
Automatic Di�erentiation of a ParallelMolecular Dynamics Application�P. Hovlandy C. Bischofz L. RohzDecember 31, 1996AbstractThe ADIC and ADIFOR automatic di�erentiation tools have proven useful forobtaining the derivatives needed in many scienti�c applications written in Fortran 77or ANSI C. But many new scienti�c programs are written for or ported to parallelplatforms to achieve maximal performance. We provide an overview of our approachto the complex task of applying automatic di�erentiation techniques to parallelprogramming environments, especially as applied to a parallel molecular dynamicsapplication written in C++ with PVM message passing.1 IntroductionThere are many areas of computational science in which it is necessary or desirable tocompute derivatives. One important domain is computational molecular dynamics, whichcan use derivatives in a number of di�erent ways. One common use of derivatives is inthe computation of forces, which are the derivatives of energies with respect to position.Molecular dynamics simulations, like other computer models that attempt to simulatesome physical phenomenon, can bene�t from sensitivity analysis, wherein we compute thederivatives of the model function with respect to various parameters in order to determinethe sensitivity of the model to changes in these parameters. Finally, higher order derivativescan improve the accuracy of a numerical method, such as a di�erential equation solver,enabling, for example, longer time steps.When computational scientists need derivatives, they usually obtain them throughdivided di�erence approximations or by hand-coding derivative code. The former approachsu�ers from the fact that the values being computed are approximations, not truederivatives. If the step-size used for the divided di�erences is too large or too small, theapproximations can be grossly inaccurate. Furthermore, there is no way to assess theaccuracy of the approximation. Developing a derivative code by hand provides e�cient,accurate derivatives. However, hand-coding can be tedious, error-prone, and extremelytime-consuming. Derivative code can also be generated using a symbolic manipulator such�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38, and the National Science Foundation, through the Center for Research onParallel Computation, under Cooperative Agreement No. CCR-9120008.yDepartment of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Spring�eldAve., Urbana, IL 61801, hovland@uiuc.edu.zMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue,Argonne, IL 60439, fbischof,rohg@mcs.anl.gov. 1



2as Mathematica. However, traditional symbolic manipulation is memory intensive, andis often not feasible for large programs or programs with many loops and branches. Analternative to all of these approaches is the technique of automatic di�erentiation (AD).AD produces derivative code that computes accurate (within the limits of �nite precisionarithmetic) derivatives, and can be applied to arbitrarily complex programs with minimale�ort on the part of the programmer.In recent years, tools have been developed that enable AD to be applied to programswritten in Fortran, C, Ada, and other languages1 [1, 2, 3, 7, 14]. However, thereremains a need for tools for applying AD to parallel languages and programming systems.Without such tools, a substantial amount of hand-coding must be done in order to developprograms for computing derivatives. We are developing tools and techniques for theautomatic di�erentiation of parallel programs written in explicitly parallel languages, likeFortran M [4], or using parallel extensions, such as MPI and PVM [5, 8]. We are applyingsome of these techniques to NAMD, a parallel molecular dynamics application written inC++ with PVM message passing [12].This paper describes the automatic di�erentiation of NAMD. We begin with a briefintroduction to automatic di�erentiation in Section 2. Section 3 brie
y describes NAMDand explains which derivatives are being computed and how they will be used. Section 4describes how AD technology is being applied to this program. We conclude with a synopsisof our research and a description of planned future work.2 Automatic Di�erentiationAutomatic di�erentiation can be used to transform a program for computing somemathematical function into a new program capable of computing not only the function, butalso the derivatives of that function [2, 3]. Automatic di�erentiation relies upon the factthat all programs, no matter how complicated, use a limited set of elementary operationsand functions, as de�ned by the language. The function computed by the program is simplythe composition of these elementary functions. Thus, we can compute the partial derivativesof the elementary functions using formulas obtained via table lookup, then compute theoverall derivatives using the chain rule. This process can be completely automated, and isthus termed automatic di�erentiation [6].For example, consider the following program to compute the function y = f(x), wheref(x) = (sin(x)px)=x.A = sin(X)B = sqrt(X)C = A * BY = C/XUsing automatic di�erentiation, we can generate code to compute y and dy=dx.A = sin(X)dAdX = cos(X) ! table lookupB = sqrt(X)dBdX = 1/(2*B) ! table lookupC = A * B1See http://www.mcs.anl.gov/Projects/autodiff/AD Tools/ for a survey of AD tools.



