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1 Introduction

High-order accurate schemes for conservation laws for
unstructured meshes are not nearly so well advanced
as such schemes for structured meshes. Consequently,
little or nothing is known about the possible prac-
tical advantages of high-order discretization on un-
structured meshes. This article is part of an ongoing
effort to develop high-order schemes for unstructured
meshes to the point where meaningful information
can be obtained about the trade-offs involved in us-
ing spatial discretizations of higher than second-order
accuracy on unstructured meshes.

This article describes a high-order accurate ENO
reconstruction scheme, called DD-L,-ENO, for use
with vertex-centered upwind flow solution algorithms
on unstructured meshes. The solution of conservation
equations in this context can be broken naturally into
three phases:

1. Solution reconstruction, in which a polyno-
mial approximation of the solution is obtained
in each control volume.

2. Flux integration around each control volume,
using an appropriate flux function and a quadra-
ture rule with accuracy commensurate with that
of the reconstruction.

3. Time evolution, which may be implicit, ex-
plicit, multigrid, or some hybrid.

This article focuses primarily on solution recon-
struction. A new high-order ENO reconstruction

*Postdoctoral Researcher. Currently: Assistant Profes-
sor, Department of Mechanical Engineering, University of
British Columbia, 2324 Main Mall, Vancouver, BC V6T 174,
Canada. Voice: (604) 822-1854. Fax: (604) 822-2403. E-mail:
cfog@mech.ubc.ca.

This work was supported in part by the Mathematical, In-
formation, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.
This article is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.

technique for unstructured meshes is presented. The
scheme is uniformly accurate for smooth functions,
even near extrema. Near discontinuities, the scheme
gracefully reduces the order of accuracy to control
overshoots. Because the scheme is based on least-
squares reconstruction, implementation on unstruc-
tured meshes is straightforward. Finally, the present
scheme has better convergence behavior than stencil-
searching ENO schemes because the ENO property is
obtained by the use of weights which vary smoothly
with the data rather than by switching.

Section 2 summarizes of existing reconstruction
techniques. Section 3 discusses the new reconstruc-
tion scheme, with some attention given to implemen-
tation details. Section 4 gives examples of the capa-
bilities of the reconstruction scheme. Section 5 dis-
cusses a number of technical points concerning con-
struction of a flow solver compatible with the new
scheme. Section 6 gives several example solutions to
the Euler equations. Finally, Section 7 gives some
conclusions from the present work and discusses some
issues still remaining for high-order accurate solution
of the Euler equations on unstructured meshes.

2 Overview of Reconstruction
Techniques

The use of high-order spatial discretization on struc-
tured meshes is commonplace. The development of
MUSCL schemes [1] focused on attaining high-order
accuracy for smooth solutions, with a drop in ac-
curacy near discontinuities and near extrema in the
solution. More recently, essentially non-oscillatory
(ENO) schemes have been developed to ensure uni-
formly high-order accuracy for all points with a
smooth neighborhood. FEarly work in one dimen-
sion [2, 3, 4] demonstrated the feasibility of this recon-
struction scheme, which searches for the smoothest
stencil for reconstruction in each control volume.
Extensions to multiple space dimensions soon fol-



lowed [5, 6, 7, 8].

Stencil-searching ENO schemes share the problem
that small changes in the solution from time step
to time step causes stencil “switching” and prevents
convergence to a numerical steady-state. This prob-
lem has recently been addressed by a new family
of weighted ENO (WENO) schemes [9, 10]. These
schemes use a weighted sum of all possible stencils
rather than searching for the smoothest possible sten-
cil.  Stencils containing non-smooth data are not
excluded by theses schemes, but instead are given
weights on the order of truncation error. Because the
weights vary smoothly with the data, these schemes
should converge well (although we are unaware of any
studies of this issue). These schemes are one dimen-
sional and are applied direction-by-direction for re-
construction on multidimensional structured meshes.

