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1 IntroductionThe �nite element method refers to a family of numerical methods for solv-ing boundary value problems and is used extensively in electromagnetics,thermodynamics, structural analysis, acoustics, chemistry and astronomy. Acrucial preprocessing step is mesh generation. A mesh generator is an al-gorithm for subdividing a �nite subset of IR2 or IR3 into small convex cells,typically triangles or quadrilaterals in two dimensions and tetrahedra or hex-ahedra (brick shapes) in three dimensions.We propose a mesh generation algorithm called QMG for nonconvex poly-hedral regions in any dimension. QMG takes as input a representation of apolyhedral region in IRd and produces as output a simplicial complex that is asubdivision of the input region. QMG uses a quadtree technique: the domainis covered with a large d-dimensional cube, and then cubes are recursivelysplit into 2d subcubes until each subcube is triangulated.For good accuracy bounds in the �nite element method, it is necessarythat the tetrahedra have bounded aspect ratio. The aspect ratio of a simplexis de�ned as its maximum side-length divided by its minimum altitude. Foran analysis of the accuracy of the �nite element method, see Johnson [9].The mesh produced by QMG is guaranteed to have good aspect ratio. Let�QMG be the worst aspect ratio among all simplices in the QMG triangulationof a particular input polyhedron P . Let �S be the worst aspect ratio amongall simplices in any other triangulation S of P , where S is produced by someother competing algorithm. Then Theorem 6 says that �QMG � c�S , wherec is a universal constant, in the case d = 2 or d = 3. The technique used toprove this theorem is as follows. First, a lower bound is proved stating thatany triangulation S of P must have at least one simplex with aspect ratio atleast as large as c=�(P ), where �(P ) denotes the sharpest angle of P and cis some other constant. Then we prove that QMG's aspect ratio is boundedabove by c=�(P ). In the case d > 3, a weaker version of this result is proved.Our second main theorem is that the number of simplices generated byQMG is the smallest possible, that is, the mesh is as coarse as possible, inthe following sense. Let nQMG be the number of simplices produced by QMGwhen applied to a particular polyhedral domain P , and let nS be the numberof simplices in some other triangulation S of P . Then nQMG � f(d; �S) � nS ,where f is some function of d, the dimension and of �S , the aspect ratiobound satis�ed by the competing triangulation. In other words, nQMG ismuch larger than nS only in the case when S has simplices with poor aspect2



ratio. The precise values of the constants present in these two main resultsare not worked out explicitly in this article but are expected to be quite large.The importance of bounding the number of tetrahedra is as follows. Therunning time of the �nite element method is a function of the number ofnodes and elements in the triangulation. In particular, if n is the numberof nodes (or elements|for bounded aspect ratio triangulations, the numberof nodes and elements are within a constant factor of each other), then therunning time of the �nite element method is O(n�), where � is at least 1 anddepends on the method used for solving the sparse linear equations. Thus,there is a signi�cant penalty for meshes with too many elements. On the otherhand, small elements are necessary for high accuracy with the �nite elementmethod. Practitioners usually address this tradeo� by using meshes withvarying degrees of re�nement: such a mesh has small elements in the part ofthe domain of interest where high accuracy is desired, and larger elementsare used elsewhere. Because QMG generates the coarsest mesh possible (upto the multiplicative factor f(d; �S)), it can be used as the starting pointfor further re�nement. Indeed, the implementation of QMG allows a user-speci�ed re�nement function to control the degree of re�nement.Our work is closely related to earlier work by Bern, Eppstein and Gilbert[4], who solved the corresponding problem for two-dimensional polygonaldomains. These authors also used a quadtree approach, but the extension oftheir technique to higher dimensions is far from straightforward. Our QMGalgorithm di�ers in many ways from that earlier paper.Other work on triangulation problems with optimality guarantees is theresult of Baker, Grosse and Ra�erty [1], whose algorithm triangulates 2Dpolygons with nonobtuse angles and Chew's [7] triangulation of 2D polygonswith guaranteed aspect ratio using a Delaunay approach. Chew's work wasextended by Ruppert [14] to handle varying degrees of re�nement (and thusestablishing the Bern et al. optimality properties), and later by Chew also[8] to curved surfaces.In three dimensions, no work previous to ours guaranteed bounded aspectratio triangulations, although Chazelle and Palios [6] developed an algorithmwith the best possible bound (up to a constant factor) on the cardinality ofthe triangulation in terms of reex angles.Our triangulation uses Steiner points, meaning that it introduces newvertices into the domain not present in the original input. Indeed, as shownby Sch�onhardt [15], Steiner points are necessary for triangulating nonconvexpolyhedra in three dimensions and higher. For additional background on3



optimal triangulation, we refer the reader to the excellent surveys of Bernand Eppstein [3] and Bern and Plassmann [5]. Note that, because of theimportance of mesh generation, there is a vast body literature on mesh gen-eration algorithms. We do not attempt to survey this literature here becausethe majority of these papers are not concerned with mathematical qualityguarantees.The remainder of this article is organized as follows. In Section 2 wedescribe the class of allowable input domains for QMG. In Section 3 andSection 4 we present a high-level description of the QMG algorithm. InSection 5{Section 7 we provide more details about the algorithm. In Section 8and Section 9 we formally de�ne aspect ratio and sharp angles and establishsome results about them. In Section 10{Section 17 we provide the analysis ofQMG, including the proofs of the two main optimality properties mentionedabove. In Section 18, we consider the asymptotic running time of QMG, andin Section 19 we briey describe the implementation.This article has a companion paper [12] that describes how to triangulatea grid of uniform boxes cut by a k-a�ne space. The method in that paperis used as a subroutine here, and we need some of the results of the analysisin that other paper for the analysis in Section 10.Besides the QMG algorithm and its analysis, the other main contributionof this paper is a series of new bounds that apply to any possible triangu-lation of a polyhedral domain (see Section 9) and other results that applyto any possible bounded-aspect ratio triangulation of a polyhedral domain(see Section 16). The results in these sections act as lower bounds for prov-ing QMG's optimality, but they would be useful for the analysis of othertriangulation algorithms.This article, along with the companion [12], supersedes our earlier work[13]. We briey summarize the di�erence between this article and the earlierwork. First, this work applies to d-dimensional regions for any d, whereasthe earlier work was limited to three dimensions. A consequence of thisgeneralization is that we have discarded the case-based proofs used in [13] infavor of more uniform treatment here. The notion of enforcing a \balance"condition in the quadtree has been dropped. Further, the idea of \warping"has been replaced by the approach in the companion paper, together withthe \alignment" procedure described here.4



2 Nonconvex PolyhedraRecall that the input to our algorithm is a nonconvex polyhedron P in Rd.Mathematically, a nonconvex polyhedron is the set resulting from a �nitenumber of union and intersection operations applied to halfspaces. We as-sume P is compact. We assume that P is presented via a boundary rep-resentation; in fact, from now on, we refer to polyhedra as \b-reps." Theboundary representation of P consists of a lattice of faces: zero-dimensionalfaces are called vertices, one-dimensional faces are called edges, and the d-dimensional face is P itself. Each face of dimension 1 or higher has boundariesthat are faces of one lower dimension. Thus, a brep is stored as a layereddirected acyclic graph with one node for each face, and with arcs to indicatethe \is-a-boundary-of" relation. Nodes at level 0 (vertices) have coordinatesstored with them.Finally, to simplify our presentation, we assume that P is a d-manifoldwith boundary, although the implementation of QMG allows many nonman-ifold features, such as internal boundaries.3 BoxesThe main data structure of QMG is a box. A box is a d-dimensional cube em-bedded in an axis-parallel manner in IRd. Our algorithm is a quadtree-basedalgorithm, meaning that it starts with a single d-cube and then subdividesit into 2d equal-sized smaller cubes. The subdivision continues recursively.Boxes of dimension less than d occur as separate data items. These lower-dimensional boxes are discussed in more detail in Section 7. We ignore theexistence of these lower-dimensional boxes until Section 7 to allow a simpli�edpresentation of QMG's quadtree generation in the next three sections.Initially, there is one large d-dimensional box, called the top box, whichcontains all of P and also a neighborhood around P . This box is consideredactive. Other boxes are generated from the top box by applying one of threeoperations recursively. First, an active box may be split, meaning that it isreplaced by 2d smaller boxes each of equal size, as mentioned above. Second,a box may be duplicated, meaning that it is replaced by two or more boxeswith the same size and position as the original box. Third, an active boxmay be protected, in which case it is no longer active and no longer availablefor splitting or duplicating. The collection of boxes is called a quadtree.5



The data items stored with a box are as follows. QMG stores its positionand size. Because of the dyadic nature of the quadtree, the position andsize are both represented exactly (as integers). As mentioned in the lastparagraph, boxes are either active or protected. An active box B has storedwith it its content, which is denoted co(B). The de�nition of content isas follows. Let ex(B) denote a cube in IRd that is concentric with B buthas a diameter larger by a constant factor 1 + , where  is de�ned below.Note that P \ ex(B) is a polyhedral region. If P \ ex(B) is connected (inthe topological sense), then we de�ne co(B) = P \ ex(B). If P \ ex(B) isnot connected, then QMG makes duplicates of B, one for each componentof P \ ex(B), and assigns one component to each duplicate. Thus, co(B) isalways a connected polyhedral region. More details are given in Section 5.A protected box is always associated with a particular face F of P , andF must meet ex(B). Thus, a protected box has stored with it a reference toF and also a close point. The close point is a point in IRd lying in F \ ex(B).The coordinates of the close points are stored in an auxiliary table, andthe protected box stores an index into this table. (This is because severalprotected boxes can share the same close point.) The collection of closepoints make up the vertices of the �nal triangulation.4 High-Level Description of the Quadtree Gen-erationThe mesh generation algorithm has two parts: quadtree generation and tri-angulation. See Figs. 1{2 for the high-level outline of quadtree generation.Triangulation is described in Section 7. Not all the terms in these �gureshave been de�ned yet.Quadtree generation is divided into d + 1 phases numbered 0; : : : ; d. Weuse k throughout the article to denote the current phase. Phase k worksprimarily with the k-dimensional faces of P . (Thus, in phase d we look at Pitself.) Each phase is subdivided into two stages, the separation stage and thealignment stage. During the separation stage, active boxes are split. Thereis also splitting of active boxes during the alignment stage. The alignmentstage also turns some active boxes into protected boxes.6



