
Solution of the Robbins ProblemWILLIAM McCUNE �Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL60439.Submitted to J. Automated Reasoning, January 22, 1997Abstract. In this article we show that the three equations known as commutativity, associa-tivity, and the Robbins equation are a basis for the variety of Boolean algebras. The problemwas posed by Herbert Robbins in the 1930s. The proof was found automatically by EQP, atheorem-proving program for equational logic. We present the proof and the search strategiesthat enabled the program to �nd the proof.Key words: Associative-commutative uni�cation, Boolean algebra, EQP, paramodulation,Robbins algebra, Robbins problem.1. IntroductionThis article contains the answer to the Robbins question on whether or not Rob-bins algebras are Boolean. The answer is yes, all Robbins algebras are Boolean.The proof that answers the question was found by EQP, an automated theorem-proving program for equational logic.In 1933, E. V. Huntington presented the following three equations as a basisfor Boolean algebra [6, 5]:x+ y = y + x, (commutativity)(x+ y) + z = x+ (y + z), (associativity)n(n(x) + y) + n(n(x) + n(y)) = x. (Huntington equation)The unary operation n can be read as complement. (Boolean algebra is ordinar-ily presented in terms of addition, multiplication, complement, 0, and 1. FromHuntington's basis, one can show that a 0 and a 1 with the appropriate prop-erties exist, and if multiplication is de�ned in the obvious way, it also has theappropriate properties.)Shortly thereafter, Herbert Robbins posed the question of whether the Hunt-ington equation can be replaced with the following equation, which is shorter byone occurrence of n:n(n(x+ y) + n(x+ n(y))) = x. (Robbins equation)The Robbins equation is clearly valid in all Boolean algebras, so the questioncan be rephrased as \Does the Huntington equation follow from commutativity,� Supported by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.



2 WILLIAM McCUNEassociativity, and the Robbins equation?" (There is no algorithm that decideswhether a �nite set of equations is a basis for Boolean algebra [11].)Robbins and Huntington could not �nd a proof or counterexample, and theproblem later became a favorite of Alfred Tarski, who gave it to many of hisstudents and colleagues [2], [3, p. 245]. Algebras satisfying commutativity, asso-ciativity, and the Robbins equation became known as Robbins algebras, and thequestion was sometimes phrased as \Are all Robbins algebras Boolean?"1As far as we know, automated deduction was �rst attempted on the problemin 1979, when Steve Winker, a student visiting Argonne, learned of the problemfrom Joel Berman. Larry Wos, one of Winker's advisors at Argonne, suggestedattacking the problem by looking for properties, which we call su�cient condi-tions, that force Robbins algebras to be Boolean. For example, it is nearly trivialto show that Robbins algebras satisfying n(n(x)) = x are Boolean.2Examples of conditions that were shown to be su�cient by Argonne's theoremprovers are (1) 8x(x+ x = x), (2) 9c8x(c+ x = x), and (3) 9c8x(c+ x = c).Winker then proved (by hand) several weaker conditions su�cient. The twosuch conditions that play a role in the present work are contained in the followingtwo lemmas.Lemma 1 (S. Winker [15, 16]). A Robbins algebra satisfying 9c9d(c+ d = c) isa Boolean algebra.Lemma 2 (S. Winker [15, 16]).A Robbins algebra satisfying 9c9d(n(c+d) = n(c))is a Boolean algebra.Appendix B contains a computer proof of Lemma 1. Note that Lemma 2 is astrengthening of Lemma 1.2. The SolutionThis section contains the the key result|the proof of Lemma 3. The theoremthat Robbins algebras and Boolean algebras coincide then follows directly fromLemma 1 (also from Lemma 2).Lemma 3. All Robbins algebras satisfy 9c9d(c+ d = c).Proof. The proof (found automatically by the program EQP) starts with theRobbins equation and uses paramodulation (Section 3.3) with built-in associative-commutative (AC) uni�cation (Section 3.1) and simpli�cation with built-in AC1 In [6], Huntington included x+x = x in his basis (along with commutativity, associativity,and the Huntington equation) and incorrectly stated that the four equations are independent;the correction appeared in [5], where he showed that x+ x = x can be derived from the otherthree (which are independent). Folklore incorrectly has it that the Robbins problem arose fromHuntington's mistake, in particular, that the error in Huntington's paper is that the Robbinsequation appears in place of the Huntington equation [6]. According to Robbins [13], the Robbinsproblem is not related to Huntington's error.2 Proof. With the Robbins equation, let x be n(x), complement both sides of the equation,and simplify with n(n(x)) = x to obtain the Huntington equation.paper.tex; 22/01/1997; 13:39; no v.; p.2



