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technique for unstructured meshes is presented. Thescheme is uniformly accurate for smooth functions,even near extrema. Near discontinuities, the schemegracefully reduces the order of accuracy to controlovershoots. Because the scheme is based on least-squares reconstruction, implementation on unstruc-tured meshes is straightforward. Finally, the presentscheme has better convergence behavior than stencil-searching ENO schemes because the ENO property isobtained by the use of weights which vary smoothlywith the data rather than by switching.Section 2 summarizes of existing reconstructiontechniques. Section 3 discusses the new reconstruc-tion scheme, with some attention given to implemen-tation details. Section 4 gives examples of the capa-bilities of the reconstruction scheme. Section 5 dis-cusses a number of technical points concerning con-struction of a ow solver compatible with the newscheme. Section 6 gives several example solutions tothe Euler equations. Finally, Section 7 gives someconclusions from the present work and discusses someissues still remaining for high-order accurate solutionof the Euler equations on unstructured meshes.2 Overview of ReconstructionTechniquesThe use of high-order spatial discretization on struc-tured meshes is commonplace. The development ofMUSCL schemes [1] focused on attaining high-orderaccuracy for smooth solutions, with a drop in ac-curacy near discontinuities and near extrema in thesolution. More recently, essentially non-oscillatory(ENO) schemes have been developed to ensure uni-formly high-order accuracy for all points with asmooth neighborhood. Early work in one dimen-sion [2, 3, 4] demonstrated the feasibility of this recon-struction scheme, which searches for the smootheststencil for reconstruction in each control volume.Extensions to multiple space dimensions soon fol-1



2lowed [5, 6, 7, 8].Stencil-searching ENO schemes share the problemthat small changes in the solution from time stepto time step causes stencil \switching" and preventsconvergence to a numerical steady-state. This prob-lem has recently been addressed by a new familyof weighted ENO (WENO) schemes [9, 10]. Theseschemes use a weighted sum of all possible stencilsrather than searching for the smoothest possible sten-cil. Stencils containing non-smooth data are notexcluded by theses schemes, but instead are givenweights on the order of truncation error. Because theweights vary smoothly with the data, these schemesshould converge well (although we are unaware of anystudies of this issue). These schemes are one dimen-sional and are applied direction-by-direction for re-construction on multidimensional structured meshes.Several extensions of ENO schemes to unstruc-tured meshes have been made based on stencil-searching approaches [11, 12]. These schemes, liketheir structured-mesh counterparts, are guaranteedto reconstruct based on smooth data when this ispossible. They have the same convergence di�cultiesas structured stencil-searching schemes.A more common approach to reconstruction on un-structured meshes is to use least-squares reconstruc-tion followed by some limiting procedure to eliminateovershoots [13, 14].� The reconstruction scheme de-scribed here is an extension of previous work [16] onthe use of data-dependent least-squares reconstruc-tion to produce ENO schemes. Previously, high-orderreconstruction was demonstrated in one dimension,and second-order reconstruction and ow solutionswere shown in two dimensions. The present workdiscusses high-order reconstruction and ow solutionin two dimensions. The reconstruction scheme uses a�xed stencil similar to that used by a typical k-exactleast-squares scheme. An initial data-independentleast-squares reconstruction is computed, and thesmoothness of the data on the stencil is inferred fromthe results. Data-dependent weights are applied tothe least-squares problem to virtually eliminate theinuence of non-smooth data, and a data-dependentreconstruction is computed. As in WENO schemes,the data-dependent weights are chosen to satisfy theENO property of Liu, Osher, and Chan [9].An important di�erence between the presentscheme and WENO schemes is their behavior when asmooth stencil does not exist. Where enough smoothdata exists | near a single discontinuity or boundary,�Similar in intent are SLIP schemes [15], which are closelyrelated to FCT schemes. SLIP schemes are local extremumdiminishing and can in principle be extended to higher thansecond-order accuracy.