Several extensions of ENO schemes to unstruc-
tured meshes have been made based on stencil-
searching approaches [11, 12]. These schemes, like
their structured-mesh counterparts, are guaranteed
to reconstruct based on smooth data when this is
possible. They have the same convergence difficulties
as structured stencil-searching schemes.

A more common approach to reconstruction on un-
structured meshes is to use least-squares reconstruc-
tion followed by some limiting procedure to eliminate
overshoots [13, 14].* The reconstruction scheme de-
scribed here is an extension of previous work [16] on
the use of data-dependent least-squares reconstruc-
tion to produce ENO schemes. Previously, high-order
reconstruction was demonstrated in one dimension,
and second-order reconstruction and flow solutions
The present work
discusses high-order reconstruction and flow solution
in two dimensions. The reconstruction scheme uses a
fixed stencil similar to that used by a typical k-exact
least-squares scheme.
least-squares reconstruction is computed, and the
smoothness of the data on the stencil is inferred from
the results. Data-dependent weights are applied to
the least-squares problem to virtually eliminate the
influence of non-smooth data, and a data-dependent
reconstruction is computed. As in WENO schemes,
the data-dependent weights are chosen to satisfy the
ENO property of Liu, Osher, and Chan [9].

An important difference between the present
scheme and WENO schemes is their behavior when a
smooth stencil does not exist. Where enough smooth
data exists — near a single discontinuity or boundary,

were shown 1n two dimensions.

An initial data-independent

*Similar in intent are SLIP schemes [15], which are closely
related to FCT schemes. SLIP schemes are local extremum
diminishing and can in principle be extended to higher than
second-order accuracy.

for example — each scheme reconstructs to the nom-
inal order of accuracy. Where there are not enough
smoothly connected neighbors, the scheme automati-
cally reduces the order of accuracy of the reconstruc-
tion locally rather than contaminating the recon-
struction. The result is a reconstruction scheme that
1s well behaved near multiple discontinuities while re-
taining high-order accuracy elsewhere.

3 Data-dependent
Least-Squares
Reconstruction

Consider a domain €2 that has been tessellated;
the tessellation has a characteristic length scale Az,
at least locally. The median dual of the tessellation
defines for each vertex v; a surrounding control vol-
ume V;. For any function u(#) defined on § and its
control-volume averaged values w;, the DD-Ls-ENO
will compute an expansion R;(# — #;) about v; that

e conserves the mean;

e has compact support;

e reconstructs exactly polynomials of degree < £k
(equivalently, R;(# — &) — u(&) = O (Axk‘l'l));
and

e satisfies the ENO property of Liu, Osher, and
Chan [9].

The remainder of this section describes this process
in two dimensions. Reduction to one dimension, ex-
tension to three dimensions, and application to struc-
tured meshes are all straightforward variations on the
theme.

3.1 Conservation of the Mean

Conservation of the mean within a control volume
requires that

/v, Ri(# — #;)dA = /V u(F)dA.

This can be accomplished by using zero-mean poly-
nomials in expanding about v;, that is, by writing
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By inspection, the expansion of Equation 2 satisfies
Equation 1. As a practical matter, the integral of
Equation 3 is most easily computed by using Green’s
theorem to convert it to a boundary integral around
Vi.
1
This integral may be evaluated exactly by using a

Gaussian quadrature of appropriate order along the
boundary of the control volume.
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3.2 Compact Support

Compact support implies that the reconstruction R;
will only use data from a stencil {V;}; whose members
are both physically near #; and topologically near
control volume 7. The size of the compact stencil
is determined by the number of required derivatives.
In practice, including additional neighbors allows lee-
way for ignoring some non-smooth data while retain-
ing high-order accurate reconstruction. The use of 3,
8, and 14 neighbors for second-, third-, and fourth-
order accuracy (to compute 2, 5, and 9 derivatives,
respectively) seems to be sufficient.