Solution of the Robbins Problem 3matching. We abbreviate x+x as 2x, x+x+x as 3x, and so on. The justi�ca-tion \m ! n" indicates paramodulation from m into n, and \simp:n" indicatessimpli�cation with n.7 n(n(n(x)+y)+n(x+y)) = y [Robbins equation3]10 n(n(n(x+y)+n(x)+y)+y) = n(x+y) [7 ! 7]11 n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y) [7 ! 7]29 n(n(n(n(x)+y)+x+2y)+n(n(x)+y)) = y [11 ! 7]54 n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z)+n(y+z)) = z [29 ! 7]217 n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z) = n(y+z) [54 ! 7]674 n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z+u)+n(n(y+z)+u)) = u [217! 7]6736 n(n(n(n(3x)+x)+n(3x))+n(n(n(3x)+x)+5x)) = n(n(3x)+x) [10 ! 674]8855 n(n(n(3x)+x)+5x) = n(3x) [6736! 7,simp:54,ip]8865 n(n(n(n(3x)+x)+n(3x)+2x)+n(3x)) = n(n(3x)+x)+2x [8855! 7]8866 n(n(n(3x)+x)+n(3x)) = x [8855! 7,simp:11]8870 n(n(n(n(3x)+x)+n(3x)+y)+n(x+y)) = y [8866! 7]8871 n(n(3x)+x)+2x = 2x [8865,simp:8870,ip]Equation 8871 asserts the existence of an object c, namely 2x, and an object d,namely n(n(3x)+x), such that c+ d = c. Q.E.D.(The preceding proof is what the program presents to the user. The AC instan-tiations and substitutions performed by the program are di�cult to reconstructby hand, so we include a detailed version of the proof in Appendix A. See Sections4 and 5 for statistics on the proof search.)Note that Equation 8855 satis�es the Lemma 2 condition: 9c, namely 3x, and9d, namely n(n(3x)+x)+2x, such that n(c+d) = n(c), so we could have stoppedthere and used Lemma 2 instead of Lemma 1. See Section 5.Theorem. The three equations fcommutativity, associativity, Robbinsg are abasis for the variety of Boolean algebras.Proof. This follows directly from Lemma 1, Lemma 3, and the observation thatthe Robbins equation is valid in all Boolean algebras.3. The Theorem Prover EQPThe theorem prover that found the proof of Lemma 3 is EQP, presented in [10].4EQP is restricted to equational logic and can perform associative-commutative(AC) uni�cation and matching. The search algorithm is similar to Knuth-Bendixcompletion [8], with the option of using the \basic" restriction [4].3 EQP automatically rearranges AC subterms and renames variables.4 EQP is similar in many ways to our more well known theorem prover Otter [9]; the mostimportant di�erences are that Otter (1) does not have associative-commutative uni�cation ormatching, (2) applies to full �rst-order statements, (3) has fewer paramodulation options, and(4) always uses the given clause algorithm to drive the search.paper.tex; 22/01/1997; 13:39; no v.; p.3



4 WILLIAM McCUNEWe describe here some of EQP's features that were used in the proof of Lemma3. See [10] for details on these and the other features of EQP.3.1. AC Unification and MatchingAssociative-commutative (AC) uni�cation [14] builds the properties of associa-tivity and commutativity of a binary operation into the inference process so thatthe corresponding equations need not be present as explicit axioms. Two termsare AC identical if they can be made identical by reassociating and commutingsubterms. An AC uni�er of two terms is a substitution (of terms for variables)that makes the two terms AC identical. AC uni�cation is the process of �ndingthe set of most general AC uni�ers (which is always �nite) for a pair of terms. ACmatching is a special case of AC uni�cation in which only one of the two giventerms is instantiated; AC matching is used to simplify derived equations and todetermine whether one equation subsumes another.EQP uses Stickel's AC uni�cation algorithm [14], which constructs a linearhomogeneous