
Algorithms and Design for a Second-Order Automatic Di�erentiation Module�Jason AbateyTexas Institute for Computational and Applied MathematicsUniversity of Texas at Austinabate@ticam.utexas.eduhttp://www.ticam.utexas.edu/~abateChristian Bischof and Lucas RohMathematics and Computer Science DivisionArgonne National Laboratoryfbischof,rohg@mcs.anl.govAlan CarleCenter for Research on Parallel ComputationRice Universitycarle@cs.rice.eduhttp://www.cs.rice.edu/~carleAbstractThis article describes approaches to computing second-orderderivatives with automatic di�erentiation (AD) based onthe forward mode and the propagation of univariate Tay-lor series. Performance results are given that show thespeedup possible with these techniques relative to existingapproaches. We also describe a new source transformationAD module for computing second-order derivatives of C andFortran codes and the underlying infrastructure used to cre-ate a language-independent translation tool.1 IntroductionAutomatic di�erentiation (AD) provides an e�cient and ac-curate method to obtain derivatives for use in sensitivityanalysis, parameter identi�cation and optimization. Cur-rent tools are targeted primarily at computing �rst-orderderivatives, namely gradients and Jacobians. Prior to AD,derivative values were obtained through divided di�erencemethods, symbolic manipulation or hand-coding, all of whichhave drawbacks when compared with AD (see [4] for a dis-�This work was supported by the Mathematical, Information, andComputational Sciences Division subprogram of the O�ce of Compu-tational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38; and by the National Science Foundation,through the Center for Research on Parallel Computation, under Co-operative Agreement No. CCR-9120008.yThis work was partially performed while the author was a re-search associate at Argonne National Laboratory.Copyright c 1997 by the Association for Computing Machinery, Inc.Permission to make digital or hard copies of part or all of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for pro�t or commercial advantage andthat copies bear this notice and the full citation on the �rst page.Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior speci�c permission and/or a fee.

cussion). Accurate second-order derivatives are even harderto obtain than �rst-order ones; it is possible to end upwith no accurate digits in the derivative value when using adivided-di�erence scheme.One can repeatedly apply �rst-order derivative tools toobtain higher-order derivatives, but this approach is compli-cated and ignores structural information about higher-orderderivatives such as symmetry. Additionally, in cases wherea full Hessian, H, is not required, such as with Hessian-vector products (H �V ) and projected Hessians (V T �H �W )where V and W are matrices with many fewer columns thanrows, it is possible to compute the desired values much moree�ciently than with the repeated di�erentiation approach.There is no \best" approach to computing Hessians; themost e�cient approach to computing second-order deriva-tives depends on the speci�cs of the code and, to a lesserextent, the target platform on which the code will be run [3,5, 9]. In all cases, however, derivative values computed byAD are computed to machine precision, without the round-o� errors inherent in divided di�erence techniques.AD via source transformation provides great exibilityin implementing sophisticated algorithms that exploit theassociativity of the chain rule of calculus (see [7] for a dis-cussion). Unfortunately, the development of robust sourcetransformation tools is a substantial e�ort. ADIFOR [4]and ADIC [7], source transformation tools for Fortran andC respectively, both implement relatively simple algorithmsfor propagating derivatives. Most of the development timeso far has concentrated on producing tools that handle thefull range of the language, rather than on developing moree�cient algorithms to propagate derivatives.To make it easier to experiment with algorithmic tech-niques, we have developed AIF, the Automatic Di�erenti-ation Intermediate Form. AIF acts as the glue layer be-tween a language-speci�c front-end and a largely language-independent transformation module that implements AD1