for example | each scheme reconstructs to the nom-inal order of accuracy. Where there are not enoughsmoothly connected neighbors, the scheme automati-cally reduces the order of accuracy of the reconstruc-tion locally rather than contaminating the recon-struction. The result is a reconstruction scheme thatis well behaved near multiple discontinuities while re-taining high-order accuracy elsewhere.3 Data-dependentLeast-SquaresReconstructionConsider a domain 
 that has been tessellated;the tessellation has a characteristic length scale �x,at least locally. The median dual of the tessellationde�nes for each vertex vi a surrounding control vol-ume Vi. For any function u(~x) de�ned on 
 and itscontrol-volume averaged values ui, the DD-L2-ENOwill compute an expansion Ri(~x� ~xi) about vi that� conserves the mean;� has compact support;� reconstructs exactly polynomials of degree � k(equivalently, Ri(~x � ~xi) � u(~x) = O ��xk+1�);and� satis�es the ENO property of Liu, Osher, andChan [9].The remainder of this section describes this processin two dimensions. Reduction to one dimension, ex-tension to three dimensions, and application to struc-tured meshes are all straightforward variations on thetheme.3.1 Conservation of the MeanConservation of the mean within a control volumerequires thatZVi Ri(~x� ~xi)dA = ZVi u(~x)dA: (1)This can be accomplished by using zero-mean poly-nomials in expanding about vi, that is, by writingRi(~x� ~xi) = ui + @u@x ����i (x � xi � xi)+ @u@y ����i (y � yi � yi)+ @2u@x2 ����i (x� xi)2 � x2i2



3+ @2u@x@y ����i ((x� xi)(y � yi)� xyi)+ @2u@y2 ����i (y � yi)2 � y2i2 + � � � (2), wherexnymi � 1Ai ZVi(x� xi)n(y � yi)mdA: (3)By inspection, the expansion of Equation 2 satis�esEquation 1. As a practical matter, the integral ofEquation 3 is most easily computed by using Green'stheorem to convert it to a boundary integral aroundVi.xnym = 1(n+ 1)Ai Z@Vi(x� xi)n+1(y � yi)mdy (4)This integral may be evaluated exactly by using aGaussian quadrature of appropriate order along theboundary of the control volume.3.2 Compact SupportCompact support implies that the reconstruction Riwill only use data froma stencil fVjgi whose membersare both physically near ~xi and topologically nearcontrol volume i. The size of the compact stencilis determined by the number of required derivatives.In practice, including additional neighbors allows lee-way for ignoring some non-smooth data while retain-ing high-order accurate reconstruction. The use of 3,8, and 14 neighbors for second-, third-, and fourth-order accuracy (to compute 2, 5, and 9 derivatives,respectively) seems to be su�cient.Stencils are determined iteratively. The initialstencil consists of �rst vertex neighbors. For con-trol volumes that need a larger stencil, second vertexneighbors are added. Additional layers of neighborsare added until a large enough stencil has been foundfor each control volume; this process is illustrated inFigure 1. Nearly all interior points use �rst neigh-bors for second order and add second neighbors forthird and fourth order. Boundary points often addanother layer of neighbors. Stencils are computed ina pre-processing step and stored for later use.3.3 Accuracy for Smooth FunctionsAccuracy of a reconstruction for smooth functionscan be stated in two equivalent ways. The recon-struction can be said to be k-exact for some k if,when reconstructing P (~x)�fxmyn : m + n � kg fromcontrol volume averages,Ri(~x� ~xi) � P (~x): (5)
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Figure 1: Reconstruction Stencils for DD-L2-ENOEquivalently, when reconstructing a general functionu(~x) from control volume averages,Ri(~x� ~xi) = u(~x) +O ��xk+1� : (6)In practice, this accuracy requirement means that themodi�ed Taylor series expansion of Ri given in Equa-tion 2 must be carried out through the kth deriva-tives. To compute these derivatives, we seek to min-imize the error in predicting the mean value of thefunction for control volumes in the stencil fVjgi. Theerror for a single control volume is given byEj;i = 1Aj ZVj Ri(~x� ~xi)dA� uj : (7)Because this integral can be expressed in terms of ge-ometric quantities and approximations to derivativesof u at ~xi, the errors Ej;i can be used to formulatea least-squares problem for the derivatives. The re-mainder of this subsection develops this formulationin detail.The mean value, for a single control volume Vj , ofthe reconstructed function Ri is1Aj ZVj Ri(~x� ~xi)dA = ui (8)+ @u@x ����i 1Aj ZVj (x� xi)dA� xi!+ @u@y ����i 1Aj ZVj (y � yi)dA� yi!+ @2u@x2 ����i 12Aj ZVj (x� xi)2dA� 12x2i!+ @2u@x@y ����i 1Aj ZVj (x� xi)(y � yi)dA� xyi!