The initial
stencil consists of first vertex neighbors.

Stencils are determined iteratively.
For con-
trol volumes that need a larger stencil, second vertex
neighbors are added. Additional layers of neighbors
are added until a large enough stencil has been found
for each control volume; this process is illustrated in
Figure 1. Nearly all interior points use first neigh-
bors for second order and add second neighbors for
third and fourth order. Boundary points often add
another layer of neighbors. Stencils are computed in
a pre-processing step and stored for later use.

3.3 Accuracy for Smooth Functions

Accuracy of a reconstruction for smooth functions
can be stated in two equivalent ways. The recon-
struction can be said to be k-exact for some k if,
when reconstructing P(Z)e{z™y" : m+n < k} from

control volume averages,

Ri(% — &) = P(&). (5)
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Figure 1: Reconstruction Stencils for DD-L2-ENO

Equivalently, when reconstructing a general function
u(Z) from control volume averages,

Ri(% — &) = u(#) + O (Axh+Y) . (6)

In practice, this accuracy requirement means that the
modified Taylor series expansion of R; given in Equa-
tion 2 must be carried out through the kth deriva-
tives. To compute these derivatives, we seek to min-
imize the error in predicting the mean value of the
function for control volumes in the stencil {V;},. The
error for a single control volume is given by

1
/ Rl(f— fz)dA —uj.
V.
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Because this integral can be expressed in terms of ge-
ometric quantities and approximations to derivatives
of u at &;, the errors E;; can be used to formulate
a least-squares problem for the derivatives. The re-
mainder of this subsection develops this formulation
in detail.

The mean value, for a single control volume V;, of
the reconstructed function R; is
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To avoid computing moments of each control volume
in {V;}, about v;, replace x — 2; and y — y; with
(x—z;)+(x;—x;) and (y—y; )+(y; —yi), respectively.
Expanding and integrating, we obtain
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The geometric terms in this equation are of the gen-
eral form
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Equation 11 evaluates the mean value of the re-
construction R;(Z — &;) for a control volume j, given
the low-order derivatives of the solution at v; and
low-order moments of the control volumes. With this
in hand, we can easily write down a weighted least-

squares problem for the derivatives.
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3.4 Solution of the

Problem

Least-Squares

In the present work, the least-squares problem of
Equation 12 is solved by using Householder transfor-
mations to reduce the left-hand side of Equation 12
to upper-triangular form. After the upper triangu-
larization is complete, back-substitution yields the
required derivatives. There are several good reasons
to use this approach instead of the simpler normal
equation solution to the least-squares problem.

e Using Householder transformations gives a more
accurate solution to the least-squares problem
than using normal equations, especially for 1ll-
conditioned matrices. The error in the solution is
O (eK) using Householder transformations and
@) (6[(2) for normal equations, where K is the
condition number of the non-square matrix and
¢ is machine precision [17]. This also implies
greater robustness.

e As a further improvement in robustness, the
Householder transform approach can detect sin-
gular and nearly singular matrices on the fly. If
the least-squares problem is (nearly) singular, a
column with (nearly) zero elements on and below
the diagonal will be encountered during House-
holder triangularization. This failure occurs be-
cause the stencil is inadequate to support the
requested number of derivatives. To resolve this,
either more points must be added to the recon-
struction stencil or the reconstruction must be
modified to include fewer derivatives. The latter
course is adopted in this work. Derivatives are
computed only to the highest order for which all



derivatives can be computed; the additional in-
complete set of derivatives is discarded, because
no increase in order of accuracy is possible by
retaining them.

e After the upper triangularization of the least-
squares problem is complete, the residual for the
solution is available at virtually no cost. Before
back substitution, the problem looks like the fol-

lowing.
B x x x PR x T a_u rl
]
r =z x o r2
T T oy
19%u
2 dx? r
m
x 8%u —
x dxdy m+1
19%u
0 2 9y?
. Tn—1
L . t Tn

(15)
If we seek m derivatives using an n point stencil,
the first m equations will be satisfied exactly.
The remaining n — m equations will not be; the
residual R, which is the same as the residual for
the original problem, is

(16)

Scaling this by the RMS value of the geometric
weight removes local mesh scale effects:

R

N

R has several uses. Within the context of this
work, R will be used to compute data-dependent
weightings.
well the solution is approximated locally, making
it yet another candidate for use as a refinement

R = (17)

R also i1s a good measure of how

measure.