transformations at a high level of abstraction.We have implemented an AIF-based module for comput-ing second-order derivatives. The Hessian module, as we callit, implements several di�erent algorithms and selectivelychooses them in a fashion that is determined by the codepresented to it. However, this context-sensitive logic, whichis based on machine-speci�c performance models, is trans-parent to the AD front-end. The Hessian module currentlyinterfaces with ADIFOR and ADIC. First experimental re-sults show that the resulting codes outperform the recur-sive application of �rst-order tools by a factor of two whencomputing full, dense Hessians and are able to compute full,sparse Hessians and partial Hessians at signi�cantly reducedexpense.Section 2 outlines the two derivative propagation strate-gies that we have explored for Hessians, including cost es-timates for computing various types of Hessians. Section 3shows the performance of the various approaches for a sam-ple code, and Section 4 describes the infrastructure that wasused to develop the Hessian augmentation tool. Lastly, wesummarize our results and discuss future work.2 Strategies for Computing Second Derivatives2.1 Forward Mode StrategiesThe standard forward mode of automatic di�erentiation caneasily be expanded to second order to compute Hessians. Forz = f(x;y), we can compute rz and r2z, the gradient andHessian of z respectively, asrz = @z@xrx+ @z@yry (1)r2z = @z@xr2x+ @z@yr2y (2)+ @2z@x2 (rx � rxT ) + @2z@y2 (ry � ryT )+ @2z@x@y (rx � ryT +ry � rxT )This approach is conceptually simple and produces e�cientresults for small numbers of independent variables. Forn independent variables, gradients are stored in arrays oflength n and Hessians, because of their symmetric nature,are stored using the LAPACK [1] packed symmetric scheme,which reduces the storage requirements from n2 to 12n(n+1).The cost of computing a full Hessian using the forward modeis O(n2) relative to the cost of computing the original func-tion.Many algorithms do not need full knowledge of the Hes-sian but require only a Hessian-vector product, H � V , or aprojected Hessian, V T �H �W , where V and W are matriceswith nV and nW columns, respectively. Rather than com-puting the full Hessian at a cost of O(n2) followed by one ortwo matrix multiplications, we can multiply Equation (2) onthe left and/or right by V T and W , respectively, to producenew propagation rules. By modifying the derivative objectsthat get propagated, we can perform the required computa-tions at a much lower cost. These costs are summarized inTable 1. In the case of large Hessians and relatively smallvalues of nV or nW , the savings can be signi�cant. Addi-tionally, the coloring techniques that have been applied tostructured Jacobians [2] can be applied to Hessians for asigni�cant savings.1The cost of the symmetric and unsymmetric projected Hessians

Hessian Type Costr2f O(n2)r2f � V O(nnV )V T � r2f � V O(n2V )V T � r2f �W O(nV nW )1Table 1: Summary of Hessian costs using the forward moderelative to the cost of computing the original function. n isthe number of independent variables, nV and nW are thenumber of columns of V and W , respectively.2.2 Taylor Series StrategiesAs an alternative to the forward mode propagation of gra-dients and Hessians, we can propagate two-term univariateTaylor series expansions about each of the nonzero direc-tions in the Hessian [5]. To compute derivatives at a pointxo in the direction u, we consider f as a scalar functionf(xo + tu) of t. Its Taylor series, up to second order, isf(xo + tu) � f(xo) + @f@t ���t = 0 � t+ 12 @2f@t2 ����t = 0 � t2= f + ftt+ fttt2 (3)where ft and ftt are the �rst and second Taylor coe�cients.The uniqueness of the Taylor series implies that for u = ei,the ith basis vector, we obtainft = @f@xi ���x = xo (4)ftt = 12 @2f@x2i ����x = xo (5)That is, we computed a scaled version of the ith diagonalelement in the Hessian. Similarly, to compute the (i; j) o�-diagonal entry in the Hessian, we set u = ei + ej. Theuniqueness of Taylor expansion impliesft = @f@xi ���x = xo + @f@xj ����x = xo (6)ftt = 12 � @2f@x2i + @2f@xixj + 12 � @2f@x2i (7)If Taylor expansions are also computed for the i and j di-agonal elements, the o�-diagonal Hessian entries can be re-covered by interpolation. As with the forward mode, simplerules specify the propagation of the expansions for all arith-metic and intrinsic operators [11, 14]. To compute a fullgradient of length n and k Hessian entries above the diago-nal, the cost of the Taylor series mode is O(n+k). If the fullgradient is not needed, this cost can be reduced somewhat.The Taylor series approach can compute any set of Hes-sian entries without computing the entire Hessian. Thistechnique is ideal for sparse Hessians when the sparsity pat-tern is known in advance and for situations where only cer-tain elements (such as the diagonal entries) are desired. Ad-ditionally, each Taylor series expansion is independent. This(V T � r2f � V and V T � r2f � W ) are of the same order, but dueto symmetry, the storage and computation costs of V T � r2f � V areroughly half of the costs of V T � r2f �W .2