3dCdA = B ! table lookupdCdB = A ! table lookupdCdX = dCdA*dAdX + dCdB*dBdX ! chain ruleY = C/XdYdC = 1/X ! table lookupdYdX = dYdC*dCdX - C/(X*X) ! chain rule/table lookupThis is an example of the so-called forward mode of automatic di�erentiation. In thismode, we propagate derivatives with respect to the independent variable(s) (in this casex). These derivative vectors (in general, there can be more than one independent variable)are often denoted ry or g_y. In the event that y itself is a vector, we may refer to ryas a derivative matrix. While this example is very simple, automatic di�erentiation can beapplied to complex programs of arbitrary length. The ADIC tool has processed programsof over 10,000 lines and the ADIFOR tool has been applied to programs of over 100,000lines [2].3 NAMDNAMD is a parallel, object-oriented molecular dynamics program designed for high per-formance molecular dynamics simulations of large biomolecular systems [12]. Importantfeatures include scalable parallelism, an e�cient implementation of full electrostatics, mod-i�ability, portability, and compatibility with X-PLOR (a program for determining three-dimensional structures from crystallographic di�raction or NMR data). Full electrostaticsare computed using the Distributed Parallel Multipole Tree Algorithm (DPMTA) developedat Duke University [13]. NAMD is written in C++, using an object-oriented and highlymodular design. This design facilitates modi�cation of algorithms and techniques. Com-munication in NAMD is accomplished via PVM, making it portable across a wide range ofcomputing platforms. The input and output �le formats used by NAMD are identical tothose used by the program X-PLOR, thus integrating the two tools and the accompanyingvisualization facilities.To reduce the cost of the evaluation of long-range electrostatic forces, a multiple timestep scheme is combined with the DPMTA method. All but the long-range electrostaticsinteractions are calculated during every time step. The longer range interactions arecomputed only every k steps. For appropriate values of k, the error due to holding theforces constant for a few time steps is small compared to the errors incurred from using a�nite timestep.The developers of NAMD hope to improve the integrator using an approach thatrequires Hessian-vector products [11]. The Hessian required corresponds to the derivativesof forces with respect to position. The availability of these correction terms is expectedto increase the smallest time step by a factor of nearly three. Another proposed methodwould increase performance by decreasing the frequency of long-range force evaluations. It,too, requires the derivatives of the forces. The former method is of interest to researchersbecause of its improved accuracy, while the latter method would enable the simulation oflarger molecules in less time.While it is possible to develop code to compute the derivatives of the forces by hand,there are several reasons for preferring automatic di�erentiation. Writing derivative codeby hand can be very di�cult, and may require a great deal of time for developmentand debugging. In contrast, automatic di�erentiation allows us to develop correct ande�cient derivative code with very little human e�ort. In addition, NAMD's modular design



4encourages the use of new algorithms to compute forces, or the incorporation of forcesthat had previously been neglected. Again, automatic di�erentiation allows us to createderivative code for these new force implementations with very little e�ort. Finally, thederivative matrices being computed are sparse. Tools such as ADIC and ADIFOR providesupport for automatic exploitation of sparsity, without prior knowledge of the sparsitystructure of the derivative matrices [2, 3].4 AD of NAMDNAMD is written in C++ with PVM message passing. A port to MPI is planned for thefuture. Thus, in order to apply AD to NAMD, we must be able to apply AD to programswritten in C++ and parallel programs written using PVM (MPI).4.1 AD of C++ADIC (Automatic Di�erentiation of C) is an extensible AD tool that produces code forcomputing �rst and/or second derivatives. The second derivative capabilities are currentlyin the prototype stage. ADIC uses a source-to-source program transformation technique toproduce the derivative code and provides the following important features: robustness, inthe form of full support for ANSI C; 
exibility, provided by simple command-line 