4+ @2u@y2 ����i 12Aj ZVj (y � yi)2dA� 12y2i!+ � � �To avoid computing moments of each control volumein fVjgi about vi, replace x � xi and y � yi with(x�xj)+(xj�xi) and (y�yj )+(yj�yi), respectively.Expanding and integrating, we obtain1Aj ZVj Ri(~x� ~xi) = ui + @u@x ����i (xj + (xj � xi)� xi)+ @u@y ����i �yj + (yj � yi)� yi�+ @2u@x2 ����i x2j + 2xj(xj � xi)� (xj � xi)2 � x2i2+ @2u@x@y ����i �xyj + xj(yj � yi) + (xj � xi)yj+(xj � xi)(yj � yi)� xyi)+ @2u@y2 ����i y2j + 2yj(yj � yi)� (yj � yi)2 � y2i2+ � � � : (9)The geometric terms in this equation are of the gen-eral formdxnymij � 1Aj ZVj ((x� xj) + (xj � xi))n� ((y � yj) + (yj � yi))mdA� xnymi= mXl=0 nXk=0�ml ��nk� (xj � xi)k� (yj � yi)l xn�kym�l j � xnymi:(10)In these terms, we can write1Aj ZVj Ri(~x � ~xi) = ui + @u@x ����i bxij + @u@y ����i byij+ @2u@x2 ����i cx2ij2 + @2u@x@y ����icxyij + @2u@y2 ����i by2ij2+ � � � : (11)Equation 11 evaluates the mean value of the re-construction Ri(~x� ~xi) for a control volume j, giventhe low-order derivatives of the solution at vi andlow-order moments of the control volumes. With thisin hand, we can easily write down a weighted least-

squares problem for the derivatives.2666664 Li1Li2Li3...LiN 37777750BBBBBBBBBB@ @u@x@u@y12 @2u@x2@2u@x@y12 @2u@y2... 1CCCCCCCCCCAi = 0BBBBB@ wi1 (u1 � ui)wi2 (u2 � ui)wi3 (u3 � ui)...wiN (uN � ui) 1CCCCCA ;(12)whereLij = �wij bxij wij byij wijcx2ij wijcxyij wij by2ij � � ��(13)and wij = 1j~xj � ~xij2 : (14)3.4 Solution of the Least-SquaresProblemIn the present work, the least-squares problem ofEquation 12 is solved by using Householder transfor-mations to reduce the left-hand side of Equation 12to upper-triangular form. After the upper triangu-larization is complete, back-substitution yields therequired derivatives. There are several good reasonsto use this approach instead of the simpler normalequation solution to the least-squares problem.� Using Householder transformations gives a moreaccurate solution to the least-squares problemthan using normal equations, especially for ill-conditioned matrices. The error in the solution isO (�K) using Householder transformations andO ��K2� for normal equations, where K is thecondition number of the non-square matrix and� is machine precision [17]. This also impliesgreater robustness.� As a further improvement in robustness, theHouseholder transform approach can detect sin-gular and nearly singular matrices on the y. Ifthe least-squares problem is (nearly) singular, acolumnwith (nearly) zero elements on and belowthe diagonal will be encountered during House-holder triangularization. This failure occurs be-cause the stencil is inadequate to support therequested number of derivatives. To resolve this,either more points must be added to the recon-struction stencil or the reconstruction must bemodi�ed to include fewer derivatives. The lattercourse is adopted in this work. Derivatives arecomputed only to the highest order for which all



5derivatives can be computed; the additional in-complete set of derivatives is discarded, becauseno increase in order of accuracy is possible byretaining them.� After the upper triangularization of the least-squares problem is complete, the residual for thesolution is available at virtually no cost. Beforeback substitution, the problem looks like the fol-lowing.2666666666664 x x x � � � xx x � � � xx � � � x. . . xx0 37777777777750BBBBBBBBBB@ @u@x@u@y12 @2u@x2@2u@x@y12 @2u@y2... 