/* Quadtree generation */.Initialize I0 := ftop boxg:Initialize J := fg:for k := 0; : : : ; d doInitialize Ik+1 := fg:Initialize OF := fg for each k-dimensional P -face F ./* Phase k separation stage. */while Ik is nonempty doRemove an active box B from Ik.if B is crowded or too big for the size function thenSplit B into B1; : : : ; B2d; duplicate as necessary.Delete Bi's with empty content.Put remaining Bi's into Ik.elseif co(B) contains a (necessarily unique) k-face F of P thenOF := OF [ fBg.elseIk+1 := Ik+1 [ fBg.end ifend whileFigure 1: High-level description of QMG's quadtree generation (continued inFig. 2).
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/* Phase k alignment stage. */for each k-dimensional P -face F dowhile OF is nonempty doRemove the highest-precedence box B from OF .Find the highest-priority subface B0 of B that is close to F .if B has no such close subface thenIk+1 := Ik+1 [ fBg.elseif the alignment condition is satis�ed for B thenProtect B; its associated P -face is F .Find the close point on F for B (near B0).J := J [ fBg.elseSplit B into B1; : : : ; B2d; duplicate as necessary.Delete the Bi's with no content.Put remaining Bi's into OF .end ifend whileend forend for /* end of k loop */Figure 2: High-level description of QMG's quadtree generation (continuedfrom Fig. 1).
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5 Separation StageIn this section we describe the separation stage of phase k in more detail. Atthe start of the phase there is a list of active boxes Ik and the (initially empty)idle list Ik+1. During the phase we repeatedly remove one active box, say B,from Ik and test it for crowdedness (de�ned below). If B is crowded, it issplit. Let us use the term \children" to denote the boxes on the next deeperlevel resulting from the split. All the children with a nonempty content areinserted back into Ik. Box B itself is deleted, and the children with emptycontent are deleted. (Boxes with empty content that arise during splittingfor alignment are also deleted.) On the other hand, if B is not crowded, wecheck whether it has a P -face of dimension k, say F , in its content. If so,the box is transferred to orbit OF . If not, the box is transferred to the idlelist. In this manner Ik is eventually emptied.We now explain the terms \content" and \crowdedness." First, we de�neex(B) for an active box B to be a d-dimensional cube in IRd concentric withBbut expanded in each dimension by a multiplicative factor 1 + . Parameter must satisfy  � �0;F for each P -face F , where �0;F is the tolerance foralignment described in Section 6. For instance,  = 0:5 is acceptable.The content of an active box B is a b-rep and is typically P \ ex(B).However, if P \ ex(B) has more than one connected component, we identifythe components of P \ex(B), say C1; : : : ; Cp, and we replace B with p copiesof itself, say B1; : : : ; Bp. Then we de�ne co(Bi) = Ci for i = 1; : : : ; p.Say B is split, and say B0 is one of the child boxes. We compute co(B0)by intersecting co(B) with ex(B0). (Notice that our de�nition of ex(B) guar-antees that ex(B0) is a proper subset of ex(B).) In particular, we do notcompute co(B0) by intersecting the original b-rep P with ex(B0). This isbecause this latter approach could reintroduce connected components thatwere duplicated into a box di�erent from B at some earlier level of splitting.We say that a box B is crowded if (1) co(B) meets any P -face of dimen-sion k � 1 or less, or (2) co(B) meets a P -face F of dimension k, and co(B)meets another P -face G that is not a superface of F .Thus, a box B is not crowded during phase k if either (1) co(B) doesnot meet any P -faces of dimension k or lower or (2) co(B) meets exactlyone P -face F of dimension k, no P -faces of dimension less than k, and everyP -face of dimension higher than k in co(B) is a superface of F . A box thatis not crowded is transferred either to Ik+1 if (1) holds or to OF if (2) holds.Some examples of crowdedness are given in Fig. 3.9
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Figure 3: Examples of crowdedness: solid lines indicate boxes, dotted linesindicate ex(B) for these boxes, dashed lines indicate the boundary of P , andshading represents the interior of P . Suppose we are in the separation stageof the phase 0 in the case d = 2. All boxes in the top row are uncrowded.The �rst box would be placed into Ou. The second box would be placed intoI1. The third box in the top row must be duplicated, and then one duplicatewould go into Ov and the other into Ow. Both boxes in the bottom row arecrowded and must be split.
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Another rule used in the separation stage is that we split boxes if theirside-length is greater than the user-speci�ed mesh re�nement function thatwas mentioned in the introduction. We do not say any more about this here,since the analysis in subsequent sections does not involve a user-speci�edmesh re�nement function.The reader may notice that there appears to be a potential in�nite loop:if an active box B in phase k has a P -face of dimension k � 1 or less in itsinterior, this will cause an in�nite recursion of splitting because there willalways be a crowded subbox. Fortunately, this situation can never occur.The reason is that a box whose interior meets a P -face of dimension k� 1 orless would have had a close subface identi�ed in an earlier phase and wouldhave become protected or would have been crowded in an earlier phase. (Seethe next section for a description of close subfaces.) Therefore, it could neverend up in Ik. It is possible however, for a box in Ik to have a face of dimensionk � 1 or less inside ex(B) but outside B. This can happen because, in theprevious phase, a (k � 1)-face F could lie in the content of B and yet notbe close enough to come close to a subface of B. In this case the box willbe split until the d-cubes ex(B) have shrunk enough that they do not meetthe low-dimensional P -face. The number of times that a box can be split isanalyzed in subsequent sections.The computation of co(B) (that is, computing the geometric intersectionco(B0)\ ex(B), where B0 is the parent of B, and then checking whether thisintersection is connected) is among the most computationally intensive tasksof QMG. We carry out the search for connected components with a ray-shooting algorithm that we do not describe here. The worst-case runningtime of this ray-shooting algorithm is O(n2), where n is the total geometriccomplexity of co(B) (i.e., the total number of boundary faces), but in practicethe running time will usually be closer to O(n).In the case d = 2, it is possible to �nd connected components of co(B)via a plane sweep in O(n log n) operations. In the case d = 3, an O(n log n)plane sweep can also be used provided that P is preprocessed with O(N2)preprocessing steps, where N is the combinatorial complexity of the originalP . This e�cient algorithm for d = 3 is described in our earlier paper [13].We have not implemented a plane-sweep procedure for either d = 2 or d = 3.11



6 AlignmentIn this section we describe the alignment stage. Recall that the alignmentstage processes each orbit independently. For this section, assume we are inphase k and are processing orbit OF of P -face F whose dimension is k.First, a sequence of parameters0 < �d�k�1;F < �d�k�2;F < � � � < �0;F < 0:5is chosen for F . The method for choosing these parameters is described inin [12], but must be slightly modi�ed to take into account the containmentrelationship between P -faces of di�erent dimensions. These parameters haveupper and lower bounds depending only on d and k.We now process boxes in OF in the order described below. Let B be thehigh-precedence box in the orbit. Let B0 be any subface of B. We constructthe1-norm neighborhood of radius �r;F around B0, denoted N(B0), where rstands for the dimension of B0. Thus, this neighborhood is an axis-parallelparallelepiped (which could be degenerate if �r;F = 0). If F passes throughN(B0), then F is said to be close to B 0. The close subface of B is the boxsubface of lowest dimension that is close to F . If there is a tie (i.e., thereare several faces of the same lowest dimension all close to F ), then we breakthe tie with a priority rule, which is described below. A box with no closesubface is transferred to Ik+1.Because  � �0;F , if F is close to B (i.e., if B has a close subface), thenF must pass though ex(B). Thus, we can check whether B has a subfaceclose to F by examining co(B). Indeed, it is important that we query co(B)rather than the original P , because it might be di�cult to determine fromqueries on P whether the P -face in question is associated with B or with aduplicate of B.Next we claim a partial converse: if F meets ex(B), then B has a subfaceclose to F . We de�ne ex(B) to be a cube concentric with B and expandedby �d�k�1;F in each dimension; thus B � ex(B) � ex(B). It follows fromLemmas 1 and 2 of [12] that if any P -face F passes through ex(B), then Bhas a subface close to F . The cube ex(B) is not used in our algorithm, butit plays a role in the analysis below.Once every box in the orbit has chosen its close subface, we now test thealignment condition. The alignment condition is as follows. De�ne theextended orbit of F to be OF united with protected boxes from earlierphases that are associated with proper subfaces of F . For every active box12



B in the orbit, the close subface of B must be completely covered by boxesin the extended orbit (either active or protected) that are the same size orlarger. For an example of the alignment condition, see Fig. 4. We providemotivation for the alignment condition in Section 7.Let us now comment further on the alignment condition. First, we have toexplain what is meant by \completely covered." We say that a box subface B 0is completely covered by some collection of boxes fB1; : : : ; Bng provided thatfor any point p in the relative interior of B0, there exists an open neighbor-hood N of p such that N � B1[� � �[Bn. (Note that if B0 is a 0-dimensionalbox subface, i.e., a vertex, then its relative interior is B 0 itself.)With these de�nitions of \extended orbit" and \completely covered," wecan now state the priority rule for choosing a close subface. Recall that theclose subface of B is the box subface of lowest dimension close to B. Let lbe the dimension of this subface. If there is a tie (i.e., there is more thanone face of B of the dimension l close to F ), then we favor the subfaces thatare completely covered by boxes the same size or larger in the extended orbit(i.e., those close subfaces of dimension l for which the alignment conditionholds). If there is still a tie, we use a lexicographic tie-breaking rule.Recall that boxes can get duplicated during the separation stage, andthus several active boxes can cover the same geometric region in IRd. Weclaim that two boxes with overlapping geometric regions in IRd cannot endup in the same orbit. (This fact simpli�es the sorting necessary to check thealignment condition.) The reason is as follows. Suppose B and B0 are twoboxes whose interiors have a common point in IRd, and suppose both co(B)and co(B0) contain a point of P -face F . By the tree-nature of the quadtree,two boxes that share a common interior point must have the property thatone is contained in the other.We claim that co(B) and co(B0) must both meet a proper subface of F .If not, then co(B) would have to contain the intersection of ex(B) with theentire a�ne hull of F (because no boundaries of F are in co(b)). Similarly,co(B0) would also contain the intersection ex(B0) with the hull of F . (SeeSection 8 for de�nition of \a�ne hull" and other mathematical terminology.)Since one box contains the other, this means that one box contains pointsfrom F that the other box also contains. But then there could not be twodistinct connected components of P in co(B) and co(B0), so duplicationwould not have taken place.Thus, co(B); co(B0) each contain proper subfaces of F . But in this case,the boxes could not end up in OF (i.e., if they were still active in phase13
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Figure 4: The alignment condition in the case d = 2; k = 1: the boxes inthis �gure are the extended orbit of a P -edge E, which is the dashed line.The two large boxes at the ends are protected boxes for the endpoints ofE, protected from phase 0. In this �gure, box a must be split because thealignment condition does not hold for this box. Its close subface, which couldbe either its lower left-hand corner or upper right hand corner, is contained byanother box smaller than a. All other boxes satisfy the alignment condition.For example, box b does not have to be split; its close subface could be eitherits bottom edge or right edge. The right edge will have higher priority, sincethe alignment condition holds for that edge.14



dim(F ), they would be crowded).As mentioned earlier, a box is protected if the alignment condition holdsfor its close subface. We make the following claim: if the alignment conditionholds forB at the time it is protected, then the condition continues to hold forthe remainder of the algorithm. In other words, the following situation cannotoccur: A box B with close subface B0 is deemed to satisfy the alignmentcondition and protected. Later a neighboring box �B also containing B 0 as asubface gets split because the alignment condition does not hold for �B, thuscausing the alignment condition to be violated for B.To prove the claim in the last paragraph, we must describe the orderin which QMG processes the boxes in an orbit OF . \Process" means thatQMG determines whether the box satis�es the alignment condition; if so,then protect it, and if not, then split it. The correct order is to start withthe largest boxes in the orbit, working down to the smallest. Within the setof boxes of the same size, we process those with the lowest-dimensional closesubfaces �rst, working toward highest-dimensional close subfaces.We claim that this order assures that if the alignment condition holdsfor a box B at the time it is processed, then the alignment condition holdsfor B for the remainder of the algorithm. Suppose we are at the step whenB is processed and the alignment condition is satis�ed. Let B 0 be the closesubface of B, and let l be the dimension of B0. Let B1; : : : ; Bn be the boxesin the extended orbit that cover B0. Some of B1; : : : ; Bn will be larger thanB0 and hence already protected. Protected boxes are not split again, so theywill continue to cover B0 for the rest of the algorithm. Consider a box Bi thatis the same size as B. If Bi has a close face of dimension less than l, then Biis already protected (because we process boxes with lower-dimensional closefaces �rst). The dimension of the close face of Bi cannot be greater than l,because B0 is a subface of Bi and has higher priority than any subface of Bi ofdimension l+1 or more. Therefore, the only remaining possibility is that Biis the same size as B and that the close subface of Bi has dimension exactlyl. But then this subface, if it is not B0, must also be completely covered byboxes in the orbit because otherwise B0 would have higher priority. (Recallthat faces that are completely covered have higher priority.) So we see thatBi will become protected as well and cannot be split.When a box B is protected, as mentioned above, we have identi�ed aclose subface B0 of B. This subface has the property that F passes throughan 1-norm neighborhood of B0. We now select a point lying on F in thisneighborhood (see [12] for more details on selecting the close point). The15