3.5 Reconstruction of Non-smooth

Functions

The reconstruction scheme described above is de-
signed for smooth functions. For non-smooth func-
tions — those with O (1) discontinuities — such a
scheme allows overshoots of O (1). This is not de-
sirable for either function approximation or scien-
tific computation, where such overshoots can easily
produce aphysical values. This problem has typi-
cally been addressed by performing a reconstruction

with geometric weights and preventing overshoots
by heuristically limiting, or reducing, the derivatives
(e.g., [13, 14]). While this approach is not unsuccess-
ful, it provides only a mechanical solution to an un-
derlying theoretical problem. Specifically, the stencil
for a control volume ¢ near a discontinuity will include
control volumes j that lie on the opposite side of the
discontinuity. Because the function is not smooth,
approximating data in V; by a modified Taylor series
around v; is inappropriate. Ignoring this mathemati-
cal fact causes the unphysically large derivatives that
limiting seeks to reduce.

A better alternative is to reconstruct using only
data that is smoothly connected to data in 7. This
approach is taken directly by ENO schemes, which
by design search for a smooth stencil and completely
exclude non-smooth data from the reconstruction.
WENO schemes work less directly, using all possible
stencils and weighting those containing non-smooth
data with a weight that is of the order of the trunca-
tion error.

In the present weighted least-squares context,
weights are assigned to control volumes rather than
to stencils. Nevertheless, the goal is to weight non-
smooth data with O (Axk‘l'l) to satisfy the ENO
condition of Liu, Osher, and Chan [9]. We seek to
construct a data-dependent weight that will multi-
ply the previously calculated geometric weight. This
construction is based on two observations.

1. If the function is non-smooth and the neighbor-
hood of V; crosses a discontinuity, then a mod-
ified Taylor expansion does not adequately de-
scribe the function locally and there will be one
or more control volumes j for which

A%/V, Ri# = E)dA —w; = 0 (). (18)

This means that the residual R of the least-
squares problem will be @ (1). On the other
hand, for stencils that cover only smooth regions
of the function,

Ri(Z — &) —u(Z) = 0 (AT (19)
and R is also O (Axk+1). Therefore, R can be

used as a gauge of the smoothness of the data
for the entire stencil {V;};.

2. Whether the data in V; is smoothly connected
to data in V; can be determined asymptotically
by evaluating

() smoothly connected
Uj — U
— =< 0 (AJJ ) not smoothly
|Z; — i
connected

(20)



We seek a data-dependent weighting that uses R
to detect stencils with non-smooth data and I;j:;ZI
to determine which data within that stencil should
be excluded and which included. One appropriate

weighting is

1
DD __
W= iy [T (21)
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i | L.
where R |x.?_x_’| 1s a smoothness indicator anal-

ogous to the divided difference indicators of [9, 10]
but appropriate for unstructured meshes and least-
squares reconstruction. R is computed from a
data-independent least-squares reconstruction, as de-
scribed above. We are concerned only with the
asymptotic behavior of VVZ»?D, so the value of £ is
not critical; 0.1 seems to be a good choice.

