbe interesting to obtain a formal proof of this result.Given �i;j as de�ned above, we now choose �0 as the median of all the �i;j . With thischoice, half of the pairwise functions [hi;j ]�0;q should not be convex. Hence, the initialfunction hfi�0;q is smooth but not necessarily convex.Experiment 1In our �rst computational experiment we compare dgsol with vmlm from a set of 100 randomstarting points generated by algorithm struct of Section 4. We did this comparison becausemulti-starts with a local optimization code is a standard approach to solving global opti-mization problems. Comparisons with simulated annealing and genetic algorithms wouldalso be of interest but are unlikely to perform better than multi-starts unless they also relyon optimization software to produce accurate structures.We conducted two tests with " = 0:04, one with vmlm and the other with dgsol. Wecompare the quality of the solutions obtained by vmlm and dgsol by computing the potentialfunction (1.2) at the �nal iterate of the algorithm. These function values are then sortedand plotted in Figure 5.1.An immediate observation that can be made from Figure 5.1 is that the potential func-tion (1.2) has at least 100 distinct minimizers. We justify this observation by noting thatall the minimizers obtained by the vmlm algorithm have distinct function value. This ob-servation is of interest because it is usually di�cult to �nd the global minimizer when theoptimization problem has many minimizers.The results in Figure 5.1 show that the vmlm algorithm fails to �nd the global minimizerin all cases. This is perhaps not surprising because the vmlm code is a local minimizationalgorithm. Nevertheless, we expected to �nd the global solution in at least a few cases.10
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The results in Table 5.1 show that dgsol is signi�cantly more reliable than the multi-started vmlm for both the 100-atom fragment and the 200-atom fragment, For both algo-rithms the reliability increases with ". This result is to be expected because as " increases,the measure of the solution set also increases. In other words, if x 2 Rn satis�es (1.1) forli;j and ui;j speci�ed by (5.4), then x also satis�es (1.1) for all larger ".Note that the reliability of both algorithms decreases as we go from the 100-atom frag-ment to the 200-atom fragment. This result is to be expected because the number ofminimizers of the distance geometry problem also increases as the number of atoms in-creases.We emphasize that we have been using dgsol with 100 starting points to test the reliabil-ity of dgsol. In practice we can expect to �nd a global minimizer after at most six startingpoints. This rule of thumb is justi�ed by the results in Table 5.1, which show that in allcases we have 40% reliability, and thus a standard calculation shows that after six trials wehave a 95% chance of �nding a global minimum.Experiment 3In general, the distance geometry problem (1.1) can have many solutions, so there is noreason to expect that the structures generated by dgsol will agree with the structure thatwas used to generate the data. In this experiment we study the relationship between thestructures obtained for various " and the original data.We compare structures by measuring the deviation between the coordinates and thedistances for the generated structure and the original structure. A standard measure forcomparing structures is the coordinate RMSD (root-mean-square-deviation)EC = min8<: 1m mXi=1 kyi � Qxik2!1=2 : Q 2 R3�3; orthogonal9=; ; (5.5)where m is the number of atoms in the structure. Optimal superposition by translation isassured if the structures fxig and fyig are translated so their center of gravity is at theorigin. In Table 5.2 we present the results of computing EC for the global solutions foundby dgsol.The computation of the coordinate error EC is known as the orthogonal Procrustesproblem in the numerical analysis literature; EC can be computed accurately and e�cientlyfrom the singular value decomposition of the 3 � 3 matrix XTY , where X = [x1; : : : ; xm]and Y = [y1; : : : ; ym]. For details see, for example, Golub and VanLoan [9, page 582].The coordinate error EC is commonly used to measure the deviation between structures.In particular, many researchers require that structures have an EC of 1-2 �A to be consideredsimilar, while others only require an EC of 2-3 �A. These criteria are not universally accepted12



Table 5.2: Coordinate error EC for 100-atom (left) and 200-atom (right) fragmentsEC (RMSD) EC (RMSD)" Min Ave " Min Ave0.04 0.063 0.067 0.04 1.5 1.70.08 0.11 0.12 0.08 1.5 1.90.12 0.27 0.60 0.12 1.4 2.20.16 0.37 1.0 0.16 0.7 2.9since EC has a number of de�ciencies. In particular, EC is dependent on the scaling of thecoordinates. For a discussion of these de�ciencies, see Mairov and Crippen [21].If we accept the view that proteins with EC of 2-3 �A are similar, then the results inTable 5.2 show that, on the average, dgsol is able to �nd structures that are similar to theoriginal structure. If we adopt the more stringent criterion that structures with EC of 1-2�A are similar, then our results show that dgsol �nds structures that are similar if " � 0:08,that is, if the lower and upper bounds di�er by about 16%. If we increase " past 0:08 thenthe average of EC becomes larger than 2 �A, but, as shown by the smallest EC , we are stillable to �nd similar structures.We did not expect to �nd small values for EC since our data does not include all thedistances, but only the distances between successive residues in the sequence. Moreover,note that we are not including all the distances within a given cuto�, as when the sparsityset S is speci�ed by (5.2).Experiment 4In the last experiment we did not consider the performance of dgsol. Instead, we wantedto verify, computationally, that the number of minimizers of the Gauss-Hermite transformhfi�;q decreases as � increases. This experiment is interesting from a theoretical viewpointbecause it provides insight into the smoothing approach. We used vmlm with the 100random staring points generated by algorithm struct on the 200-atom fragment.The number of distinct minimizers found by vmlm is plotted in Figure 5.2. For theseresults, minimizers x1 and x2 of hfi�;q are declared to be the same ifjhfi�;q(x1)� hfi�;q(x2)j � �rmax fjhfi�;q(x1)j; jhfi�;q(x2)jg ;where �r = 10�6, or if max fjhfi�;q(x1)j; jhfi�;q(x2)jg � �a;13



where �a = 10�2. In other words, the minimizers are declared to be equal if they are smallerthan �a, or if they are larger than �a and their relative error is at most �r.The number of minimizers is sensitive to the choice of �r and �a, but the general trendis clear. The results in Figure 5.2 show that, as predicted by the theory, the number ofminimizers of hfi�;q decreases as � increases. Also note that the initial drop in the numberof minima is dramatic as � varies in (0; 1).200-atom fragment
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Figure 5.2: Number of minimizers of hfi�;q as a function of � for " = 0:046 Concluding RemarksOur computational results suggest that protein structures can be determined by solving adistance geometry problem with dgsol and that the approach based on dgsol is signi�cantlymore reliable and e�cient than multi-starts with an optimization code.Our results also raise a number of interesting issues that we plan to address in futurework. In particular, we wish to expand our testing to larger protein fragments (possibly acomplete protein) and to distance data generated from NMR experiments.Another interesting issue is the dependence of the structures on the distance data. Froma mathematical viewpoint, we do not know when structures can be determined uniquelywith exact, but incomplete distance data. For some results in this direction, see Hendrickson[13, 14].AcknowledgmentsOur work has been in
uenced, in particular, by conversations with Paul Bash, GordonCrippen, and Teresa Head-Gordon. Gail Pieper, as usual, deserves special thanks for hercomments on the manuscript. 14
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