allows very large Hessians, which can easily overwhelm theavailable memory, to be computed in a stripmined fashion bypartitioning the expansion directions and computing themindependently with multiple sweeps through the code in afashion that is similar to the stripmining technique describedin [6].2.3 PreaccumulationThe associativity of the chain rule allows derivative prop-agation to be performed at arbitrary levels of abstraction.At the simplest, the forward mode works at the scope of asingle binary operation. By expanding the scope to a higherlevel, such as an assignment statement, a loop body or asubroutine, it is possible to decrease the amount of worknecessary to propagate derivatives, as shown in [8, 10].A preaccumulation technique we employ in our workcomputes the gradient and Hessian of the variable on theleft side of the assignment statement in two steps. Assumethat for the statement z = f(x1; x2; : : : xN ), we have rxiand r2xi; i = 1; � � �N , the global gradient and Hessian of xiand that we wish to compute, for z, the global gradient rzand the global Hessian r2z.Step 1: Preaccumulation of local derivativesThe variables on the right side of the statement areconsidered to be independent, and we compute \local"derivative objects, @z@xi and @2z@xi@xj ; i; j = 1; : : :N , withrespect to the right-hand side variables. This can bedone using either the forward or Taylor series mode.Step 2: Accumulation of global derivativesWe accumulate the global gradient and Hessian of z.When using the forward mode for global propagationof derivatives, this is done as follows:rz = NXi=1 @z@xirxir2z = NXi=1 @z@xir2xi + NXi=1 @2z@x2i (rxi � rxTi )+ NXi=1 NXj=i+1 @2z@xi@xj (rxi � rxTj +rxj � rxTi )The rules for Taylor series expansions can be general-ized in a similar fashion.Gradient codes produced by ADIFOR and ADIC cur-rently employ statement-level preaccumulation for all as-signment statements more complicated than a single binaryoperation. Experiments with similar \global" preaccumula-tion strategies for computing Hessians have produced incon-sistent results across various codes and machines. No globalstrategy outperformed all other strategies on all test codesand all machines.Thus, we have developed an adaptive strategy where thecosts of using and not using statement level preaccumulationare computed and compared when the derivative code is gen-erated. These costs are estimated based on machine-speci�cperformance models of the actual propagation code. Thus,the Hessian module decides which strategy to use based onthe structure of a particular computation. We believe thatsuch context-sensitive strategies are crucial for future im-provement of AD tools.

0 100 200 300 400 500
Hessian/Function Execution Time Ratio

Sparse

Taylor Series

Adaptive

Forward

Forward

Twice

ADIFOR

Figure 1: Hessian performance of the Shubin Hessian testcode with 20 independent variables.3 Hessian Performance on a CFD CodeHessian code was generated for a steady shock tracking codeprovided by Greg Shubin of the Boeing Company [15]. Be-cause of memory constraints, a 20 � 20 section of the full190 � 190 Hessian was computed for each of the 190 de-pendent variables. The section of the Hessian being studiedexhibits some sparsity, with 72 nonzero entries on or abovethe diagonal.Hessian codes were generated using four di�erent strate-gies. Figure 1 shows the ratio of the Hessian computationtime to the function computation time, while Figure 2 showsthe memory requirements of the augmented Hessian codeson a Sun UltraSparc 1. The original code required 8:0�10�4seconds of execution time and used 360 kB of memory. The�rst strategy, labeled \Twice ADIFOR", was generated by�rst producing a gradient code with ADIFOR 2.0, and thenrunning the gradient code through ADIFOR again. The\Forward" case implements the forward mode on a binaryoperation level. The \Adaptive Forward" code uses the for-ward mode, with preaccumulation at a statement level wheredeemed appropriate. The \Sparse Taylor Series" mode usesthe Taylor series mode to compute just the entries which areknown to be zero.Clearly, the \Twice ADIFOR" scheme can be easilybeaten by exploiting the symmetry of the Hessian, both interms of execution speed and memory usage, as is done inboth the \Forward" and \Adaptive Forward" codes. Thisresult also shows that the use of an adaptive preaccumu-lation strategy can outperform the operation-level forwardmode. Improvements in the strategy used to decide when touse preaccumulation should further increase the e�ciencyof the adaptive scheme. Finally, the \Sparse Taylor Series"code shows that, if the sparsity structure of a problem isknown, it can be exploited for additional savings.4 Language and Tool Independence with AIFThe algorithms of automatic di�erentiation are, for the mostpart, independent of the language to which they are applied.For example, the Fortran assignment statementz = 2.0 + x * y3



intermediate representation

Language-specific

and Analysis

Front-end

Augmentation

Module

Front-end

Augmented code fragment in AIF tree

Original code

Derivative code

Transformation

Canonicalization

Analysis

Fragment Decomposition

High Level Code Augmentation

Tool-specific Instantiation

Code fragment in AIF tree

Augmented code 

fragment

Parser

AIF Unparser

Unparser Figure 3: AIF process
0 20 40 60 80

Memory Usage (MB)