Diophantine equation that represents identity of the two terms tobe uni�ed, then computes the basis of solutions (the basis has the property thatevery solution is a linear combination of the members of the basis). To �nd allmost general AC uni�ers, the algorithm considers each subset of the basis. Apair of terms can have a great number of most general AC uni�ers, and we havean optional heuristic, the super-0 strategy, that eliminates the more complicat-ed uni�ers. The e�ect of the super-0 strategy is that if a subset S produces apotential uni�er, then no supersets of S are considered. Since a di�erent variableis associated with each member of the subset, the corresponding AC uni�er, if itexists, is more complicated for larger subsets.The super-0 strategy causes incompleteness of the proof procedure, becauseit eliminates some of the most general uni�ers, but we have not seen any casesin practical work where it blocks all proofs. (We have seen cases, however, inwhich it blocks short proofs, increasing the time required to �nd a proof.) Theheuristic was used to �nd the proof of Lemma 3, and its role seems to have beenimportant, because a similar search without the heuristic failed to �nd a proof.Although AC matching is a special case of AC uni�cation, we use a di�erentalgorithm, because (1) AC matching is less complex (conceptually, theoretically,and practically), (2) when using AC matching, we need only one matching sub-stitution, (3) speed of AC matching is much more important than the speed ofAC uni�cation, because for each AC uni�er, the AC matching code can be calledhundreds of thousands of times when simplifying the derived equation. The ACmatching algorithm is of our own design, with ideas from Kapur's and Zhang'sRRL [7]. See [10] for details on EQP's AC uni�cation and matching.paper.tex; 22/01/1997; 13:39; no v.; p.4



Solution of the Robbins Problem 53.2. Paramodulation and DemodulationThe search for a proof uses paramodulation (an inference rule for equality) anddemodulation (simpli�cation of inferred equations) [17]. A simpli�cation ordering� on terms is used to orient equations and to guarantee termination of demodu-lation. The term ordering is t1 � t2 if length(t1) > length(t2) and no variable hasmore occurrences in t2 than in t1.5 Every input and derived equation is oriented,if possible, so that the left hand side is greater, and each oriented equation isadded to the set of demodulators.Paramodulation is not permitted from or into right hand sides of orientedequations, and paramodulation is not permitted from or into variables. Eachequation inferred by paramodulation is simpli�ed with the set of demodulators.If the simpli�ed equation passes the retention tests (typically subsumption anda length limit) and is orientable, it is then used to simplify all other equations inmemory.EQP provides the option of using the \basic" restriction on paramodulation. Insummary, the \basic" restriction says that terms that arise by instantiation aloneare ineligible as \into" terms. In more detail, consider each equation as a pair,hskeleton,substitutioni. Input equations have an empty (or identity) substitution,and derived equations are constructed as follows. The \into" term must exist asa nonvariable term in the skeleton of the \into" parent. The skeleton of theparamodulant is constructed from the skeletons of the parents by simple equalityreplacement, and the substitution of the paramodulant is constructed from thesubstitutions of the parents and the uni�er for the inference.6 Without the \basic"restriction, terms that exist only in the substitution part would be admissible\into" terms as well. The \basic" restriction, which is complete for several variantsof paramodulation [1, 12], imposes an order on derivations, but, like most otherstrategies, its use can interfere with searches as well as help them. It appears tohave been a key strategy in �nding the proof of Lemma 3 and similar proofs.3.3. The Search AlgorithmA pairing algorithm is used to select the next equations for application ofparamodulation. Let the weight of a pair of equations be the sum of the lengthsof its members, and let the age of a pair be the sum of the ages of its members.(The age of an equation is determined by its position in the sequence of retainedequations.) In each iteration of the search loop, either the lightest pair not yetselected or the oldest pair not yet selected is chosen. The pair selection ratio, one5 This ordering is primitive but very fast.6 The \basic" restriction is not implemented by storing equations as hskeleton,substitutioni.Instead, \basic" positions in equations are marked, and the marks are inherited duringparamodulation. paper.tex; 22/01/1997; 13:39; no v.; p.5