1CCCCCCCCCCAi = 0BBBBBBBBBBBB@ r1r2...rmrm+1...rn�1rn 1CCCCCCCCCCCCA(15)If we seek m derivatives using an n point stencil,the �rst m equations will be satis�ed exactly.The remaining n�m equations will not be; theresidual R̂, which is the same as the residual forthe original problem, isR̂ =vuut nXl=m+1 r2l : (16)Scaling this by the RMS value of the geometricweight removes local mesh scale e�ects:R = R̂qPw2ij=n: (17)R has several uses. Within the context of thiswork, R will be used to compute data-dependentweightings. R also is a good measure of howwell the solution is approximated locally, makingit yet another candidate for use as a re�nementmeasure.3.5 Reconstruction of Non-smoothFunctionsThe reconstruction scheme described above is de-signed for smooth functions. For non-smooth func-tions | those with O (1) discontinuities | such ascheme allows overshoots of O (1). This is not de-sirable for either function approximation or scien-ti�c computation, where such overshoots can easilyproduce aphysical values. This problem has typi-cally been addressed by performing a reconstruction

with geometric weights and preventing overshootsby heuristically limiting, or reducing, the derivatives(e.g., [13, 14]). While this approach is not unsuccess-ful, it provides only a mechanical solution to an un-derlying theoretical problem. Speci�cally, the stencilfor a control volume i near a discontinuity will includecontrol volumes j that lie on the opposite side of thediscontinuity. Because the function is not smooth,approximating data in Vj by a modi�ed Taylor seriesaround vi is inappropriate. Ignoring this mathemati-cal fact causes the unphysically large derivatives thatlimiting seeks to reduce.A better alternative is to reconstruct using onlydata that is smoothly connected to data in i. Thisapproach is taken directly by ENO schemes, whichby design search for a smooth stencil and completelyexclude non-smooth data from the reconstruction.WENO schemes work less directly, using all possiblestencils and weighting those containing non-smoothdata with a weight that is of the order of the trunca-tion error.In the present weighted least-squares context,weights are assigned to control volumes rather thanto stencils. Nevertheless, the goal is to weight non-smooth data with O ��xk+1� to satisfy the ENOcondition of Liu, Osher, and Chan [9]. We seek toconstruct a data-dependent weight that will multi-ply the previously calculated geometric weight. Thisconstruction is based on two observations.1. If the function is non-smooth and the neighbor-hood of Vi crosses a discontinuity, then a mod-i�ed Taylor expansion does not adequately de-scribe the function locally and there will be oneor more control volumes j for which1Aj ZVj Ri(~x � ~xi)dA� uj = O (1) : (18)This means that the residual R of the least-squares problem will be O (1). On the otherhand, for stencils that cover only smooth regionsof the function,Ri(~x� ~xi) � u(~x) = O ��xk+1� (19)and R is also O ��xk+1�. Therefore, R can beused as a gauge of the smoothness of the datafor the entire stencil fVjgi.2. Whether the data in Vj is smoothly connectedto data in Vi can be determined asymptoticallyby evaluatinguj � uij~xj � ~xij = 8<: O (1) smoothly connectedO ��x�1� not smoothlyconnected (20)



6We seek a data-dependent weighting that uses Rto detect stencils with non-smooth data and uj�uij~xj�~xijto determine which data within that stencil shouldbe excluded and which included. One appropriateweighting isWDDij = 11 + kR ��� uj�uij~xj�~xij ���(k+1) ; (21)where R ��� uj�uij~xj�~xij ���(k+1) is a smoothness indicator anal-ogous to the divided di�erence indicators of [9, 10]but appropriate for unstructured meshes and least-squares reconstruction. R is computed from adata-independent least-squares reconstruction, as de-scribed above. We are concerned only with