Asymptotically, the behavior of this weighting for
the three important cases is

1+ O (Azth+D)
o)

smooth stencil

smooth data in stencil
w/ nonsmooth data

nonsmooth data

DD _
WhP =

0 (Ax_(k +1))
(22)
That is, for stencils containing only smoothly con-
nected data, the data-dependent weights are all ap-
proximately 1, ensuring that the good qualities of the
data-independent reconstruction will be preserved for
smooth functions. For stencils that are not entirely
smooth, the data-dependent weight for non-smooth
data 1s smaller than that for smooth data by a factor
of the order of truncation error. These weightings sat-
isfy the ENO condition of Liu, Osher, and Chan [9].
The data-dependent least-squares problem is
closely related to the data-independent problem. The
jth row in the least-squares problem of Equation 12 is
modified by scaling with the data-dependent weight.
With no further computation, the least-squares prob-
lem becomes
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As data-dependent weights are assigned, the num-
ber that are numerically large is counted. If too
few control volumes are assigned high data-dependent
weights, insufficient smoothly connected data is avail-
able to compute the desired number of derivatives.!
Similar to the data-independent case, this results in
a lowering of the nominal order of accuracy of the
reconstruction locally. This loss of accuracy is most
likely to occur for control volumes straddling disconti-
nuities; near the intersection of two discontinuities; or
near the impingement of a discontinuity on a bound-
ary. Because no non-smooth data has a significant
impact on the reconstruction, however, large over-
shoots in the reconstruction are not expected. This
would not be true if non-smooth data were included.
In contrast, stencil-searching ENO schemes such
as Abgrall’s [12] can sometimes avoid local degrada-
tion of accuracy near a discontinuity by extending
the stencil farther away from the discontinuity. How-
ever, for cases with medium resolution in which some
control volumes do not have enough smoothly con-
nected neighbors, stencil-searching schemes will use
non-smooth (and therefore irrelevant) data. This ap-
proach can lead to large overshoots for such cases.
Also, consider a control volume V; that is divided
by a discontinuity and therefore has an averaged func-
tion value that lies between the values on either side
of the discontinuity. Here, reconstruction makes little
physical sense because no smoothly connected data
exists. The present scheme can detect such a situa-
tion and choose to reconstruct the solution in V; as
piecewise constant, whereas stencil searching schemes
will still seek a high-order polynomial reconstruction.

3.6 Summary

The data-dependent least-squares approach can be
used to produce function reconstructions that sat-
isfy the ENO condition. The least-squares heritage
of these DD-L4-ENO schemes allows them to be ap-
plied easily to function reconstruction on unstruc-
tured meshes in multiple dimensions. The algorithm
can be summarized as follows:

e Input. A computational mesh, structured or
unstructured.
The average value of a function to be recon-
structed for each control volume.

"Because data-dependent weights should all be O (()1) for
smooth data, a cutoff value of 0.1 is used to determine whether
a weight is “high”.



e Output. An ENO reconstruction of the func-
tion, in the form of a modified Taylor series ex-
pansion about each vertex, valid within the con-
trol volume surrounding the vertex.

e Preprocessing. For each control volume V;,
find a sufficiently large set of nearby control vol-
umes {V; }; for reconstruction of the desired or-

der.

e Preprocessing. Compute all control volume
moments that will be needed in the least-squares
problem of Equation 12.

e Reconstruction. For each control volume each
time a function 1s reconstructed:

1. Compute geometric weights, and construct
the arrays needed for the data-independent
least-squares problem of Equation 12.

2. Solve the least-squares problem using
Householder transformations. The solution
algorithm should not destroy the original
arrays and should return both the solu-
tion and the residual of the least-squares
problem, along with information about how
many derivatives were actually calculable.

3. Using the residual of the least-squares prob-
lem, compute a data-dependent weight for
each control volume in the stencil and mul-
tiply the appropriate row of the original
least squares problem by this weight. Keep
track of how many high weights there are,
since this limits the number of derivatives
that can be plausibly calculated.

4. Solve the least-squares problem again. The
derivatives computed give an ENO recon-
struction when substituted into Equation 2.