rule used for choosing the close point has the property that any other boxB00 that is the same size as B and also has B0 as its close subface will choosethe same close point. Thus, several adjacent boxes that are in the same orbitand are the same size might share a close point.The alignment stage continues until there are no boxes left to process;every box is either protected or has been moved to the idle list. When OFis empty, the alignment moves onto a di�erent orbit. Once the orbits of alldimension-k faces of P are empty, the phase is over.7 TriangulationAfter phase d of quadtree generation, QMG triangulates the quadtree. Inthe triangulation procedure, the collection of protected boxes is triangulatedinto a simplicial complex.To describe the triangulation procedure, we must �rst bring lower-dimensionalboxes into the picture. In this section, we revisit some of the concepts fromearlier sections and revise some of the algorithm steps to take into accountlower dimensional boxes. The lower dimensional boxes serve two purposes:�rst, they simplify the data structures needed for checking the alignmentcondition, and second, they serve as the basis for generating the �nal trian-gulation.In QMG, boxes can have dimension 0 up to d. Initially, there is only oneactive box of dimension d, namely, the top box. Lower-dimensional boxesget created each time a box is protected by QMG. At the moment an i-dimensional active box B is changed from active to protected during thealignment stage for orbit OF , all its faces of dimension i � 1 are launchedas new active boxes (there are 2i such faces). Let B0 be one of these newactive boxes. It is dealt with in a manner analogous to the way QMG handlessubboxes after a split. We compute co(B 0) as the intersection co(B)\ex(B0).We determine the disposition of B 0 using the same rules as before: If co(B0)is empty, then we delete B0. If co(B) \ ex(B0) has more than one connectedcomponent, then we duplicate B0. If co(B0) does not meet F (and hencemeets only P faces of dimension k+1 and higher), then we place B0 in Ik+1.If co(B0) meets F , then we place B0 in OF .It is possible that B 0 will also become immediately protected; this hap-pens, for instance, when the close subface of B is also a subface of B 0.The same operations are performed on an i-dimensional box as on a16



full-dimensional box: such a box can be tested for crowdedness, split forseparation, protected, and so on. When an i-dimensional box is split, 2i newsubboxes are created. If B is i-dimensional, it is said to extend over i of thepossible d coordinate axes, and it is at over the remaining d� i coordinateaxes.The de�nition of ex(B) for a box of dimension less than d is as follows.Every box B has associated with it a number called its size, which we denotesize(B) and which is the side-length ofB in a dimension over which it extends.The size of every box is equal to the size of the top box multiplied by a factor2�p, where p is the number of times the top box was split to reach this box.If B is a box, then ex(B) is an axis-parallel full-dimensional rectangle inIRd centered at the center of B, with side-lengths (1 + ) size(B) for axesover which B extends, and side-length  size(B) for the axes in which B isat. This choice ensures that all properties of ex(B) asserted earlier are stillvalid, namely, if B has a subface close to F , then the subface passes throughex(B). Also, if B is split, then ex(Bj) for each subbox Bj is contained inex(B). Finally, if subfaces of B are launched as new active boxes when Bis protected, then each new subface Bj also satis�es ex(Bj) � ex(B). Notethat for consistency, even zero-dimensional boxes must have a size. When azero-dimensional box B is split, there is only one child, but splitting still hassigni�cance because the size is halved, which diminishes ex(B) and thereforeco(B).Earlier, when describing the alignment condition, we introduced the terms\extended orbit" and \completely cover." Recall that we de�ned extendedorbit to be the union of the orbit OF of a face F united with the protectedboxes for all proper subfaces of F from previous phases. In fact, QMG neverforms extended orbits; instead, the lower-dimensional active box faces ofprotected boxes act as proxies for the protected boxes. A system of weightsis used to determine the complete coverage condition. In particular, everyactive box in QMG stores a weight associated with each of its subfaces.Thus, an i-dimensional active box has 3i weights stored with it. Each weightis a number between 0 and 1 that indicates what fraction of the subface is\owned" by that active box. Initially, the top box owns all of its subfaces.When a box is split, the weights are divided up among children. We omitthe details of how the weights get split up, but the upshot is that QMG cantest whether a box subface is completely covered by boxes in its orbit byadding up the weights associated with that subface contributed by all theboxes containing it; complete coverage is indicated by a weight sum of 1.0.17



Although many details are omitted, we do mention one key point thatreduces the amount of searching and sorting in QMG. When testing thecomplete coverage rule, it is necessary to look only at boxes of a single size.This means that the complete coverage condition can be tested with a simplehash-table. Consider the example in Fig. 5.It can be shown that these more complicated rules introduced in this sec-tion are equivalent to the de�nitions in the preceding sections in the followingsense. For a given input P , the quadtree generation procedure produces thesame sequence of full-dimensional boxes whether we follow the rules of thissection or preceding sections.The protected boxes are linked together by pointers; in particular, a pro-tected box of dimension i has pointers to all the protected boxes of dimensioni+ 1 of which it is a subface. This data structure serves as the basis for tri-angulation.The triangulation algorithm is based on our other paper [12] and is asfollows. Let a chain be a sequence of nested boxes B0; : : : ; Bd such that thedimension of Bi is i. \Nested" means that, for each i, Bi is a face or subsetof a face of Bi+1. Let v0; : : : ;vd be the close points of B0; : : : ; Bd. Then thesimplex whose vertices are v0; : : : ;vd is put in the triangulation. Thus, thetriangulation has one simplex for each chain. The only exception is when aclose point is repeated in this chain; in this case, the simplex is said to benull and is not included in the triangulation. QMG enumerates all possiblechains with a stack-based search algorithm. An example of the triangulationalgorithm is presented in Fig. 6.We can now explain the importance of the alignment condition in Fig. 7.As is seen from the �gure, if the alignment condition were not enforced, thenthe triangulation algorithm described in the preceding paragraph would beinvalid.8 Aspect RatioIn our analysis of QMG, which begins in Section 10, we demonstrate two op-timality properties: the triangulation generated by QMG has optimal aspectratio, up to a certain factor, and also optimal cardinality (compared withall other bounded-aspect ratio triangulations), up to a certain factor. Beforedemonstrating these properties, we must provide de�nitions for aspect ratio,sharp angle, and so on. This mathematical background is the topic of this18
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section and the next section.First, we provide some standard de�nitions from linear algebra. An a�neset X is the solution to a system of linear equations, that is, X = fx 2 IRd :Ax = bg for some m� d matrix A with linearly independent rows and somem-vector b. The dimension of this a�ne set is d�m. Let Y be any subset ofIRd. The a�ne hull of Y is de�ned to be lowest-dimensional a�ne set thatcontains Y and is denoted a�(Y ). It can be shown that a�(Y ) is uniquelydetermined by this de�nition. In particular, it can be shown that a�(Y ) isthe set of all points that can be written in the form �1y1+� � �+�sys, where sis an arbitrary positive integer, y1; : : : ;ys 2 Y , and �1; : : : ; �s is an arbitrarysequence of real number that add up to 1. Let F be a face of P . Since P ispolyhedral, a�(F ) and F have the same dimension.We now de�ne de�ne aspect ratio.De�nition. Let T be a d-simplex in IRd with vertices v0; : : : ;vd. Then thealtitude of T at vi is de�ned to be dist(vi; a�(v0; � � � ;vi�1;vi+1; � � � ;vd)).The minimum altitude of T , denoted minalt(T ), is the minimum altitudeover all choices of vi for i = 0; : : : ; d.De�nition. The aspect ratio of a simplex T is de�ned to beasp(T ) = maxside(T )=minalt(T ):Thus, the aspect ratio is always at least 1, and large aspect ratios indicatepoor quality elements.In the remainder of this section, we characterize aspect ratio in termsof matrix norms. Given a d-simplex T , we de�ne its associated matrix MTto be the d � d matrix whose ith column, i = 1; : : : ; d, is vi � v0. Thus,MT depends on the numbering of the vertices, and in particular, v0 plays adistinguished role. However, we note the following: if we de�neM 0T accordingto a di�erent numbering of the vertices, the columns of M 0T can be obtainedfrom the columns of MT by subtracting pairs of columns in MT and thenpermuting. In linear algebra terms, there exists a d�d matrix L all of whoseentries are zeros except for possibly one 1 and one �1 in each column suchthatM 0T =MTL, and such that L�1 has the same properties (all zeros exceptfor possibly one 1 and one �1 per column).The following two results hold for any numbering. These lemmas usethe following well-known linear algebra fact. The norm of a d � d matrix isbounded above and below by constant multiples (where the constant depends22



on d) of the maximumnorm among its columns, and also above and below byconstant multiples of the maximum norm among its rows. In the remainderof this article, cd denotes a constant depending only on d, which may changefrom formula to formula.Lemma 1 Let � denote maxside(T ). Thencd� � kMTk � Cd�where cd; Cd are two constants depending only on d.Proof. There are two cases, depending on whether � is the length of aside adjacent to v0. In the �rst case, say that � = kv1 � v0k: Then bothinequalities are easy because � is the norm of the �rst column of MT , andall the other columns of MT have norm bounded above by �.The other case is that � is the length of a side not adjacent to v0. Wecan reduce to the �rst case by renumbering the vertices and noting that thenorms of the transformation matrices mentioned above, kLk and kL�1k, arebounded above by constants depending only on d.Lemma 2 Let � = minalt(T ). Thencd=� � kM�1T k � Cd=�where cd; Cd are two constants depending only on d (not necessarily the sameconstants as in the previous lemma).Proof. Let uT be the ith row of M�1T . Then MTT u is a column of the theidentity matrix. (The superscript T denotes transpose. The subscript Tindicates the association of M with simplex T .) Geometrically, this meansthat u is orthogonal to d � 1 columns of MT ; in particular, u is orthogonalto the plane a�(v0; : : : ;vi�1;vi+1; : : : ;vd). Thus, u is parallel to the altitudefrom vertex i. Its length is chosen so that its inner product with vi�v0 is 1which implies that its inner product with the true altitude vector is 1. Thus,the ith row of M�1T is parallel to the altitude vector from vi but is scaled sothat its length is the reciprocal of the altitude.Then we see that the rows of M�1T have lengths equal to reciprocals ofaltitudes from v1; : : : ;vd, with the shortest altitude being the reciprocal ofthe norm of the largest row. This proves the lemma, provided that theminimumaltitude is not adjacent to v0. The case when the minimumaltitudeis adjacent to v0 is handled by renumbering as in the previous proof.23