theasymptotic behavior of WDDij , so the value of k isnot critical; 0.1 seems to be a good choice.Asymptotically, the behavior of this weighting forthe three important cases isWDDij =8>><>>: 1 + O ��x(k+1)� smooth stencilO (1) smooth data in stencilw= nonsmooth dataO ��x�(k+1)� nonsmooth data (22)That is, for stencils containing only smoothly con-nected data, the data-dependent weights are all ap-proximately 1, ensuring that the good qualities of thedata-independent reconstruction will be preserved forsmooth functions. For stencils that are not entirelysmooth, the data-dependent weight for non-smoothdata is smaller than that for smooth data by a factorof the order of truncation error. These weightings sat-isfy the ENO condition of Liu, Osher, and Chan [9].The data-dependent least-squares problem isclosely related to the data-independent problem. Thejth row in the least-squares problem of Equation 12 ismodi�ed by scaling with the data-dependent weight.With no further computation, the least-squares prob-lem becomes2666664 L0i1L0i2L0i3...L0iN 37777750BBBBBBBBBB@ @u@x@u@y12 @2u@x2@2u@x@y12 @2u@y2... 1CCCCCCCCCCAi = 0BBBBB@ w0i1 (u1 � ui)w0i2 (u2 � ui)w0i3 (u3 � ui)...w0iN (uN � ui) 1CCCCCA (23)whereL0ij = �w0ij bxij w0ij byij w0ijcx2ij w0ijcxyij w0ij by2ij � � �� ;(24)

and w0ij = 1j~xj � ~xij2WDDij : (25)As data-dependent weights are assigned, the num-ber that are numerically large is counted. If toofew control volumes are assigned high data-dependentweights, insu�cient smoothly connected data is avail-able to compute the desired number of derivatives.ySimilar to the data-independent case, this results ina lowering of the nominal order of accuracy of thereconstruction locally. This loss of accuracy is mostlikely to occur for control volumes straddling disconti-nuities; near the intersection of two discontinuities; ornear the impingement of a discontinuity on a bound-ary. Because no non-smooth data has a signi�cantimpact on the reconstruction, however, large over-shoots in the reconstruction are not expected. Thiswould not be true if non-smooth data were included.In contrast, stencil-searching ENO schemes suchas Abgrall's [12] can sometimes avoid local degrada-tion of accuracy near a discontinuity by extendingthe stencil farther away from the discontinuity. How-ever, for cases with medium resolution in which somecontrol volumes do not have enough smoothly con-nected neighbors, stencil-searching schemes will usenon-smooth (and therefore irrelevant) data. This ap-proach can lead to large overshoots for such cases.Also, consider a control volume Vi that is dividedby a discontinuity and therefore has an averaged func-tion value that lies between the values on either sideof the discontinuity. Here, reconstruction makes littlephysical sense because no smoothly connected dataexists. The present scheme can detect such a situa-tion and choose to reconstruct the solution in Vi aspiecewise constant, whereas stencil searching schemeswill still seek a high-order polynomial reconstruction.3.6 SummaryThe data-dependent least-squares approach can beused to produce function reconstructions that sat-isfy the ENO condition. The least-squares heritageof these DD-L2-ENO schemes allows them to be ap-plied easily to function reconstruction on unstruc-tured meshes in multiple dimensions. The algorithmcan be summarized as follows:� Input. A computational mesh, structured orunstructured.The average value of a function to be recon-structed for each control volume.yBecause data-dependent weights should all be O (() 1) forsmooth data, a cuto� value of 0.1 is used to determinewhethera weight is \high".