4 Function Reconstruction

The reconstruction should be uniformly high-order
accurate for smooth functions. To show this, we have
reconstructed the function

u(x,y) = cos(rx? + 4my) (26)
on the square [0,1] x [0, 1] using a series of unstruc-
tured triangular meshes ranging in size from 491 to
26651 vertices. The Ly and Lo norms of the error
in reconstruction of this function are shown in Fig-
ure 2 for second- through fourth-order accuracy. Er-
ror norms are computed by using the difference be-
tween the analytic function and the reconstructed
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Figure 2: Convergence of k-Exact Reconstruction of
a Smooth Function

function within each control volume. Sixth-order
quadrature is used to compute the error norms in
order to eliminate quadrature error in the computa-
tion of the norms. The accompanying table verifies
that the expected asymptotic convergence rates are
achieved.

The new reconstruction scheme was also tested for
non-smooth function reconstruction in two dimen-



Figure 3: Contours of Function Defined by Equa-
tion 27.
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Figure 4: Control Volumes That Fail to Attain
Second-Order Accuracy (k = 1)

sions. The function chosen is that of Abgrall [18].}

u(xy):{f(x_wt\/?y) v < S
’ flx + cot \/Ty) + cos (2my) x> L
(27)
with
—7sin (37”7“2) r < —%
f(r) =< |sin(277)] Ir| < & (28)
2r — 1+ +sin(37r) r>1

Contour plots of this function are shown in Figure 3
Because the reconstruction scheme is k-exact (with
or without data-dependent weighting), we know that

Several typographical errors in the definition of this func-
tion in [18] cause a mismatch with the plotted function there;
the function shown here matches the plots in [18].
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the accuracy of the reconstruction in smooth regions
of the function will be of order £41. Norms of the er-
ror in the reconstruction are meaningless in this con-
text, because the difference between the actual func-
tion and its reconstruction is guaranteed to be O (1)
in control volumes that are crossed by a discontinu-
ity. Instead, Figures 4-6 show the control volumes
for which the nominal order of accuracy was not ob-
tained on an isotropic triangular mesh with 26651
vertices for second through fourth order. The discon-
tinuities in the function are clearly visible in these
figures as control volumes with reduced reconstruc-
tion accuracy. In all control volumes away from the
discontinuities, the nominal order of accuracy is at-
tained. Table 1 shows the distribution of actual re-
construction accuracy for each case.



Table 1: Actual Accuracy of Reconstruction for Ab-
grall’s Function

Nominal Achieved Order
Order 1 2 3 4
2 245 | 26406 — —
3 233 82 | 26336 —
4 290 108 300 | 25953

5 Flow Solver Implementation

In addition to reconstruction, there are several other
details in the construction of a high-order accurate
flow solver which require careful attention.

5.1 Flux Quadrature

After the solution has been reconstructed from
control-volume averages to a polynomial in each con-
trol volume, the second phase of the flow solution
procedure is computation of a flux integral, or resid-
ual, for each control volume. This integration must
be done to at least the same order of accuracy as the
solution reconstruction to obtain high-order accuracy.
In the present work, the integration is performed by
Gaussian quadrature [19] around the boundary of
each control volume. Gaussian quadrature has the
property that an N-point quadrature along a line seg-
ment is 2N-order accurate. Accordingly, first- and
second-order accurate schemes (k= 0,1) use N = 1,
and third- and fourth-order schemes (k = 2,3) use
N = 2. Unfortunately, for the median dual this is not
quite the full story, since the control volume bound-
ary separating two adjacent volumes i1s not a single
segment but two segments, each extending from the
middle of an edge of the mesh to the centroid of a tri-
angle. For first and second order, this is not a prob-
lem; a single point can still be used. Although in
practice using the mid-edge seems adequate, in prin-
ciple this point should be the centroid of the pair of
line segments. For third and fourth order, two points
on each part of the segment are, in principle, required.
These options are illustrated in Figure 7. In both
cases, the present work sticks to the letter of the law,
using the quadrature points shown on the right side
of the figure. As we shall see, computational time
is dominated by reconstruction for high-order, so the
additional flux computations are not a severe time
penalty. At each quadrature point, the flux is eval-
uated using Roe’s approximate Riemann solver [20].
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Figure 7: Choices for Gauss Integration Points for
the Median Dual
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5.2 Boundary Description and Imple-
mentation