We conclude from these two lemmas that asp(T ) is within a constantfactor of kMTk � kM�1T k, that is, the condition number �(MT ). Combiningthese lemmas with the Hadamard inequality yields the following well-knownresult: cdminalt(T )d � vol(T ) � Cdmaxside(T )d: (1)9 Angles and PL PathsIn the preceding section, we de�ned \aspect ratio." It turns out that wecan show that QMG produces triangulations whose aspect ratio is boundedabove in terms of the sharpest angle of the input domain P . In this section,we provide the de�nition of \sharpest angle" and a theorem stating thatany possible triangulation of P has aspect ratio bounded below in terms ofthe sharpest angle. Thus, the theorem in this section is the lower boundnecessary to prove that the QMG triangulation is optimal.Let x;y be two points in P . A piecewise linear (PL) path � from xto y is a path composed of a �nite number of line segments. The endpointsof the segments are the breakpoints of �. Suppose that x 2 F and y 2 G,where F and G are two faces of P . We will say that � is contractibleif there exists a point z such that the segment xz lies in F , the segmentyz lies in G, and for all v 2 �, the segment vz lies in P . Note that thisde�nition forces z to lie in both F and G. Thus, a necessary condition forcontractibility is that F and G have a nonempty common subface.Note that we should really apply this term \contractible" to a triplet(�; F;G), since the de�nition depends on the speci�cation of F and G aswell as on the path �. When we use the term, the choice of F and G will beunderstood from context. The opposite of contractible is incontractible.Let T be an arbitrary triangulation of P (not necessarily the triangulationproduced by QMG). If a path � is contractible, we can obtain a lower boundthe aspect ratios of simplices of T that meet �. On the other hand, if � isincontractible, we can obtain an upper bound on the minimum altitude ofsimplices that meet �. The remainder of this section is devoted to statingand proving these two results.We start with the de�nition of the \angle" between two P -faces F andG, which is de�ned by contractible paths.De�nition. Let F;G be two faces of P , and suppose x 2 F and y 2 G. Let �be a contractible PL path from x to y. Let A be the a�ne set a�(F )\a�(G).24
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contractible path � forming an angle �, then ��1 is a lower bound on theaspect ratio of at least one simplex in every possible triangulation of P .Theorem 1 Let F;G be two P -faces, and assume there is a contractiblepath from F to G. Let � be the value of the sharpest angle between F and G.Let T be an arbitrary triangulation of P . Then there is a simplex T in thetriangulation with a vertex lying on F \G such that asp(T ) � cd=�.Proof. Let (x;y;�) be the triple de�ning the sharpest angle � between Fand G, and let z be the point in F \G to which we can contract �. (Statingthis more carefully, since sharpest angle is de�ned as an in�mum, we shouldsay that (x;y;�) de�nes an angle of size (1 + �)�, where � > 0 is arbitrarilysmall. But the 1 + � factor can be absorbed by the cd factor.) Let H be theP -face contained in F \G that contains z. (If there is more than one P -faceH satisfying z 2 H � F \G, choose any such H.) Let A = a�(F ) \ a�(G).Note that H � A, since H � F \G.In the triangulation of P , restrict attention to simplices of T that have atleast one vertex on H. Call this collection of simplices T 0. Since T 0 is a �niteset, there is an � > 0 such that every point in v 2 P satisfying dist(v;z) � �and vz � P is contained in a simplex from T 0. Then we can contract(x;y;�) toward z (i.e., replace x by (1 � �)z + �x, y by (1 � �)z + �y,and each point v 2 � by (1 � �)z + �v for some �xed � 2 (0; 1]) so that,without loss of generality, all of � is covered by simplices in T 0. Note that thecontraction operation does not a�ect the value of � because the numeratorand denominator of (2) scale by the same amount when we contract towardz. Without loss of generality, dist(x; A) � dist(y; A); de�ne � = dist(y; A).De�ne � = lth(�). Thus, � = �=� is the sharpest angle. Now de�ne acontinuous piecewise linear function f : P ! IR as follows. We �rst de�ne fon the vertices of T as follows. For each T -vertex v 2 G we de�ne f(v) =dist(v; A) where distance is measured in the ordinary Euclidean sense. SinceH � A, this �xes f(v) = 0 for vertices v 2 H. For all other vertices v of Twe de�ne f(v) = 0. Notice that all vertices v of F have f(v) = 0 becausethe intersection of F and G is contained in A. Now extend f to all of P bylinearly interpolating over each simplex. This yields a uniquely determinedpiecewise linear function f : P ! IR. Notice that f is identically 0 on F .Next, we claim that f(y) � �. Notice that for points on G, f is alinear interpolation of the function u 7! dist(u; A). This latter function is26



a convex function because A is convex. A linear interpolant of a convexfunction is always greater than or equal to the function value itself; thusf(y) � dist(y; A) = �.On the other hand, f(x) = 0 because x 2 F . Let f j� be the restrictionof f to �; then f j� is PL and continuous and increases by �. The lengthof � is �. Therefore, there is a point u where the directional derivative off at u parallel to � is at least �=� in magnitude. Let T be the simplex ofT containing u (if there is more than one such T , choose arbitrarily). Notethat T 2 T 0 because we are assuming � is covered by T 0. On this simplexT , since the gradient is constant, krfk � �=�.There is an analytic expression for rf on T as follows. Let us number thevertices of T with v0; : : : ;vd so that v0 is a vertex on H. (Recall that everysimplex in T 0 has at least one vertex on H.) Let ri = f(vi) for i = 0; : : : ; d.Thus, r0 = 0 because f is zero on H, as noted above. Then one checks thatf(u) on T is given by the linear mapping f(u) = rTM�1T (u�v0), whereMTwas de�ned earlier, and rT denotes (r1; : : : ; rd). Then we see that rf on Tis given by M�TT r, sokrfk � kM�TT k � krk � cd � (max jrij)=minalt(T ):Notice that max jrij is the maximum distance of a vertex of T from A, butthis is at most maxside(T ), since T has an edge from each of its vertices tov0, which lies on A. Thus,krfk � cdmaxside(T )=minalt(T )= cd asp(T ):On the other hand, we showed in the previous paragraph that krfk � �=�which is the reciprocal of �. Thus, we have proved that the aspect ratio ofT is bounded below by the reciprocal of the sharpest angle between F andG. The previous result shows that the presence of a contractible path givesa useful bound that is applicable to any triangulation T . On the other hand,the presence of an incontractible path also gives a useful bound. We startwith a lemma and then prove the main result.Lemma 3 Let � be an incontractible path from x 2 F to y 2 G. Let T bean arbitrary triangulation of P . Let F1; : : : ; Fm be an enumeration of all thefaces (of all dimensions including d) of T that meet �. Then F1\� � �\Fm = ;.27



Proof. Suppose that F1; : : : ; Fm have a common point z. Since the tri-angulation is boundary conforming, z lies on a common subface of F andG (because the lowest-dimensional triangulation face meeting x must be asubface of F , and similarly for the lowest-dimensional face meeting y). Fur-thermore, every point v on � is covered by a simplex that also covers z.Since simplices are convex, this simplex also covers the segment vz. Thus,� is contractible to z, contradicting the assumption.Theorem 2 Let F;G be two P -faces, and let � be an incontractible pathfrom x 2 F to y 2 G. Let T be an arbitrary triangulation of P . Then Tcontains a simplex T meeting � such thatminalt(T ) � cd lth(�):Proof. Let F1; : : : ; Fm be an enumeration of faces of T meeting �. By thepreceding lemma, F1 \ � � � \ Fm = ;. Let the vertices of F1 be denotedv0; : : : ;vs, where s � d. Since � meets F1, there is a point, say z, on � thatcan be written as a convex combination of the vertices of F1:z = �0v0 + � � �+ �svs;where each �i is nonnegative, and �0 + � � � + �s = 1. Therefore, for some i,�i � 1=(s+1) � 1=(d+1). Without loss of generality, say that �0 � 1=(d+1).Note that since the Fi's are disjoint, there is some Fi that does not containv0. Let this other face be denoted F2.Let f : P ! IR be a piecewise linear continuous function de�ned asfollows. We set f(v0) = 1. For all other vertices v of T , set f(v) = 0. Nowextend f to all of P by linear interpolation over the simplices in T . Notethat f(z) = �0f(v0) + � � � + �sf(vs), and hence f(z) � 1=(d + 1). On theother hand, let w be the point where � meets F2; note that f(w) = 0 sincef is identically zero on F2 (because f is de�ned to be zero on all vertices ofF2).We now conclude the proof using the same technique as in Theorem 1.Along path �, f is PL and continuous and decreases by at least 1=(d+1) (fromz to w). Therefore, there is a point u on � such that f is has a directionalderivative at u parallel to � whose magnitude is at least (1=(d+1))= lth(�).Let T be the simplex containing u. Then on this simplexT , since the gradientis constant, krfk � 1=((d + 1) lth(�)).28



We obtain an analytic expression for rf on T as follows. Let us numberthe vertices of T with v0; : : : ;vd. Let ri = f(vi) � f(v0) for i = 0; : : : ; d.Thus, jrij � 1 for each i. As earlier, rf on T is given by M�TT r, sokrfk � kM�TT k � krk � cd=minalt(T ):Combining this inequality with the inequality proved in the previous para-graph proves the theorem.10 QMG Aspect Ratio in Terms of Neighbor-ing Box SizesIn this section we begin our analysis of the aspect ratio bound for QMG. Ingeneral, we cannot establish a universal constant upper bound on the aspectratio of the triangulation produced by QMG because if P has sharp angles,then any possible triangulation, including QMG, will have poor aspect rationear the sharp angle, as proved by Theorem 1. Thus, we want to show thatthe sharpest angle of any simplex generated QMG is very sharp only if theinput polyhedron itself has a sharp angle.In this section we argue that the worst-case aspect ratio produced byQMG is bounded in terms of the ratio of sizes of neighboring boxes. Thissection requires an understanding of the analysis in our paper [12]. In subse-quent sections, we bound this box-size ratio in terms of the sharpest angle.From now on, we denote the sharpest angle in P by �(P ). Thus, the com-bination of these arguments bounds the aspect ratio of QMG in terms of�(P ).Let B be a box. As above, we de�ne size(B) to be the length of a side ofB. Let B;B0 be two neighboring protected boxes such that co(B) and co(B 0)have a common point. (Here, co(B) refers to the content of B at the time itbecame protected. The contents of two neighboring boxes might not have acommon point if the boxes' common subface is completely outside P becauseof boundaries that cut through the boxes or because of duplication.) Supposesize(B) � size(B0). These boxes have box-size ratio size(B)= size(B 0). Letr be the maximum box-size ratio in the whole triangulation produced byQMG. We argue in this section that the worst aspect ratio in QMG is atmost cdr.Consider a simplex T generated by QMG. As in [12], this simplex comesfrom a chain of d + 1 nested box subfaces. Unlike [12], these box subfaces29



can have di�erent sizes; in particular, the subfaces in the chain can grow insize as the dimension of the box face increases.A consequence of the alignment condition presented in Section 6 is asfollows. Let Bi, Bi+1 be two boxes in a chain, so that dim(Bi) = i anddim(Bi+1) = i + 1. Let the close points of these boxes be vi;vi+1. Theneither vi = vi+1 or dist(vi+1; a�(Bi)) � cd size(Bi+1): (3)The reason is as follows. Let C be the close face of Bi+1. Let B� be thei-dimensional face of Bi+1 that contains Bi. If C is a subface of B�, thenthe alignment condition implies that B� must also be protected, and henceB� = Bi and vi = vi+1. Else C is not a subface of B�, which means thatvi is bounded away by cd size(Bi+1) from B� as argued in [12], because theneighborhoods N(�) de�ned earlier create an exclusion zone around B�.LetMT be the d�d matrix associated with T de�ned above, with columnsordered according to the chain order. Because of (3), MT , when scaled tounit box size, satis�es analogs of the inequalities that were developed in [12]in the case of unit box size.In particular, let ST be the d � d diagonal matrix whose ith entry is thebox side length of the ith box face in the chain de�ning T . Then the matrixN = MTS�1T has its columns rescaled so that each column corresponds to adi�erence between two vertices in a unit-size cube. Slight generalizations ofthe bounds proved in [12] apply to N (actually, that paper considered thetranspose NT). In particular, the bounds in [12] imply that kNk and kN�1kare at most cd.Since �(MT ) � �(N)�(ST ), we have from the last paragraph that �(MT ) �cd�(ST ). Note that all the box faces in a chain come frommutual neighboringcubes, so �(ST ) � r. Therefore, �(MT ) � cdr. This argument has establishedthe following theorem.Theorem 3 Let �QMG(P ) denote the worst-case aspect ratio produced byQMG when applied to polyhedral domain P . Then there exist two neighboringprotected boxes B;B0 such that co(B) \ co(B0) 6= ; and such that�QMG(P ) � cd � size(B)= size(B0):30