ags andcontrol �les; portability, through a careful design that ensures that the code generated byADIC is portable across di�erent platforms and compilers; and extensibility, through theuse of a language-independent component architecture.To accommodate C++, ADIC has been extended to support important languagefeatures, such as classes and methods. ADIC also takes advantage of C++ features whengenerating the derivative code; e.g., new variables may be declared anywhere within ablock. Certain aspects of C++ are not yet supported. One unsupported feature is the useof default arguments. Iostream operations are also not supported.4.2 AD of Parallel ProgramsAutomatic di�erentiation requires that we associate a derivative vector (or matrix) witheach variable. In Fortran, this can be accomplished via a naming scheme, such as usingthe variable name g var for the derivative vector associated with the variable var. In Cand C++, this is not possible, because of the aliasing induced by pointers. Instead, theassociation is accomplished either by creating a structure containing the variable and itsassociated derivative vector or by applying a hash function to the address of the variable.In a parallel programming environment with message passing, we must preserve theassociation between variables and their derivative vectors when data is sent via a message.One approach is to pack the variable and its gradient vector next in the same message. Thepacking and unpacking may incur some overhead, but guarantees the correct associationbetween a variable and its derivative vector. This method is illustrated in Figure 1. Anotheroption is to send twomessages, one containing the variable and one containing the derivativevector. In this case, we must use tags and source identi�ers to ensure that the association ispreserved, and additional latency overhead may be incurred if we cannot use computationto mask the communication time. This method is illustrated in Figure 2. Note that thisimplementation assumes that messages from the same source arrive in order. For parallelprogramming environments where this is not necessarily true, a more sophisticated taggingscheme is needed.To study the tradeo� between latency and packing overhead, we conducted some simple



5sender:pack(x,msg)pack(g_x,msg)send(msg,dest,tag) receiver:recv(msg,source,tag,info)x = unpack(msg)g_x = unpack(msg)Fig. 1. Pseudocode for the packing methodsender:send(x,dest,tag)send(g_x,dest,tag) receiver:recv(x,ANY_SOURCE,ANY_TAG,info)source = info.sourcetag = info.tagrecv(g_x,source,tag,info)Fig. 2. Pseudocode for the separate messages methodexperiments. Using MPI on a network of SPARCstations and on an IBM SP, we measuredthe time to pack and unpack vectors of varying lengths into a message bu�er. We alsomeasured the time to send messages of varying lengths. Using this data, we used a leastsquares �t to �nd the length-dependent and -independent components of the cost. Table 1summarizes our results. We use � to denote the latency, � to denote the bandwidth, �pto denote the length-independent component of packing and unpacking a vector, and �p todenote the number of bytes that can be packed and unpacked per second. Thus, the timeto send a vector of length n is approximately �+ n=�, while the time to pack and unpackthe same vector is �p+n=�p. The value 
 = (���p)�p provides a measure of the minimumnumber of bytes that must be packed in order to exceed the latency. Therefore, on thesesystems, packing variables and their associated derivative matrices together is preferable,as long as their combined size does not exceed about 200{600 thousand bytes. This limitis not so large as it may seem. A vector of 250 double precision values, with an associatedderivative matrix of size 250�250, requires over 500 thousand bytes of storage. Nonetheless,for typical problems on typical systems, packing variables and derivative matrices togetherseems preferable to separate messages.In general, there are other issues that may need to be addressed in applying ADto parallel programs. In addition to preserving variable-derivative matrix associations,we should correctly di�erentiate reduction operations and attempt to avoid unnecessaryderivative computations. These issues are discussed elsewhere [9, 10].4.3 AD of NAMDDue to some of the limitations mentioned in Section 4.1, we were unable to process NAMDin its entirety. Instead, we chose to process the class responsible for computing the bondedSystem � (s) � (B=s) �p (s) �p (B=s) 
 (B)SPARCstations 9:22� 10�3 1:35� 101 8:18� 10�4 2:14� 107 1:96� 105IBM SP 8:91� 10�3 3:76� 106 2:94� 10�5 7:54� 107 6:69� 105Table 1Parameters for communication and packing times (s = seconds, B = bytes)