7� Output. An ENO reconstruction of the func-tion, in the form of a modi�ed Taylor series ex-pansion about each vertex, valid within the con-trol volume surrounding the vertex.� Preprocessing. For each control volume Vi,�nd a su�ciently large set of nearby control vol-umes fVjgi for reconstruction of the desired or-der.� Preprocessing. Compute all control volumemoments that will be needed in the least-squaresproblem of Equation 12.� Reconstruction. For each control volume eachtime a function is reconstructed:1. Compute geometric weights, and constructthe arrays needed for the data-independentleast-squares problem of Equation 12.2. Solve the least-squares problem usingHouseholder transformations. The solutionalgorithm should not destroy the originalarrays and should return both the solu-tion and the residual of the least-squaresproblem, along with information about howmany derivatives were actually calculable.3. Using the residual of the least-squares prob-lem, compute a data-dependent weight foreach control volume in the stencil and mul-tiply the appropriate row of the originalleast squares problem by this weight. Keeptrack of how many high weights there are,since this limits the number of derivativesthat can be plausibly calculated.4. Solve the least-squares problem again. Thederivatives computed give an ENO recon-struction when substituted into Equation 2.4 Function ReconstructionThe reconstruction should be uniformly high-orderaccurate for smooth functions. To show this, we havereconstructed the functionu(x; y) = cos(�x2 + 4�y) (26)on the square [0; 1]� [0; 1] using a series of unstruc-tured triangular meshes ranging in size from 491 to26651 vertices. The L1 and L2 norms of the errorin reconstruction of this function are shown in Fig-ure 2 for second- through fourth-order accuracy. Er-ror norms are computed by using the di�erence be-tween the analytic function and the reconstructed
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Fourth OrderConvergence Order of Error NormsNominal NormOrder L1 L22 2.23 2.163 2.90 2.894 4.12 3.99Figure 2: Convergence of k-Exact Reconstruction ofa Smooth Functionfunction within each control volume. Sixth-orderquadrature is used to compute the error norms inorder to eliminate quadrature error in the computa-tion of the norms. The accompanying table veri�esthat the expected asymptotic convergence rates areachieved.The new reconstruction scheme was also tested fornon-smooth function reconstruction in two dimen-



8
Figure 3: Contours of Function De�ned by Equa-tion 27.
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Figure 4: Control Volumes That Fail to AttainSecond-Order Accuracy (k = 1)sions. The function chosen is that of Abgrall [18].zu(x; y) = � f(x � cotp�2 y) x � cos�y2f(x + cotp�2 y) + cos (2�y) x > cos�y2(27)withf(r) = 8<: �r sin �3�2 r2� r � �13jsin (2�r)j jrj < 132r � 1 + 16 sin (3�r) r � 13 (28)Contour plots of this function are shown in Figure 3Because the reconstruction scheme is k-exact (withor without data-dependent weighting), we know thatzSeveral typographical errors in the de�nition of this func-tion in [18] cause a mismatch with the plotted function there;the function shown here matches the plots in [18].
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Figure 5: Control Volumes That Fail to Attain Third-Order Accuracy (k = 2)
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Figure 6: Control Volumes That Fail to AttainFourth-Order Accuracy (k = 3)the accuracy of the reconstruction in smooth regionsof the function will be of order k+1. Norms of the er-ror in the reconstruction are meaningless in this con-text, because the di�erence between the actual func-tion and its reconstruction is guaranteed to be O (1)in control volumes that are crossed by a discontinu-ity. Instead, Figures 4{6 show the control volumesfor which the nominal order of accuracy was not ob-tained on an isotropic triangular mesh with 26651vertices for second through fourth order. The discon-tinuities in the function are clearly visible in these�gures as control volumes with reduced reconstruc-tion accuracy. In all control volumes away from thediscontinuities, the nominal order of accuracy is at-tained. Table 1 shows the distribution of actual re-construction accuracy for each case.