In subsequent sections, we bound the maximum box size ratio in termsof the sharpest angle �(P ). The ultimate goal is Theorem 5, which bounds�QMG(P ) in terms of �(P ):11 A Bound on Splitting for AlignmentAs we saw in the preceding section, the aspect ratio of QMG can be boundedif we can bound the number of times boxes are split. The following is the keytheorem about how many times a box can be split. The proof of Theorem 4will be the topic of this and the next few sections.Theorem 4 Let P be the input polyhedral region, whose sharpest angle is �.Let B be a protected box produced by QMG. Then there exists an active boxBa that is an ancestor of B such thatsize(Ba) � cdmax(1; �(P )��(d)) size(B); (4)where the exponent �(d) is de�ned by (6) below, and such that co(Ba) containsan incontractible path � satisfying lth(�) � cd size(Ba). We call Ba theanchor of B.Recall that QMG splits boxes in both the separation and alignmentstages. The purpose of this section is to show that the amount of splitting foralignment is bounded by cd, which is one step in the proof of Theorem 4. Westart with two preliminary lemmas, which lead to the main result Lemma 6at the end of this section. That lemma is one step in the proof of Theorem 4.Lemma 4 Let B be a box with a neighbor B0 such that co(B) \ co(B0) 6= ;.There is a constant cd such that if size(B0) � cd size(B), then co(B0) � co(B).Proof. Let s = size(B) and s0 = size(B0). Then ex(B) extends out bys from all sides of of B. Hence ex(B) contains any point within 1-normdistance s from B. In particular, if (1 + )s0 � s, then ex(B0) would becompletely contained in ex(B); let cd in the lemma be this factor =(1 + ),Let x be a point in co(B0) \ co(B). Then every point in co(B0) is reachableby a PL path in co(B0) from x. This means that all of co(B 0) is containedin the component of P \ ex(B) that contains x, which must be co(B).31



Lemma 5 Let B be a box that is split for alignment: in particular, say B issplit during processing of OF in phase k for some face F . Then there existsanother active box B� created by QMG such that (1) size(B�) = size(B), (2)B� was split before the phase k alignment stage (i.e., B� was split duringphases 0; : : : ; k� 1 or in the phase k separation stage), and (3) there is a PLpath in P from co(B) to co(B�) of length at most cd size(B).Proof. Let us �rst prove the lemma for the simpli�ed version of QMG inwhich all the boxes are full dimensional. In this case, the alignment conditionwas described in Section 6 as follows: B is split for alignment because itshigh-priority close face, say C, is not completely covered by (full-dimensional)boxes in the extended orbit of F the same size or larger when B is processed.Consider the collection of boxes obtained by taking all boxes producedby any step of simpli�ed QMG that are same size as B. Consider also allthose boxes larger than B that are leaf boxes (i.e., protected). Notice thatthis collection of boxes, say Q, completely covers the input domain; someparts of IRd could be double-covered because of duplication.Let the enumeration of all boxes inQ that coverC be denoted B1; : : : ; Bm;exclude B itself from this enumeration. Since F is close to C, F meets N(C)and hence also co(B). Let x be a point where F meets N(C). AmongB1; : : : ; Bm, consider only those Bi such that x 2 co(Bi). The case whenx =2 co(Bi) could occur only because of duplication; there could be duplicatesof neighbors of B that do not contain x.Rename the remaining boxes again as B1; : : : ; Bm; note that these boxestogether with B must cover C. Since the alignment condition does not holdfor B, one of them, say Bi, is already split at the time B is processed. Thebox that is already split must have the same size as B (i.e., it cannot be oneof the larger boxes in Q because those boxes are all protected). Without lossof generality, Bi is the earliest box among B1; : : : ; Bm to be split.Case 1 is that this box Bi was split during a phase 0; : : : ; k� 1, or duringphase k separation. In this case the lemma is proved with B� = Bi; notethat the two boxes contain x in their content so that condition (3) of thelemma is trivial.The remaining case, Case 2, is that Bi is split during the phase k align-ment stage before B is processed. Rename Bi as B0. Note that since co(B0)meets F , then B0 must be in OF . Since B0 is the �rst box among B1; : : : ; Bmto be split during phase k alignment, C is still covered by boxes in the orbitof the same size or larger at the time the alignment condition is checked for32



B0. Let C 0 be the close face of B 0. Note that C 0 is not covered by boxesin the orbit of the same size or larger, since we are assuming B0 is split foralignment in phase k. It is not possible that dim(C 0) � dim(C) because thenC would have higher priority than C 0 and hence C 0 would not be selectedas the close face of B0. (Recall that the priority rule favors faces of lowerdimension and, among faces of the same dimension, favors faces completelycovered by boxes in the orbit.) Thus, dim(C 0) < dim(C). Start the proof ofthis lemma over again with B0 and C 0. In other words, consider the boxesin the quadtree at the level of B 0 that cover C 0. Either for B0 we will \exit"this argument in Case 1 (i.e., we �nd a box B� that satis�es the lemma forB0), or we will have to restart the argument another time.But note that each time we restart the above argument, the dimension ofthe close face in question decreases by 1. Thus, we can repeat the argumentat most d times before terminating at Case 1. Let the sequence of boxesconstructed by repeating this argument be B;B0; B00; : : : ; B(r); B�, where B�is a box split before phase k alignment. Note that r � d as just mentioned.Also, all boxes in this sequence are the same size, and B(i) is adjacent toB(i+1) for each i. Furthermore, co(B(r)) has a common point with co(B�),and all of B(1); : : : ; B(r) are in OF . This means that we can �nd a PL pathin P from B to B(r) by traversing F through each box. (Recall that a boxin OF cannot meet any boundaries of F in its content.) The length of thePL path constructed in this manner is at most cd size(B). This proves thelemma.If we wanted to extend this proof to the case of the complete versionof QMG (including lower-dimensional boxes), we would use the same proofas above, except that we would have to restate the meaning of \completelycovered" in terms of the weight system mentioned in Section 7. Becausewe have incompletely described the weight system and skipped the lemmasshowing that lower-dimensional boxes do indeed act like proxies for the full-dimensional boxes that contain them, we do not have enough machinery toprove this lemma in the general case; hence we merely assert it.The preceding lemma now leads to the main result of this section, whichsays that during splitting for alignment, boxes can become only a constantfactor smaller.Lemma 6 Let B be a box that results from splitting for alignment during theprocessing of OF for some k-face F . Then B is descended from an active box33



B0 at the start of the phase k alignment stage such that size(B 0) � cd size(B).Proof. Let B0 be a parent of B, so that B0 was split for alignment duringthe processing of OF and so that size(B0) = 2 size(B). By the precedinglemma, there is another box B� that was either protected from an earlierphase or was split for separation such that there is a PL path � in P fromco(B�) to co(B0) of length at most cd size(B0).Let B0 be the ancestor of B0 at the beginning of phase k alignment in OF .Observe that there is a constant �d depending on d such that if B0 satis�edsize(B0) � �d size(B0), then co(B 0) would contain co(B�) as a subset. Thisfollows from the same proof technique used for Lemma 4; in particular, if B0were su�ciently larger than B0, it would contain the whole path � and alsoco(B�).On the other hand, it is impossible that co(B0) contains co(B�). Thisis because B� was split for separation in phase k or was split in a phaseearlier than k. Whatever P -faces caused B� to be split would cause B0 to becrowded, and hence B0 could not end up in OF .Thus, we conclude size(B 0) < �d size(B0), which proves the lemma.This lemma shows that all splitting for alignment can be lumped into thefactor cd in (4).12 Splitting Boxes for Weak CrowdingRecall that a box is split for separation if and only if it is crowded. Recallalso that there are two ways that B can be crowded in phase k: (1) co(B)contains a P -face of dimension k� 1 or lower, or (2) co(B) contains a P -faceF of dimension k, and another P -face G of dimension k or greater that isnot a superface of F .We call the former \weak crowding" and the latter \strong crowding." Inthis section we show that all splitting for weak crowding can also be lumpedinto the factor cd in (4), which is another step toward proving Theorem 4.Lemma 7 Let B be a box that is split for weak crowding; that is, in thephase k separation stage, co(B) meets a P -face of dimension k� 1 or lower.Then B has an ancestor B0 that is an active box at the beginning of phase ksuch that size(B) � cd size(B0). 34



Proof. The assumption implies that the P -face F of dimension k�1 or lowerpasses through ex(B). Let B0 be the ancestor of B from the beginning ofphase k. We claim that B0 can be at most a constant factor cd larger thanB. This is because the expansion factors for ex(B) and ex(B) are o� by aconstant cd. Recall that ex(B) was de�ned in Section 6 and is applied herewith respect to face F . Therefore, the ancestor of B0, if it is much larger thanB, would contain this P -face F in ex(B0). Recall that if F meets ex(B0),then B0 has a subface close to F . Hence B0 would have been protected inphase dim(F ), which is less than k, or would have been split for separation.Thus, B0 is at most cd larger than B.Thus, all splitting for weak crowding can also be lumped into the factorcd in (4).13 Splitting for Strong CrowdingIn this section we analyze splitting for strong crowding and �nally proveTheorem 4. Recall that \strongly crowded" means that there is a P -face Fof dimension k in co(B), and another P -face G of dimension l � k in co(B)that is not a superface of F . From now on, we say that G is \foreign" to Fif G is not a superface of F . We say that two points x and y are \visible"to each other with respect to P if segment xy lies in P . We start with twolemmas about visibility.Lemma 8 Let P be a k-dimensional polyhedral domain in IRd, and let C bea convex subset of IRd. Suppose P \C is not empty, and let U be a componentof P \ C. Suppose that U meets a P -face F and that U does not meet anyfaces of P that are foreign to F . Then every point in U is visible to everypoint in F \ U , where \visibility" is with respect to U .See Fig. 9 for an illustration of this lemma.Proof. Let x be a point in F \U and y a point in U . Consider the segmentL = xy; suppose that this segment is not contained in U . We will derive acontradiction. Since y 2 U and U is closed, there must some point z 2 Ldi�erent from x such that z is in U , but there is a sequence of points z1;z2; : : :lying on L and converging to z that are not in U . Note that all of these pointslie in C because C is convex and L joins two points in C. Thus, since these35



F

Figure 9: Lemma 8 in the case k = d = 2. Face F is a single vertex. Theboundary of P is the solid line. The convex set C is the dashed square in the�gure. The shaded region is U . Notice that every point in U is visible to F .points are not in P \C, we conclude that they are not in P . This means thatthere is at least one facet H of P (where \facet" refers to a face of dimensionk � 1) passing through z such that a�(H) does not contain L as a subset.But this is impossible, because every facet of P meeting U in this compo-nent is a superface of F by assumption. This means in particular that for Hin the last paragraph, x 2 a�(H). But since a�(H) is convex and containsx and z, it also contains L.Lemma 9 Let P be a k-dimensional polyhedral domain in IRd, and let C bea convex subset of IRd. Suppose P \C is not empty, and let U be a componentof P \ C. Suppose that U meets a P -face F , and suppose that U also meetsa face G of P foreign to F . Then for any point x 2 F \ U , there is a pointy 2 U that is visible to x (with respect to U) such that y lies on a P -faceforeign to F (which may or may not be G).See Fig. 10 for an illustration.Proof. For � 2 [0; 1], let C(�) denote the contraction by � of C towardx (i.e., v 2 C i� �v + (1 � �)x 2 C(�)). Let U(�) be the component ofC(�)\P that contains x. Find the parameter value �� > 0, such that U(��)still meets a foreign face, but U(�� � �) meets no faces for to F for all small36