Sparse

Taylor Series

Adaptive

Forward

Forward

Twice

ADIFOR

Figure 2: Hessian memory usage of the Shubin Hessian testcode with 20 independent variables. The original code used360 kB.and the more complicated C assignment statementfoo->struct.z = 2.0 + bar->x * q[c]both can be abstracted tovariable1 = constant+ variable2 � variable3when thinking about the propagation of derivatives.This simplicity should be reected in the AD augmenta-tion modules. To simplify the development of new AD al-gorithms, we have developed the Automatic Di�erentiationIntermediate Form (AIF). AIF tries to capitalize on the workthat has been done in producing robust language front-ends

for automatic di�erentiation and to simplify AD develop-ment by insulating developers from the speci�cs of the un-derlying language. Thus, AIF aims to provide a frameworkfor experimenting with more advanced AD augmentation al-gorithms and to speed the development of robust tools whichimplement these advanced algorithms.
Figure 4: AIF tree produced by the ADIFOR front-endA source-transformation approach to AD is illustratedin Figure 3. This is an idealized representation; not allstages are included in all tools. First, the original sourcecode is parsed by the language-speci�c front-end. Duringthe canonicalization and analysis phase, the front-end thentransforms the code to a semantically equivalent form moreappropriate for AD. In addition, high-level information isgathered, such as a determination of which variables needassociated derivative objects (the so-called active variables).For details on the canonicalization and analysis phase in AD-IFOR and ADIC, see [4, 7]. The front-end then collects code4



fragments, which may range in size from single assignmentstatements to entire subroutines, and passes them to theAIF-based augmentation module.Figure 4 shows the AIF tree corresponding to the sampleFortran statement above. The �rst line in each node is thenode type. The second line, if present, contains an attribute,which could be a variable name, constant value or subroutinename. Attributes consist of two pieces of information, theattribute name and its associated value. For simplicity, onlyattribute values are shown in the sample trees. Attributesare also used to temporarily store information about thetree at various stages, such as the sparsity of the derivativeobjects. This temporary information is only needed by theHessian module and is removed before returning the tree tothe front-end. For simplicity, these attributes are not shownin the sample trees presented here. In addition to the AIFtrees, the front-end also passes a set of bindings to specifyglobal information. This includes information about the de-sired augmentation strategy and the maximum number ofindependent variables.Each of the VAR T nodes represents an active variable.The VAL T nodes act as operators on the VAR T nodes, refer-ring to the value of the variable. There are other operatorssuch as GRAD T and HESS T which refer to the gradient andHessian of an active variable. The CONST T node is usedfor literal constants, such as 2:0, and for inactive variables.Nodes are included for all arithmetic and intrinsic opera-tions, such as the MUL T and ADD T nodes in the sample tree.At the top of the tree is an ASSGN T node which indicatesthat the tree is an assignment statement. The �rst VAR Tchild is the variable on the left side of the assignment state-ment. The remainder of the tree represents the expressionon the right side of the statement.The augmentation module then modi�es the tree to prop-agate derivative values. The Hessian module uses the SOR-CERER tree parser generator [12, 13] to analyze and mod-ify these trees, along with a set of utility routines providedin the AIF developer library which assist the augmentationprocess. For the Hessian module, the augmentation processincludes the following:Analysis:Each assignment statement is analyzed to gather in-formation such as the sparsity of the local Hessian andthe number of variables on the right side of the state-ment. This information is then used to estimate thecost of alternative approaches to computing Hessians,and to select the least expensive strategy.Fragment Decomposition:Each statement is broken down into a sequence ofunary and binary operations. Temporary variables arerequested as necessary. Figure 5 shows the tree afterbreakup into binary operations. The tree now con-sists of two assignment statements. The front-end ex-pects to receive one tree from the augmentation mod-ule for each tree sent, so we attach a STMTS T node atthe top of the tree to indicate that the entire tree isfrom one original statement. The !!temp var 0 nodeis a request for a temporary variable, which the front-end will later instantiate by generating and declaringa suitably typed temporary variable.High-level Code Augmentation:The tree is augmented with templates that specifythe high-level algorithmic operations to be performed,such as \initialize a local gradient" or \handle a mul-tiply with two active variables." At this level, no