9Table 1: Actual Accuracy of Reconstruction for Ab-grall's FunctionNominal Achieved OrderOrder 1 2 3 42 245 26406 | |3 233 82 26336 |4 290 108 300 259535 Flow Solver ImplementationIn addition to reconstruction, there are several otherdetails in the construction of a high-order accurateow solver which require careful attention.5.1 Flux QuadratureAfter the solution has been reconstructed fromcontrol-volume averages to a polynomial in each con-trol volume, the second phase of the ow solutionprocedure is computation of a ux integral, or resid-ual, for each control volume. This integration mustbe done to at least the same order of accuracy as thesolution reconstruction to obtain high-order accuracy.In the present work, the integration is performed byGaussian quadrature [19] around the boundary ofeach control volume. Gaussian quadrature has theproperty that an N -point quadrature along a line seg-ment is 2N -order accurate. Accordingly, �rst- andsecond-order accurate schemes (k = 0; 1) use N = 1,and third- and fourth-order schemes (k = 2; 3) useN = 2. Unfortunately, for the median dual this is notquite the full story, since the control volume bound-ary separating two adjacent volumes is not a singlesegment but two segments, each extending from themiddle of an edge of the mesh to the centroid of a tri-angle. For �rst and second order, this is not a prob-lem; a single point can still be used. Although inpractice using the mid-edge seems adequate, in prin-ciple this point should be the centroid of the pair ofline segments. For third and fourth order, two pointson each part of the segment are, in principle, required.These options are illustrated in Figure 7. In bothcases, the present work sticks to the letter of the law,using the quadrature points shown on the right sideof the �gure. As we shall see, computational timeis dominated by reconstruction for high-order, so theadditional ux computations are not a severe timepenalty. At each quadrature point, the ux is eval-uated using Roe's approximate Riemann solver [20].
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Figure 7: Choices for Gauss Integration Points forthe Median Dual5.2 Boundary Description and Imple-mentationA piecewise linear boundary description, as given bya polygonal input set, gives a second-order accuraterepresentation of the shape of a smoothly curvedboundary. For higher-order schemes, a more accu-rate boundary representation is required. The ap-proach taken here is to specify, for each boundarysegment, the inward normal at each end, as shownin Figure 8. This is equivalent to specifying slopes
Figure 8: Schematic of High-Order Boundary De-scriptionat the end of each segment and allows the exibilityto include sharp corners, because normals are de�nededgewise rather than pointwise. This slope informa-tion is used to construct a piecewise cubic representa-tion of the surface, which is fourth-order accurate forsmoothly curved boundaries. This cubic representa-



10tion is used to determine the Gauss integration dataand control volume moments for control volumes onthe boundary.5.3 Computational ResourcesUltimately the question of practicality of high-orderschemes will depend on trade-o�s between accuracyand computational requirements. As preliminarydata towards settling this question, requirements forCPU time and memory for the present implementa-tion are tabulated here.Table 2: Resource Requirements for High-OrderEuler Solution on Two-Dimensional UnstructuredMeshes Resource Order of AccuracyUsage 2 3 4CPU Time (�sec / vertex / evaluation)aReconstruction 255 1580 2180Interior Flux Quad 130 573 649Boundary Flux Quad 5.5 12.4 12.4Memory (words / vertex)bSolution 4f 4f 4fDerivatives 8f 20f 36fNeighbor Informationc 7i 19i 19iGauss Point Locationsd 6f 24f 24fGauss Point Normalsz 6f 12f 12fGauss Weightsz 3f 6f 6fTotal 27f 84f 100f+7i +19i +19iaOn a 110 MHz SPARC 5bf = oating point, i = integercAverage for interior verticesdAssuming three times as many edges as vertices6 Flow Solutions6.1 Supersonic Vortex FlowA smooth ow was calculated to validate the accu-racy of the high-order boundary shape de�nition andux quadrature. The ow chosen was a supersonicvortex ow in a quarter-circular annulus. This is anisentropic ow in which the velocity is inversely pro-portional to radius and the density is given by� = �i �1 +  � 12 M2i �1� r2ir2�� 1�1 ; (29)where the subscript i denotes quantities at the innerboundary. For this case, ri was chosen to be 2, ro = 3,and Mi = 2. Four isotropic triangular meshes were