A piecewise linear boundary description, as given by
a polygonal input set, gives a second-order accurate
representation of the shape of a smoothly curved
boundary. For higher-order schemes, a more accu-
rate boundary representation is required. The ap-
proach taken here is to specify, for each boundary
segment, the inward normal at each end, as shown
in Figure 8. This is equivalent to specifying slopes

Figure 8: Schematic of High-Order Boundary De-
scription

at the end of each segment and allows the flexibility
to include sharp corners, because normals are defined
edgewise rather than pointwise. This slope informa-
tion is used to construct a piecewise cubic representa-
tion of the surface, which is fourth-order accurate for
smoothly curved boundaries. This cubic representa-



tion is used to determine the Gauss integration data
and control volume moments for control volumes on
the boundary.

5.3 Computational Resources

Ultimately the question of practicality of high-order
schemes will depend on trade-offs between accuracy
and computational requirements. As preliminary
data towards settling this question, requirements for
CPU time and memory for the present implementa-
tion are tabulated here.

Table 2: Resource Requirements for High-Order
FEuler Solution on Two-Dimensional Unstructured
Meshes

Resource Order of Accuracy

Usage 2 | 3 | 4

CPU Time (psec / vertex [ evaluation)®
Reconstruction 255 | 1580 | 2180
Interior Flux Quad 130 573 649
Boundary Flux Quad 5.5 12.4 12.4
Memory (words / vertex)®

Solution 4f 4f 4f
Derivatives 8f 20f 36f
Neighbor Information® Ti 19: 19:
Gauss Point Locations? 6f 24 f 24 f
Gauss Point Normals! 6f 12f 12f
Gauss Weights! 3f 6f 6f
Total 27f | 84f | 100F
+7¢ | +192 | +19:

“On a 110 MHz SPARC 5

b ¢ = floating point, i = integer

¢Average for interior vertices

d Assuming three times as many edges as vertices

6 Flow Solutions

6.1 Supersonic Vortex Flow

A smooth flow was calculated to validate the accu-
racy of the high-order boundary shape definition and
flux quadrature. The flow chosen was a supersonic
vortex flow in a quarter-circular annulus. This is an
isentropic flow in which the velocity is inversely pro-
portional to radius and the density is given by

-3
r

where the subscript ¢ denotes quantities at the inner
boundary. For this case, r; was chosen to be 2, r, = 3,
and M; = 2. Four isotropic triangular meshes were

—1
p=pi [1 + VTMZZ (29)

10

10
107 .
2
(%2}
c
[
a)
o
S0}
3 -3
g 10° ¢ 1
o
(@]
£
2 e—e L1, Second \\\ AN
w " A—a L2, Second N\ N
10 | o--o L1, Third \\\\ \:\ 3
A ——-A L2, Third N a
e —e L1, Fourth AR ‘e
A— —A L2, Fourth N
10° | |
10 100 1000 10000
Number of Vertices
Convergence Order of Error Norms
Nominal Norm
Order Ly Lo
2 1.79 1.78
3 2.88 2.87
4 3.64 3.61

Figure 9: Error in Density for Supersonic Vortex
Flow

used for this case, containing 73, 253, 941, and 4398
vertices. Error norms are computed from the solution
in the same way as for reconstruction. Figure 9 shows
the L1 and Lo norms of the error in density for this
problem, and the accompanying table indicates the
asymptotic order of accuracy achieved.