6forces (BondForce) separately. This class uses the Vector class, so we needed to processthis class, too. The Vector class uses output streams and default parameters, so we wereforced to make some modi�cations before processing it with ADIC. After the necessarychanges had been made, the BondForce and Vector classes were processed with ADIC,resulting in two new classes, ad BondForce and ad Vector, that were integrated with theunprocessed portion of NAMD.In order to integrate the new classes into NAMD, we needed to write methods forsending and receiving ad Vector objects, which contain 3 objects of type DERIV TYPE. ADERIV TYPE object may be viewed as containing a variable (denoted DERIV VAL) and itsassociated derivative vector (denoted DERIV grad). Because NAMD already packs multipleobjects into a single message, we chose to pack variables and derivatives together in orderto preserve the association between the two objects. The following method is used to packa variable and its associated derivative vector into a message.Message& put(int n, DERIV_TYPE *d,int copy=TRUE, int delstor=FALSE) {int i;for (i=0;i<n;i++){/* Add the value of the variable d[i] to the message */putmsg((void *)(&DERIV_VAL(d[i])), DOUBLE, 0, sizeof(double), copy,delstor);/* Add the gradient vector of variable d[i] to the message */putmsg((void *)(&DERIV_grad(d[i])), DOUBLE, ad_GRAD_MAX,sizeof(double), copy, delstor);}return *this;}5 ConclusionsWe have applied automatic di�erentiation to the class in NAMD responsible for computingthe bonded forces. This required modifying the ADIC tool so that it could handle C++,adding support for the communication of variables and their associated derivative vectorsto NAMD, and incorporating the AD-generated class into NAMD. In the future, we intendto apply AD to additional classes, such as that responsible for computing angle forces.After the correctness of the derivatives has been veri�ed, they can be used to improvethe integration scheme. We will also continue our work on the development of toolsfor the automatic di�erentiation of parallel programs. We have addressed several of theimportant issues in this task, including maintaining the association between derivativevectors and variables, improving e�ciency through intertask dependence analysis, properlydi�erentiating reduction operations, and utilizing the added potential for parallelismcreatedby the automatic di�erentiation process [9, 10]. Based on the experience gained from thedevelopment of prototype AD tools for Fortran M and Fortran with MPI message passingas well as the application of AD to NAMD, we plan to build a tool for the automaticdi�erentiation of C/C++ with PVM/MPI message passing.AcknowledgementsWe thank Bob Skeel, Klaus Schulten, and all of the Theoretical Biophysics group at theBeckman Institute at the University of Illinois for their assistance in working with NAMD.



7We also thank Mike Heath for his comments on an earlier version of this paper.References[1] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR: Generating derivativecodes from Fortran programs, Scienti�c Programming, 1 (1992), pp. 11{29.[2] C. Bischof, A. Carle, P. Khademi, and A. Mauer, ADIFOR 2.0: Automatic di�erentiation ofFortran 77 programs, IEEE Computational Science & Engineering, 3 (1996), pp. 18{32.[3] C. Bischof, L. Roh, and A. Mauer, ADIC | An extensible automatic di�erentiation tool forANSI-C, Preprint ANL/MCS-P626-1196, 1996.[4] I. Foster, R. Olson, and S. Tuecke, Programming in Fortran M, Tech. Rep. ANL{93/26, Rev.1, Mathematics and Computer Science Division, Argonne National Laboratory, October 1993.[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM - ParallelVirtual Machine: A Users' Guide and Tutorial for Network Parallel Computing, MIT Press,Cambridge, 1994.[6] A. Griewank, On automatic di�erentiation, in Mathematical Programming: Recent Develop-ments and Applications, Amsterdam, 1989, Kluwer Academic Publishers, pp. 83{108.[7] A. Griewank, D. Juedes, and J. Utke, ADOL-C, a package for the automatic di�erentiationof algorithms written in C/C++, ACM Transactions on Mathematical Software, 22 (1996),pp. 131{167.[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI { Portable Parallel Programming with theMessage Passing Interface, MIT Press, Cambridge, 1994.[9] P. Hovland, C. Bischof, and L. Roh, Automatic di�erentiation of parallel reduction opera-tions, Preprint ANL/MCS-P632-1296, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1996.[10] P. D. Hovland, Automatic Di�erentiation of Parallel Programs, PhD thesis, University ofIllinois at Urbana-Champaign. In preparation.[11] M. L�opez-Marcos, J. M. Sanz-Serna, and R. D. Skeel, Explicit symplectic integrators usingHessian{vector products, SIAM J. Sci. Comput., 18 (1997). To appear.[12] M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R. D. Skeel, and K. Schulten,NAMD - a parallel, object-oriented molecular dynamics program, Journal of SupercomputingApplications and High Performance Computing. In Press.[13] W. T. Rankin and J. A. Board Jr., A portable distributed implementation of the parallelmultipole tree algorithm, in Proceedings of the Fourth IEEE International Symposium on HighPerformance Distributed Computing, Los Alamitos, CA, 1995, IEEE Computer Society Press,pp. 17{22.[14] N. Rostaing, S. Dalmas, and A. Galligo, Automatic di�erentiation in Odyssee, Tellus, 45a(1993), pp. 558{568.