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L2, FourthConvergence Order of Error NormsNominal NormOrder L1 L22 1.79 1.783 2.88 2.874 3.64 3.61Figure 9: Error in Density for Supersonic VortexFlowused for this case, containing 73, 253, 941, and 4398vertices. Error norms are computed from the solutionin the same way as for reconstruction. Figure 9 showsthe L1 and L2 norms of the error in density for thisproblem, and the accompanying table indicates theasymptotic order of accuracy achieved.6.2 Transonic Airfoil FlowTo verify that the scheme behaves well for ows withweak shocks, AGARD test case 1 [21] was computedon a mesh with 4156 vertices, shown in Figure 10.Because the current scheme is an ENO scheme, weare interested not only in the solutions but also inthe convergence behavior, to verify that it is possibleto converge to machine zero. Figure 11 shows the sur-face pressure coe�cients for this case for second- andthird-order accuracy. There is little visible di�erencein the solutions at this scale. Each solution shows amild oscillation near the shock. Of note also is thebehavior near the leading edge stagnation point. In
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Figure 10: Mesh for AGARD Test Case 1 (4156 ver-tices)
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Third OrderFigure 11: Surface Pressure Coe�cient for AGARDTest Case 1this region, stagnation pressure loss is often relativelyhigh because of poor resolution of the rapidly turn-ing ow. Figures 12 and 13 demonstrate a markedimprovement in the losses at the leading edge whengoing from second to third order. In each �gure, con-tour levels are separated by 0.04 and the contoursaway from the body are at 0 or �0.04. The peak

Figure 12: Stagnation Pressure Coe�cient NearLeading Edge for AGARD Test Case 1 (Second Or-der)
Figure 13: Stagnation Pressure Coe�cient NearLeading Edge for AGARD Test Case 1 (Second Or-der)value for second order is about 0.072, while for thirdorder it is about 0.036.Figure 14 shows the convergence history for thesecases. Multigrid W-cycles were used in conjunctionwith local time step and a three-stage time-stepping
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Fourth OrderFigure 14: Convergence Histories, AGARDTest Case1scheme. No serious e�ort has been made to optimizethe multistage scheme or the CFL number. The �g-ure shows that convergence for the third-order schemeis not as good as for second order, but both convergewell with none of the hang-ups often seen with stencil-searching ENO schemes. The fourth-order schemedoes hang up, with oscillations in shock position andshape being the culprit. Further study is needed toeliminate this problem.6.3 Scramjet Con�gurationThe scramjet con�guration introduced by Kumar [22]was computed at M=5, � = 0, solely as a robustnessdemonstration. The geometry for this case is shownin Figure 15. A nearly uniform, isotropic triangularmesh with 8841 vertices was generated. Figure 16shows density contours for a second-order accuratesolution of this problem. Much of the detail of theow is missing because of poor resolution (for ex-ample, the throat is only nine cells across), but thebroad outlines of the shock reections and interac-tions are present. Clearly, local re�nement would beof tremendous bene�t in resolving this ow.7 ConclusionsThis article has demonstrated the feasibility of com-puting high-order accurate solutions to the Eulerequations on unstructured triangular meshes using an
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Figure 16: Scramjet Density ContoursENO scheme. Reconstruction accuracy for smoothfunctions has been veri�ed, and the reconstructionscheme behaves gracefully near function discontinu-ities. Accuracy for smooth ows has been establishedby comparing computation with an analytic solution.The scheme has been shown to be capable of converg-ing to machine zero. Finally, the scheme's ability tohandle complex, high Mach number ows robustlyhas been demonstrated.A number of open questions remain.� Extension to a three-dimensional ow solver willlikely require switching to a cell-centered schemebecause of the complex shape of vertex-centeredcontrol volumes. Might it also be advantageousto use a cell-centered scheme in two dimensions?� In smooth regions of the ow, data-dependentreconstruction is unnecessary; an excellent repre-sentation of the solution is provided by the data-independent reconstruction. Can the schemerecognize and exploit this feature without caus-ing convergence to hang up by switching?� In very at regions of the ow, the use of fourth-order accuracy is, in a practical sense, overkill.Second- or even �rst-order accuracy may be suf-�cient to represent the solution. How must ap-re�nement scheme be designed to choose opti-mal accuracy locally?� Some convergence and robustness questions re-
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