6.2 Transonic Airfoil Flow

To verify that the scheme behaves well for flows with
weak shocks, AGARD test case 1 [21] was computed
on a mesh with 4156 vertices, shown in Figure 10.
Because the current scheme i1s an ENO scheme, we
are interested not only in the solutions but also in
the convergence behavior, to verify that it is possible
to converge to machine zero. Figure 11 shows the sur-
face pressure coefficients for this case for second- and
third-order accuracy. There is little visible difference
in the solutions at this scale. Each solution shows a
mild oscillation near the shock. Of note also is the
behavior near the leading edge stagnation point. In
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Figure 11: Surface Pressure Coefficient for AGARD
Test Case 1

this region, stagnation pressure loss is often relatively
high because of poor resolution of the rapidly turn-
ing flow. Figures 12 and 13 demonstrate a marked
improvement in the losses at the leading edge when
going from second to third order. In each figure, con-
tour levels are separated by 0.04 and the contours
away from the body are at 0 or £0.04. The peak

LRSS
[/

Figure 12: Stagnation Pressure Coefficient Near
Leading Edge for AGARD Test Case 1 (Second Or-
der)

Figure 13:

Stagnation Pressure Coefficient Near
Leading Edge for AGARD Test Case 1 (Second Or-
der)

value for second order i1s about 0.072, while for third
order it is about 0.036.

Figure 14 shows the convergence history for these
cases. Multigrid W-cycles were used in conjunction
with local time step and a three-stage time-stepping
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1

scheme. No serious effort has been made to optimize
the multistage scheme or the CFL number. The fig-
ure shows that convergence for the third-order scheme
is not as good as for second order, but both converge
well with none of the hang-ups often seen with stencil-
searching ENO schemes. The fourth-order scheme
does hang up, with oscillations in shock position and
shape being the culprit. Further study is needed to
eliminate this problem.

6.3 Scramjet Configuration

The scramjet configuration introduced by Kumar [22]
was computed at M=5, o = 0, solely as a robustness
demonstration. The geometry for this case is shown
in Figure 15. A nearly uniform, isotropic triangular
mesh with 8841 vertices was generated. Figure 16
shows density contours for a second-order accurate
solution of this problem. Much of the detail of the
flow is missing because of poor resolution (for ex-
ample, the throat is only nine cells across), but the
broad outlines of the shock reflections and interac-
tions are present. Clearly, local refinement would be
of tremendous benefit in resolving this flow.

7 Conclusions
This article has demonstrated the feasibility of com-

puting high-order accurate solutions to the Euler
equations on unstructured triangular meshes using an

12
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Figure 15: Scramjet Geometry

Figure 16: Scramjet Density Contours

ENO scheme. Reconstruction accuracy for smooth
functions has been verified, and the reconstruction
scheme behaves gracefully near function discontinu-
ities. Accuracy for smooth flows has been established
by comparing computation with an analytic solution.
The scheme has been shown to be capable of converg-
ing to machine zero. Finally, the scheme’s ability to
handle complex, high Mach number flows robustly
has been demonstrated.
A number of open questions remain.

e Extension to a three-dimensional flow solver will
likely require switching to a cell-centered scheme
because of the complex shape of vertex-centered
control volumes. Might it also be advantageous
to use a cell-centered scheme in two dimensions?

e In smooth regions of the flow, data-dependent
reconstruction is unnecessary; an excellent repre-
sentation of the solution is provided by the data-

Can the scheme

recognize and exploit this feature without caus-

independent reconstruction.

ing convergence to hang up by switching?

e In very flat regions of the flow, the use of fourth-
order accuracy is, in a practical sense, overkill.
Second- or even first-order accuracy may be suf-
ficient to represent the solution. How must a

p-refinement scheme be designed to choose opti-

mal accuracy locally?

e Some convergence and robustness questions re-



main. Certain cases violate positivity, and con-
vergence rates are not particularly good.
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