assumptions are made of what the output code willlook like; the tree represents the algorithmic oper-ations necessary to propagate derivatives. Figure 6shows the tree after the high-level augmentation. TheHESS FOR MUL A A T node is a template for the forwardmode multiplication of two active variables. Similarly,HESS FOR ADD I A T is the addition of an inactive value(the CONST T node) and an active variable. In thisexample, the high-level version is not much di�erentfrom that in the previous step. For more complicatedaugmentation algorithms involving initialization, in-terpolation and accumulation of local derivative ob-jects, however, even this high-level representation canbecome quite involved.Tool-speci�c Instantiation:The templates added in the previous step are expandedinto actual AIF trees. Multiple varieties of templatescan be written to produce, for example, calls to a sub-routine library or inlined code, or to account for back-end peculiarities. Figure 7 shows part of the instanti-ated tree derived from the one in Figure 6. The CALL Tnodes represent subroutine calls to the routine listedin the NAME T node, in this case ad fh fmulas. All ofthe nodes attached to the LIST T node are argumentsto the subroutine call. The �rst two nodes under theLIST T node, the constants !!p and !!q, get instanti-ated by the front-end with references to the gradientand Hessian lengths. The next three items in list ofarguments are the value, gradient and Hessian of thetemporary variable !!temp var 0.The augmentation module then returns the augmentedcode fragments to the front-end in AIF trees. It also passes aset of return bindings which specify, for example, the shapeand size of derivative objects to be associated with activevariables and the type of temporary variables.The front-end receives the augmented tree and bindingsfrom the augmentation module, converts them from AIFto its native representation and glues them back in theirappropriate place. It also declares all of the requested tem-porary variables and derivative objects and handles the as-sociation of active variables and their associated derivativeobjects. Figure 8 shows the Fortran produced by ADI-FOR for the sample statement. Not shown are the piecesof code that declare the temporary variables and deriva-tive objects (r var0, adg r var0 and adh r var0) and thederivative objects associated with x, y and z, such as adg xand adh x.5 Future WorkThe current Hessian tool is our �rst attempt at producing anAD source transformation module in the AIF environment.We plan to continue this work in three areas.1. In the area of algorithms, we plan to implement thepreaccumulation of univariate Taylor series vectors, inhopes of achieving similar speedup as with the forwardmode. We also plan extensions of the Taylor seriesmode to arbitrary higher-order derivatives.2. We plan to re�ne the timing models used to charac-terize the performance of the Hessian codes on a par-ticular machine. This will help to better determinethe conditions bene�cial for preaccumulation, which5



Figure 5: Sample tree after breakup into binary operations. The !!temp var 0 node is a request for a temporary variable.
Figure 6: Sample tree after augmentation with high level templates. The HESS FOR MUL A A T and HESS FOR ADD I A T aretemplates representing forward mode multiplication and addition operations.
Figure 7: The sample tree after template instantiation with calls to a subroutine library to propagate derivatives. Note thatthis is only a small part of the total tree produced. The !!p and !!q nodes will be instantiated with references to the gradientand Hessian lengths.call ad_fh_fmulas(ad_p_, ad_q_, r_var0, adg_r_var0, ad_pmax_,+ adh_r_var0, ad_qmax_, x, adg_x, adg_ld1_x, adh_x, adh_ld2_x,+ y, adg_y, adg_ld1_y, adh_y, adh_ld2_y)call ad_fh_faddcs(ad_p_, ad_q_, z, adg_z, adg_ld1_z, adh_z,+ adh_ld2_z, 2.0, r_var0, adg_r_var0, ad_pmax_,adh_r_var0,+ ad_qmax_) Figure 8: Fortran code generated by ADIFOR6