F
H

GFigure 10: Lemma 9 for d = 2. Face F is a single vertex. The convex set C isthe dashed square in the �gure. The shaded region is U . Note that there is avertex G of P that is foreign to F . This means that there is a face, namely,vertex H in U , that is also foreign to F but is visible to F \ U .� > 0. By the preceding lemma, every point in U(�� � �) is visible to x.Since the set of points visible to x is closed, this means that every point inU(��) is also visible to x, and this set includes a point from a foreign face.We now conclude the proof of Theorem 4. Let B be a protected box thatis produced by QMG. Write down its sequence of ancestors B0; B1; : : : ; Br,where Br = B and B0 is the top box. This sequence is not necessarilyunique if Br is not full dimensional, in which case any sequence of ancestorswill do. Now, delete boxes Bi in this sequence such that Bi+1 arises fromBi via subface launching. Denote the new list B0; : : : ; Br again. Each boxis now a factor 2 smaller than its predecessor. From this list, delete boxesthat are split either for alignment or for weak crowding, and denote the newlist again as B0; B1; : : : ; Br. This new list contains boxes that are split onlyfor strong crowding, as well as the protected box Br which is not split. ByLemma 6 and Lemma 7, in this new sequence of boxes, each box di�ers fromits predecessor in size by a factor at most cd.Each box B0; : : : ; Br�1 is split during some phase 0 to d � 1. (Therecannot be any strong crowding in phase d by de�nition of strong crowding.)Therefore, mark the location where each phase begins and ends in the se-37



quence B0; : : : ; Br�1. This divides the sequence B0; : : : ; Br�1 into \periods,"where the kth period consists of boxes split during phase k.Now subdivide each period into subperiods, using the following procedure.Focus on one particular period k, and suppose it starts at Bl and ends withBm (i.e., Bl is the �rst box of the sequence split in phase k, and Bm is thelast). Since Bm is strongly crowded, there is a k-face of P , say F , meetingco(Bm), and there is another face G foreign to F meeting co(Bm). Pick apoint x 2 F \ co(Bm). Without loss of generality, by Lemma 9, we canassume that there is a segment in co(Bm) from x to a point y 2 G (elsechoose a di�erent G). Similarly, without loss of generality, y is not in anyproper subface of G. (If y is in a proper subface of G, simply reselect G tobe the subface: because G is foreign to F , every subface of G is also foreignto F .)We will construct a PL path � in co(Bm). The �rst segment of the pathis xy. Consider whether G has any boundary faces that meet co(Bm). Ifnot, then the construction of � is complete, and we let � = xy. The othercase is that a boundary of G meets co(Bm). By Lemma 9, there is a segmentin co(Bm) from y to a boundary face of G. (In this application of Lemma 9,the \polyhedral domain" in the lemma is G itself. Note that a boundary ofG is foreign to G, i.e., is not a superface.) Append this new segment to �.We can continue in this manner until we reach a point to which we will nowreassign the name y, such that y lies on P -face foreign to F , which we renameG, such that G does not have any boundaries that meet co(Bm). Note thatlth(�) is at most d � pd(1 + ) size(Bm). The factor pd(1 + ) size(Bm) isthe diameter of ex(Bm) (in the worst case when Bm is full dimensional) andhence is the maximum length of any segment in co(Bm), and the factor dcomes from the fact that � has at most d segments in it. This is becausein the preceding construction of �, each time a new segment is added, thedimension of the boundary face in question decreases by at least 1. Thus,lth(�) � cd size(Bm).Note that � � co(Bi) for each i = l; : : : ;m, since co(Bm) � co(Bm�1) �� � � � co(Bl). On the other hand, in an ancestor of Bm, it might be possibleto extend � with one or more additional segments so that it reaches a lower-dimensional boundary face of G. Find the lowest numbered box Bq (largestin size) in the period Bl; : : : ; Bm such that it is not possible to extend � toa P -face of lower dimension that is a boundary of G. We will say that thesubsequence Bq; Bq+1; : : : ; Bm is one subperiod of period k. Each box inthis subperiod is associated with the quintuple (x;y; F;G;�) de�ned in the38



last paragraph. If q = l, we are done; this is the only subperiod of period k.On the other hand, if q > l, then in Bq�1 it is possible to extend � toreach a face of lower dimension than was reached in Bq. Extend � with oneor more additional segments, yielding a path �0 to a face G0 that is a propersubface of G. Now we repeat the above argument to �nd the predecessor ofBq�1, say Bq0 such that � cannot be extended in Bq0 but can be extended inBq0�1 (or else q0 = l), and we let Bq0; Bq0+1; : : : ; Bq�1 be another subperiod ofperiod k, associated with (x;y0; F;G0;�0). We continue in this manner untilwe �nally get back to Bl. The maximumnumber of subperiods in period k isseen to be d�k. The reason is that each time we back up to a new subperiod,the dimension of the face reached by � decreases by at least 1. The maximumpossible dimension ofG initially is d�1, and the minimumpossible dimensionis k (because no box among Bl; : : : ; Bm is weakly crowded).Thus, we have divided the sequence of boxes B0; : : : ; Br�1 into at mostd periods numbered 0; : : : ; d � 1, and period k is divided into at most d � ksubperiods. We have also associated with each box a choice of (x;y; F;G;�).Now we can classify each box in the sequence according to whether itsassociated path � is contractible or not. Let Ba be the highest numbered(smallest) box in B0; : : : ; Br�1 such that its associated path is incontractible.(Notice that Ba exists because B0 certainly satis�es this condition.) Thus,Ba satis�es the conditions of Theorem 4 that it contains an incontractiblepath of length at most cd size(Ba), and that it is an ancestor of B. All thatremains is to establish (4). Note that the anchor box must be the last onein its subperiod, because all boxes in a subperiod have the same associatedpath. From now on, we consider only the portion Ba; : : : ; Br of the originalsequence and forget about B0; : : : ; Ba�1.We start with the following intermediate result. Let Bm be a box in thesequence with m > a, and suppose it is contained in a subperiod beginningwith Bq (so a < q � m). Then we claimsize(Bm) � cd �min(�(P ); 1) � size(Bq): (5)Let us assume that Bm is a proper descendent of Bq because when m = q,(5) is trivially true. Let (x;y; F;G;�) be the quintuple associated withBm; by de�nition of subperiod, the same quintuple is associated with Bq.Since � is contractible (by choice of Ba), F \G is nonempty. Let A denotea�(F ) \ a�(G). We claim that A does not meet ex(Bq). See Fig. 11 for anillustration of the items constructed in the proof of this claim. Note that no39
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Figure 11: Items x;y; F;G;�; A arising in the proof of (5). The boundaries ofex(Bq) and ex(Bm) are the dashed lines. In this �gure A is zero-dimensionaland is equal to F \G, but in general A will be a superset of F \G.boundary face of F meets co(Bq), because co(Bq) does not meet any P -facesof dimension k � 1 or less (because it is not weakly crowded.) Thus, co(Bq)must contain all of a�(F ) \ ex(Bq). Similarly, co(Bq) does not contain anyboundary faces of G by construction of � (else � could be extended). Thus,co(Bq) also contains all of a�(G)\ ex(Bq). Suppose that a�(F )\a�(G) metex(Bq); then co(Bq) would have to contain all of a�(F ) \ a�(G) \ ex(Bq) =A \ ex(Bq) by the foregoing argument. In particular, F and G would meetin co(B) at all points in A \ ex(Bq). But this is impossible, because neitherhas any boundaries in co(Bq).Since A does not pass through ex(Bq), there is a lower bound of theform cd size(Bq) on the distance from A to ex(Bm). This is because ex(Bq)extends a small fraction cd multiplied by size(Bq) beyond ex(B0) for anyproper descendantB 0 of Bq. In particular, this means dist(x; A) � cd size(Bq)40



and dist(y; A) � cd size(Bq). On the other hand, lth(�) � cd size(Bm), asargued above. Thus, in the de�nition of sharp angle (2) applied to (x;y;�),we see that F and Gmake an angle less than or equal to cd size(Bm)= size(Bq).Since �(P ) is the sharpest angle,�(P ) � cd size(Bm)= size(Bq):This equation proves (5).We now deduce (4) from (5). If Bq is the beginning of a subperiod withq > a, and Bm is its end, then size(Bq) � cdmax(1; �(P )�1) size(Bm) from(5). Thus, if � stands for the total number of subperiods between Ba+1and Br, then size(Ba) � (cdmax(1; �(P )))�� size(Br), where c��d accountsfor the factor in box size shrinkage between the end of one subperiod andthe beginning of the next, and �(P )�� accounts for box shrinkage within the� subperiods. Since there are at most d � k subperiods in period k, thetotal number of subperiods � can be bounded �(d) = d(d + 1)=2. Thus,size(Ba) � cdmax(1; �(P )�d(d+1)=2) size(Br) (where we have renamed c��(d)das cd).In fact, we can immediately improve this estimate on �(d) with the fol-lowing observation. Note that if Bi is in period 0, then its path � constructedabove cannot be contractible. This is because F in phase 0 is a vertex andhence is disjoint from any foreign face G. Thus, the anchor box Ba eitheris the last box of period 0 or is in a later period. This means that the onlysubperiods that matter are in period 1 or later. Thus, we can improve theestimate to �(d) = (d� 1)d=2.We can further improve the estimate to (6) below with the following morecomplicated analysis. We claim that in period 1, a single subperiod su�ces.The proof is as follows. Assume that the anchor box is in period 0 or 1 (elsewe would not need to include subperiods of period 1 in the count of �, so(6) holds already). Let us review why we constructed subperiods in the �rstplace. Let Bm be the box at the end of a subperiod, let (x;y; F;G;�) be itsassociated quintuple such that � is contractible, and let Bq be the �rst box inthe subperiod ending at Bm. In the above derivation of (5), we used the facta�(F ) \ a�(G) cannot pass through ex(Bq). To derive this fact, we neededto know that G does not have any boundaries in co(Bq). The above methodof constructing subperiods indeed assures that G does not have boundariesin co(Bq).But consider the special case of period 1, so that dim(a�(F )) = 1. LetBm be the last box in period 1, and rede�ne Bq to be the �rst box of period41



1, or the child of the anchor Ba, whichever comes later. Let (x;y; F;G;�)be the quintuple for Bm. Since dim(F ) = 1, dim(a�(F ) \ a�(G)) is either 0or 1. The case when dim(a�(F ) \ a�(G)) = 1 cannot occur by the way weconstruct �. In particular, if dim(a�(F )\a�(G)) = 1, then a�(F ) � a�(G),which means that G either is a superface of F (contradicting the choice of Gas foreign face) or has a boundary in co(Bm) (contradicting the fact that �reaches a face of minimal dimension).The other case is that dim(a�(F )\ a�(G)) = 0, in other words, a�(F )\a�(G) is a single point fvg. Since � is contractible, F and G have a commonsubface which must therefore be fvg itself. Thus fvg is a face of P . ButsinceBq is not weakly crowded, co(Bq) cannot contain a 0-dimensional face ofP . Thus, without making any assumption about whether G has boundariesin co(Bq), we have determined that a�(F ) \ a�(G) does not pass throughex(Bq). Therefore, a single subperiod su�ces for period 1.Thus, we have the following improved estimate for �, which is the totalnumber of subperiods after Ba:�(d) = (d � 1)(d � 2)=2 + 1: (6)This concludes the proof of Theorem 4.Notice that by combining Theorem 2 and Theorem 4 we immediate obtainthe following corollary.Corollary 1 Let B be a protected box generated by QMG. Then there existsan ancestor Ba of B such that (4) holds and such that for any triangulation Tof P , there is a simplex T meeting co(Ba) such that minalt(T ) � cd size(Ba).In fact, we can strengthen Corollary 1 (though not Theorem 4) in thecase d = 2. The strengthened version of Corollary 1 asserts thatsize(Ba) � c size(B) (7)holds when d = 2, in place of (4) (i.e., the factor of �(P )�1 goes away). Theargument for this strengthening is as follows. In the following argument,c denotes an absolute constant whose value may change from formula toformula.Consider how the factor �(P )�1 arises in the �rst place. Let B be aprotected box and Ba its anchor. This factor comes when anchor Ba is from42
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(b)Figure 12: Faces arising in the proof of the strengthened version of Corollary 1when d = 2. Box B and path � are not depicted; both are enclosed in B 0a inthe �gure.period 0, and then in period 1 we split a strongly crowded box that has acontractible path that de�nes a sharp angle �. Since (4) and (7) are equivalentwhen �(P ) is large, let us assume that � � 0:1. Let B0a be the last box thatis split for strong crowding at the end of period 1. Clearly (7) holds for thischoice of B0a (since splitting for alignment, as well as all splitting in phase 2,incurs only an additional factor c). The contractible path � in B0a is from xto y. See Fig. 12. We now must prove that for an arbitrary triangulation T ,there is a simplex T meeting � satisfying minalt(T ) � cd size(B0a).In the �gure, B0 denotes a protected box for v, the common subfaceof F and G. Note that there must be an incontractible path from v to aforeign face H whose length at most a factor c more than size(B0) by thepreceding analysis. Thus, x and y must both be separated from v by at leastcd dist(v;H). There are two possible ways to choose H; either it is a subfaceof one of F or G, which is (a) in the �gure, or it is does not meet F and G,which is (b) in the �gure.Let T be an arbitrary triangulation. Let T1; : : : ; Ts be the triangles ofT that meet �. Take two cases. In the �rst case, suppose that at leastone of T1; : : : ; Ts, say T1, meets the segment denoted by � in (a) or that43



it meets the PL path �1 [ �2 in (b). Since �;�1;�2 are all incontractible,this means by Theorem 2 that minalt(T1) � c lth(�) for (a) or minalt(T1) �c lth(�1 [ �2) for (b). But now it is clear that lth(�); lth(�1); lth(�2) areall at most c� dist(v;H), that is, less than or equal to c size(B0a). Thus,minalt(T1) � c size(B0a), proving the corollary.The other case is that none of T1; : : : ; Ts meet � in (a) or �1 [ �2 in(b). But this means all of T1; : : : ; Ts are contained in the polygonal regionbounded by F [ G [ � in (a) or F [ G [ �1 [ �2 in (b). The width ofthis polygonal region is at most c size(B0a), so any triangle in this region hasminalt at most c size(B0a). This concludes the proof that Corollary 1 may bestrengthened in the case d = 2.14 Maximizing the Minimum AltitudeIn this section we consider the problem of computing a triangulation thatmaximizes the minimumaltitude. Although this is not the problem for whichQMG is intended, we nonetheless can obtain an interesting consequence fromCorollary 1. Suppose we want to compute the triangulation of P that max-imizes the minimum altitude. In other words, for a triangulation T of P ,de�ne �T (P ) = minfminalt(T ) : T 2 T gand then consider the triangulation T � that solves�(P ) = maxf�T (P ) : T is a triangulation of Pg:It follows from Corollary 1 that QMG solves this problem to within a factorcd�(P )��(d) for d > 2 and within a factor c (a universal constant) when d = 2.This is because the minimum altitude among all triangles produced by QMGis within a factor cd of the smallest protected box generated by QMG. But,by the corollary, the smallest protected box is within a factor of cd�(P )��(d)of the minimum altitude of any possible triangulation.Thus, in the case d = 2, �QMG(P ) � c�(P ), and for d = 3, �QMG(P ) �cmin(1; �(P )2)�(P ). In the case d = 2, more is known about this problem.In particular, the algorithm of Bern, Dobkin and Eppstein [2] produces atriangulation T also satisfying �T (P ) � c�(P ), and also T has an optimal(linear) number of triangles. 44



In the case d = 3, much less is known. For instance, we do not knowwhether the bound c�(P )�2 is tight for QMG. We have constructed an ex-ample where the minimum altitude of the triangulation produced by QMGis o� from �(P ) by a factor c�(P )�1, but we have not found an exampleattaining the bound c�(P )�2.Another open question concerns a geometric characterization of �(P ). Itfollows from the optimality of QMG in the case d = 2 that �(P ) is within aconstant factor of the minimum geodesic distance between P -faces that donot meet each other. Is there a similar simple geometric characterization of�(P ) for d = 3? For any d, Theorem 2 implies that the minimum geodesicdistance between two nonmeeting faces of P is an upper bound on �(P ) (towithin a constant cd), but it is not known whether this bound is tight.15 A Bound on the QMG Aspect RatioThis section establishes the optimality of the QMG aspect ratio using The-orem 4 and Corollary 1.Theorem 5 Let �QMG(P ) denote the worst-case aspect ratio produced byQMG when applied to polyhedral domain P . Then�QMG(P ) � cdmax(1; �(P )��(d)):Proof. Let B1; B2 be two neighboring protected boxes such that co(B1) andco(B2) have a common point. Assume that B1 is protected in phase k andlies in OF , assume B2 is protected in phase l with l � k and lies in OG, andassume size(B1) > size(B2). By Theorem 3, it su�ces to obtain an upperbound on size(B1)= size(B2).We can assume that co(B2) � co(B1). If this relation did not hold, thenby Lemma 4 we could immediately conclude that there is a bound of theform cd on size(B1)= size(B2).By Theorem 4, B2 has an anchor Ba containing an incontractible pathsuch that cdmax(�(P )��(d); 1) size(B2) � size(Ba): (8)Because B1 is protected, every point in co(B1) is visible to every point in F \co(B1) by Lemma 8, and this includes co(B2) as well. Therefore, any PL path45



inside co(B1) is contractible to any point of F\co(B1). Since co(Ba) containsan incontractible path, it cannot be a subset of co(B1). Hence, size(Ba) �cd size(B1). Combining this with (8) shows that size(B1)= size(B2) � cdmax(�(P )��(d); 1).When d = 2, Theorem 5 shows that QMG is optimal because we alreadyknow that for any triangulation T , �T (P ) � c�(P )�1 by Theorem 1, and�(2) = 1.When d = 3, Theorem 5 shows that QMG has an aspect ratio bound ofc�(P )�2, whereas the lower bound from Theorem 1 is c�(P )�1. In fact, amore complicated analysis of QMG for the d = 3 case establishes an upperbound of c�(P )�1 on �QMG(P ). Here is a sketch of this analysis. Recallthat the only case that needs attention is the case of a large protected boxB1 next to a much smaller protected box B2, such that co(B2) � co(B1).Suppose, for instance, that B1 is protected in phase 0 (a similar argumentapplies to the case when B is protected in phase 1), and suppose that B2is protected in phases 1 or 2. Find the largest ancestor B� of B2 with theproperty that co(B�) � co(B1); as above, size(B1)= size(B�) � c. Considerthe chain of strongly crowded boxes from B� down to B2. Let P 0 be theintersection of P with the facet of B1 separating it from B�. Observe thatsplitting strongly crowded boxes in phases 1 and 2 of three-dimensional QMGapplied to the chain of boxes B� down to B2 is very similar to phases 0 and1 of 2-dimensional QMG running on the polygon P 0. In other words, with acorrect modi�cation to the de�nition of ex(B) in two dimensions, whenevera three-dimensional box on the boundary of B1 is split for strong crowding,the corresponding two-dimensional box would be split for strong crowding ofP 0. Since two-dimensional QMG is optimal with respect to maximizing theminimum altitude, we conclude that size(B2) is bounded below by the mini-mum geodesic distance � in P 0 between two faces that do not meet. But nowit is easy to see that �= size(B1) is bounded above by the sharpest angle � atv. Thus, size(B1)= size(B2) � c�(P )�1.It is likely that this line of reasoning extends to higher dimensions, al-though we do not know the exact improvement to Theorem 5 possible withthis analysis. Furthermore, we do not know whether our lower bound fromTheorem 1 on the best attainable aspect ratio is tight in dimensions higherthan 3. 46



We can summarize the conclusions of this section with the following the-orem.Theorem 6 Let T be an arbitrary triangulation of P with worst-case aspectratio denoted �T (P ). Then�QMG(P ) � cd � (�T (P )) (d);where  (d) = 1 for d = 2; 3 and  (d) � �(d) for higher dimensions.16 Bounded Aspect Ratio TriangulationsIn the preceeding section we showed that the QMG triangulation has anaspect ratio bound. In the next section we will show that, among all trian-gulations with bounded aspect ratio, QMG has the minimum cardinality, upto a constant factor. First, we present some preliminary results that applygenerally to any triangulation with bounded aspect ratio.We have the following preliminary lemma.Lemma 10 Let T be a triangulation of a polyhedral region P whose aspectratio is at most �. Let T1; T2 be two simplices that share a common vertex v.Then minalt(T1) � �1(�; d)minalt(T2), where the function �1(�; �) is de�nedbelow.We omit the proof of this lemma, which is contained in [10]. Here is a sketch.Two simplices S1; S2 of T that share an edge v1v2 satisfy minalt(S1) ��minalt(S2) by the chain of inequalities:minalt(S1) � kv1 � v2k� maxside(S2)= asp(S2)minalt(S2)� �minalt(S2): (9)Two simplices T1; T2 that share a vertex v are connected by a chain of sim-plices S1(= T1); S2; : : : ; Sp(= T2) that all share v and such that Si and Si+1have a common edge. This is because T is a triangulation of P , which isa manifold with boundary. It can be shown that the number of simplicesp that can share a common vertex is bounded above in terms of � because47



the solid angle of each Si at v is bounded below in terms of �. Thus, p isbounded above in terms of �: it turns out that p � cd�d�1. Thus, the lemmais true with �1(�; d) = �cd�d�1 :Now for the �rst result of the section. This lemma bounds the rate atwhich simplices can grow in a bounded aspect ratio triangulation.Lemma 11 Let T be a triangulation of P whose aspect ratio bound is �. Let� be a PL path in P from x to y. Suppose that x is contained in a simplexT . Then every simplex T 0 containing y satis�esminalt(T 0) � cd�1(�; d)max(minalt(T ); lth(�)): (10)Proof. Let F1; : : : ; Fs be an enumeration of the faces of T met by �. Let Fsbe the lowest-dimensional face of T containing y.Case 1, Fs has a vertex in common with T . Since every simplex containingy also contains Fs, then T 0 has a common vertex with T . In this case thelemma is true with the �rst term of the max in (10) by the preceding lemma.Case 2, Fs does not have a vertex in common with T . In this case,de�ne a PL continuous function f : P ! IR that is 1 on vertices of Fs andzero on all other vertices and is linearly interpolated by T . Then, as inthe proof of Theorem 2, there must be a simplex S that meets � such thatthe gradient of f on S is at least 1= lth(�), and hence this simplex satis�esminalt(S) � cd lth(�). Notice that S and Fs must have a common vertexbecause if not, the gradient of f on S would be 0. Since S and T 0 have acommon vertex, we apply the preceding lemma to bound minalt(T 0) by thesecond term of the max in (10), proving the lemma.Here is our other main result about bounded aspect ratio triangulations.Lemma 12 Let C be a cube in IRd of side length s. Let T1; : : : ; Tn be a setof n simplices with pairwise disjoint interiors, satisfying minalt(Ti) � � andasp(Ti) � � for each i. Suppose each Ti meets C. Thenn � cd�d + cdsd=�d: (11)Proof. For each Ti, identify a point xi 2 Ti\C. Now contract each Ti aboutxi until we obtain a new simplex T 0i such that minalt(T 0i ) = �. Since T 0i � Ti,48