should further improve the performance of the adap-tive mode strategy. This will also be useful with preac-cumulation over larger sections of code, which will besupported in the future.3. Finally, we plan to integrate the SparsLinC libraryto support sparse Hessians where the sparsity pat-tern is not known in advance and to produce inlinedcode through an additional template expansion stage.While experiments with inline code generation havesuggested that the code expansion is unacceptablylarge, inline versions of the sections of a code whichmost impact the performance should produce a suit-able compromise between code expansion and execu-tion speed.In conclusion, even though AIF is in its infancy, the AIFapproach has proven itself valuable for experimenting withAD algorithms. All of the language-speci�c issues are re-moved from the augmentation module, allowing full concen-tration on the algorithms, and greatly accelerating imple-mentation of algorithmic improvements like the ones dis-cussed above.References[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J.,Dongarra, J., DuCroz, J., Greenbaum, A., Ham-marling, S., McKenney, A., Ostrouchov, S., andSorensen, D. LAPACK User's Guide Release 2.0.SIAM, Philadelphia, 1994.[2] Averick, B., Mor�e, J., Bischof, C., Carle, A.,and Griewank, A. Computing large sparse Jacobianmatrices using automatic di�erentiation. SIAM Journalon Scienti�c Computing 15, 2 (1994), 285{294.[3] Berz, M. Forward algorithms for high orders andmany variables with application to beam physics. InAutomatic Di�erentiation of Algorithms: Theory, Im-plementation, and Application, A. Griewank and G. F.Corliss, Eds. SIAM, Philadelphia, Penn., 1991, pp. 147{ 156.[4] Bischof, C., Carle, A., Khademi, P., and Mauer,A. ADIFOR 2.0: Automatic di�erentiation of Fortran77 programs. IEEE Computational Science & Engi-neering 3, 3 (1996), 18{32.[5] Bischof, C., Corliss, G., and Griewank, A. Struc-tured second- and higher-order derivatives through uni-variate Taylor series. Optimization Methods and Soft-ware 2 (1993), 211{232.[6] Bischof, C., Green, L., Haigler, K., and Knauff,T. Parallel calculation of sensitivity derivatives for air-craft design using automatic di�erentiation. In Proceed-ings of the 5th AIAA/NASA/USAF/ISSMO Sympo-sium on Multidisciplinary Analysis and Optimization,AIAA 94-4261 (1994), American Institute of Aeronau-tics and Astronautics, pp. 73{84.[7] Bischof, C., Roh, L., and Mauer, A. ADIC |An extensible automatic di�erentiation tool for ANSI-C. Preprint ANL/MCS-P626-1196, Mathematics andComputer Science Division, Argonne National Labora-tory, 1996.

[8] Bischof, C. H., and Haghighat, M. R. On hier-archical di�erentiation. In Computational Di�erenti-ation: Techniques, Applications, and Tools (Philadel-phia, 1996), M. Berz, C. Bischof, G. Corliss, andA. Griewank, Eds., SIAM, pp. 83{94.[9] Griewank, A. Some bounds on the complexity of gra-dients, Jacobians, and Hessians. In Complexity in Non-linear Optimization, P. M. Pardalos, Ed. World Scien-ti�c Publishers, 1993, pp. 128{161.[10] Hovland, P., Bischof, C., Spiegelman, D., andCasella, M. E�cient derivative codes through au-tomatic di�erentiation and interface contraction: Anapplication in biostatistics. Preprint MCS-P491-0195,Mathematics and Computer Science Division, ArgonneNational Laboratory, 1995. To appear in SIAM J. Sci-enti�c Computing 18, 4 (July 97).[11] Moore, R. E. Interval Analysis. Prentice-Hall, 1966.[12] Parr, T. J. SORCERER | a source-to-source trans-lator generator. Preprint AHPCRC 93-094, Army HighPerformance Computing Research Center, University ofMinnesota, 1993.[13] Parr, T. J. Language Translation using PCCTS andC++: A Reference Guide. Automata Publishing Co.,1997.[14] Rall, L. B. Automatic Di�erentiation: Techniquesand Applications, vol. 120 of Lecture Notes in ComputerScience. Springer Verlag, Berlin, 1981.[15] Shubin, G. R., Stephens, A. B., Glaz, H. M.,Wardlaw, A. B., and Hackerman, L. B. Steadyshock tracking, Newton's method, and the supersonicblunt body problem. SIAM J. on Sci. and Stat. Com-puting 3, 2 (June 1982), 127{144.

7