the set T 01; : : : ; T 0n still enjoys the property that interiors are pairwise disjoint.Since xi 2 T 0i , each T 0i still meets C. Finally, contraction a�ects maxside andminalt by the same scale factor, so asp(T 0i ) = asp(Ti).We know that maxside(T 0i ) = asp(T 0i )minalt(T 0i ) � ��. Therefore, forevery point y in T 0i , dist(y;xi) � ��: Let x0 be the centroid of C. Then wehave for each i that dist(xi;x0) � cds. Combining these inequalities yieldsthe bound that for every point y 2 T 0i for each i, dist(y;x0) � �� + cds:Thus, all of T 01; : : : ; T 0n are contained in a ball B of radius ��+cds around x0.The volume of this ball is at most cd(�d�d + sd). Each simplex has volumeat least cd�d by (1). Since the simplices have disjoint interiors, their numberis bounded above by vol(B)=(cd�d), which proves the lemma.17 A Bound on the Cardinality of QMGIn this section we show that the cardinality of the triangulation producedby QMG is always within a constant factor of optimal among all boundedaspect ratio triangulations, where the constant depends on the aspect ratio.We start with the following lemma.Lemma 13 Let x be an arbitrary point in P , and let T be the simplex gen-erated by QMG that contains x. (If there is more than one, the result holdsfor any choice of T .) Let S be some other triangulation of P with aspectratio bound �S , and let S be the simplex in S that contains x. (If there ismore than one, then the result holds for any choice of S.) Thenminalt(S) � cd�1(�S ; d) �max(��(2d+2)�(d); 1) �minalt(T ): (12)Proof. Recall that each simplex generated by QMG is associated with a full-dimensional protected box, namely, the last box in its chain. Furthermore,each full-dimensional protected box is associated with a full-dimensional an-chor box as in Theorem 4. Therefore, transitively, each simplex generatedby QMG is associated with an anchor box.Let T be such a simplex, and Ba its anchor box. Clearlyminalt(T ) � cd size(Ba); (13)since T lies in ex(Ba). On the other hand, there is also an inequality inthe other direction. The reason is as follow. Let B be the full-dimensional49



protected box containing T . Then, as argued in Section 10, minalt(T ) isbounded below by the size of the smallest neighbor of B, which, by the proofof Theorem 5, is bounded below by cdmin(1; �(P )�(d)) size(B). There is alower bound on size(B) in terms of size(Ba) given by (4). Combining thesebounds yields minalt(T ) � cdmin(1; �(P )2�(d)) size(Ba): (14)Let x be the arbitrary point in P speci�ed by the lemma. Let T bethe simplex generated by QMG that contains x, let B be the protectedbox associated with T , and let Ba be the anchor of B. In the next fewparagraphs we will construct a PL path � from x to a simplex S 2 Ssatisfying minalt(S) � size(Ba) and such that lth(�) is bounded above interms of size(Ba).Observe that co(Ba) contains an incontractible path �1 by de�nition of\anchor." Therefore, let S1 be the simplex in S that meets �1 and satis�esminalt(S1) � cd size(Ba), as speci�ed in Theorem 2. Let y be a point in�1 \ S1. Construct the shortest PL path (the geodesic path) from x to ylying in co(Ba), and call it �1. Note that there is no a priori upper boundon lth(�1) in terms of size(Ba) because co(Ba) could contain geodesic pathspossibly much longer than size(Ba).Let T1; T2; : : : ; Tp be an enumeration of the QMG simplices met by �1,listed in the order they are encountered starting with x. Note that no simplexcan appear twice in this enumeration; this is because �1 is a geodesic pathand therefore would not return to the same simplex more than once.Let Tq be the �rst simplex in the sequence that fails to satisfy (14). Ifthere is no such q, then take q = p+1. Thus, T1; : : : ; Tq�1 all satisfy (14). Weclaim that q � 1 � cdmax(��2d�(d); 1). This follows from (11). Observe thatT1; : : : ; Tq�1 is a set of simplices with disjoint interiors all meeting ex(Ba).We use (14) as a lower bound on the minimum altitudes of T1; : : : ; Tq�1,cd size(Ba) as the size of ex(Ba), and Theorem 5 to get upper bounds onaspect ratios. In this use of (11), the second term dominates the �rst on theright-hand side.Suppose that q = p+1, in other words, every simplex in the enumerationsatis�es (14). Then de�ne � = �1; we claim thatlth(�) � cdmax(��2d�(d); 1) size(Ba): (15)This is because � passes through q�1 simplices, and the length of its segmentin each simplex is at most cd size(Ba). This choice of � has all the properties50



named above: it connects x to a point on a simplex S1 (which satis�esminalt(S1) � cd size(Ba)) and satis�es (15).The other case is that q < p�1. In this case, we truncate �1 at the pointwhere it enters Tq, which we denote x1; call the truncated path �01. Clearly�01 satis�es (15) by the same argument as in the last paragraph. Now noticethat the anchor box for Tq cannot be Ba because Tq does not satisfy (14) bychoice of q.Therefore, identify the anchor of Tq, which we will call Bb, and startthe construction anew from x1. In other words, �nd the incontractible path�2 in co(Bb), �nd the simplex S2 of S that meets the incontractible pathand has altitude at most cd size(Bb), and let �2 be the path x1 to a pointin S2 \ �2. Note that size(Bb) � size(Ba)=2, because Bb must be smallerthan Ba so that (14) can be satis�ed for the new anchor. Find the �rstsimplex in this new path that fails to satisfy (14) for Bb and so on. Noticethat �02, the truncation of �2, satis�es (15) with size(Bb) taking the place ofsize(Ba) on the right-hand side. Therefore, the upper bounds given by theright-hand side of (15) on lth(�01); lth(�02); : : : form a series decreasing by afactor of 2 each time. Eventually the procedure terminates at �l becausethere is a �nite lower bound on the smallest protected box in QMG. Whenthe procedure terminates, concatenate �01;�02; : : : ;�0l�1;�l into a PL path �.(This concatenation is possible because �01 ends at x1, which is where �02begins, and so on.)This path � has the following properties. It satis�es (15) with the originalBa on the right-hand side, multiplied by an additional factor of 2 that arisesfrom summing a decreasing geometric series. It connects x, the given pointin P contained in a simplex T of QMG anchored at Ba, to a point y that isin a simplex Sl in triangulation S and that satis�es minalt(Sl) � cd size(Ba).This is exactly the setup we need to apply Lemma 11. Let S be thesimplex in S that contains x. From Lemma 11 applied to � we concludethat minalt(S) � cd�1(�S ; d) �max(lth(�);minalt(Sl))� cd�1(�S ; d) �max(��2d�(d); 1) size(Ba): (16)The second line was obtained by substituting the bound (15) for lth(�), andthen noting that this bound dominates the upper bound of cd size(Ba) thatapplies to minalt(Sl).Now the lemma is proved because we combine (16) with the bound onsize(Ba) in terms of minalt(T ) given by (14).51



Theorem 7 Let nQMG(P ) be the number of simplices in the triangulationproduced by QMG. Let S be some other triangulation of P with aspect ratiobound �S , and let the cardinality of S be nS . ThennQMG(P ) � cd�1(�S ; d)d�dS �max(��(2d+2)d�(d); 1) � nS : (17)Proof. Let fQMG : P ! IR be the piecewise constant function de�ned asfollows. Let T be a simplex generated by QMG. The value of fQMG on T isde�ned to be 1= vol(T ). On boundaries of simplices, a measure-zero set, weleave fQMG unde�ned. Function fS : P ! IR is de�ned similarly in terms ofS. Note that nQMG = Zx2P fQMG(x) dxbecause the value of the integral over each individual simplex is exactly 1. Asimilar expression holds for nS .De�ne piecewise constant functions gQMG : P ! IR to be 1=minalt(T )don T , where T is a simplex in QMG, gS similarly for S. Finally, de�ne hSto the piecewise constant function that is 1=maxside(S)d on S, as S rangesover simplices in S.Then we have the following chain of inequalities.nQMG = Zx2P fQMG(x) dx� cd Zx2P gQMG(x) dx� cd�1(�S ; d)d �max(��(2d+2)d�(d); 1) � Zx2P gS(x) dx� cd�1(�S ; d)d�dS �max(��(2d+2)d�(d); 1) � Zx2P hS(x) dx� cd�1(�S ; d)d�dS �max(��(2d+2)d�(d); 1) � Zx2P fS(x) dx= cd�1(�S ; d)d�dS �max(��(2d+2)d�(d); 1) � nS :In these inequalities, we used (1) to obtain the second line, (12) for the thirdline, the aspect ratio bound for S for the fourth line, and (1) again for the�fth line. This proves the theorem.Note that this theorem allows the ratio nQMG=nS to be arbitrarily largeif the competing triangulation S has bad aspect ratio. This is not merely52



an artifact of our analysis but is actually a feature of bounded aspect-ratiotriangulations, as illustrated by the following example. Consider a p � 1rectangle with p� 1. On such a domain, QMG would require O(p) triangles(as would any algorithm guaranteeing bounded-aspect ratio), but this domaincan be triangulated with just two triangles by inserting a diagonal. Thislatter triangulation has aspect ratio of 
(p).Note also that �S � cd��1 by Theorem 1. Thus, the entire right-hand sideof (17) can be bounded above with the more compact formula f(�S ; d) � nS .18 Running Time AnalysisIn this section we briey discuss the running time of QMG. The runningtime for the separation stages is proportional to the number of boxes createdmultiplied by the time per box. There is no prior upper bound on the numberof boxes in terms of the input. There is also no prior upper bound on thenumber of boxes in terms of the output, that is, in terms of the number ofsimplices produced, which we denote s. However, a modi�cation to QMGwould allow us to claim that the total number of boxes is bounded aboveby a multiple of s. The modi�cation would be an additional operation toshort-circuit a series of splitting operations that make no progress. Morespeci�cally, the modi�cation is as follows. When we split a box, we checkwhether only one of its children has nonempty content. If so, we discard theother children, and we immediately shrink that box by a power-of-two factor,until it is su�ciently small that we can be guaranteed that the next split willproduce more than one child with nonempty content.The amount of time to process a box depends on the combinatorial com-plexity of its content. A crude upper bound is that the complexity of thecontent is bounded by O(N), where N is the complexity of the input domainP . Processing the content requires a connected component computation; thetime for this computation in higher dimensions is O(N2), although, as men-tioned in Section 5, more e�cient algorithms are available for two and threedimensions.Thus, an estimate for the separation stage running time, using the modi-�cation mentioned above, is O(N2s) operations. The operations in the align-ment stage (checking complete coverage) can be done with a hash table asmentioned in Section 7. Thus, alignment requires O(s) operations. Finally,the triangulation part of the algorithm also requires O(s) operations. Thus,53



the total running time is O(N2s).19 ImplementationA two-dimensional version of QMG, called \tripoint," was implemented by S.Mitchell in C++ and is available on the World Wide Web [11]. A full versionof QMG has been implemented in C++ by S. Vavasis; the implementationQMG1.1 is more general than the version described in this paper becauseit can also handle nonmanifold features, including several kinds of internalboundaries. QMG1.1 is available on the Web [16] and has a number of usersin several countries. It is slated to be the main mesh generator in a futurerelease of //Ellpack. The implementation is slightly di�erent from the algo-rithm described in this article; in particular, the alignment procedure usesan adaptive method for selecting tolerances and a di�erent rule for choosinga close face. Computational experiments will be described elsewhere.20 Open QuestionsSome of the open questions raised by this work include the following:1. Is there a triangulation algorithm with stronger optimality properties?For instance, the QMG aspect ratio is optimal (up to a constant factor)only in two and three dimensions.2. Several open questions were posed in Section 14. For instance, is therea characterization of the maximal value of the min-altitude in a trian-gulation of 3D polyhedra?3. Can this work be extended to curved boundaries? It appears thatthe main bottleneck is a solution to the subproblem of triangulating auniform grid of boxes posed in the companion paper [12].4. Is there a mesh generation algorithm for three-dimensional domainsthat guarantees dihedral angles bounded by �=2? Such a bound isimportant for some �nite element problems [17]. It is known [3] howto solve the corresponding problem in two dimensions.5. Can the running time bound be improved?54
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