6 WILLIAM McCUNEof EQP's important search parameters, is used to specify the ratio, lightest:oldest .The default value is 1:0, that is, to always select the lightest pair.4. Use of EQPEQP is not an interactive program. The user states the conjecture, sets a fewsearch parameters, and starts the search. As EQP searches, it sends derived equa-tions and some statistics to the output �le. If the search fails or does not lookpromising, the user can adjust the parameters and try again. By iterating in thisway, we try to achieve a well-behaved search [10]. We had up to three ordinaryUNIX workstations available when working on this project, so we ran (indepen-dent) searches in parallel as well.The attack that led to the solution of the Robbins problem took place overthe course of �ve weeks (September 6 through October 11, 1996). The searchparameters were varied in the following ways in various combinations. (1) Thelimit on the length of retained equations started at 36 and was raised to 40, 50,60, 70, and 80. (2) Searches were run with and without the super-0 restriction onAC uni�ers. (3) Searches were run with and without the \basic" restriction onparamodulation. (4) Several searches were run with pair selection ratio 1:0, andseveral with 1:1.After about 14 multiday searches, using a total of about 5 CPU-weeks ofcomputer time, a proof of the Lemma 2 su�cient condition, 9c9d(n(c+d) = n(c)),was found. The successful search took almost 8 days and used about 30 megabytesof memory. The successful search parameters were a length limit of 70, the super-0restriction, the \basic" restriction, and a pair selection ratio of 1:1.During the successful search, 49548 equations (i.e., critical pairs) were derived;during simpli�cation of those derived equations, rewriting was attempted on2612977 terms, and 5981 terms were rewritten. Of the simpli�ed equations, 17663were retained, all of which were oriented and became demodulators. Of the totalsearch time, 74% was spent simplifying equations, 22% was spent �nding exist-ing equations that could be simpli�ed with newly-adjoined demodulators, and3% was spent deciding whether simplifed equations were subsumed by existingequations.5. Proofs of the Huntington EquationWe ran several more searches to try to (1) determine whether a proof couldhave been found earlier or quicker if we had used di�erent search parameters, (2)�nd a simpler proof, and (3) �nd proofs of other su�cient conditions. The mostimportant result of these additional experiments is that the Huntington equationwas proved directly, so that we have automatic solutions that do not rely oneither of the Winker lemmas. paper.tex; 22/01/1997; 13:39; no v.; p.6



Solution of the Robbins Problem 7Table I lists a summary of the experiments, including the �rst successful search(m5-70). All of the listed searches started with the Robbins equation and usedTable I. Statistics for Various ProofsSearch Max-weight Ratio Proof Days Lengthm5-70 70 1:1 Cond. 2 7.85 15m5-60a 60 1:1 Cond. 2 5.71 15Cond. 1 5.72 17Hunt. 8.83 194m5-60b 60 4:1 Cond. 2 3.08 15Cond. 1 3.09 17Hunt. 5.68 194m5-50 50 1:1 Cond. 2 10.03 8Cond. 1 10.03 12Hunt. 10.75 86m5-50b 50 4:1 Cond. 2 4.89 8Cond. 1 4.90 12Hunt. 5.56 86AC uni�cation with the super-0 strategy and the \basic" restriction on paramod-ulation. All searches except m5-70 had multiple goals, including the Lemma 1condition (Cond. 1), the Lemma 2 condition (Cond. 2), and the Huntingtonequation (Hunt.). For the searches with multiple goals, EQP was told to keepsearching and prove as many goals as it could.The �rst proof found and the shortest proofs found are of the Lemma 2 condi-tion. The Lemma 1 condition was always found shortly thereafter in just two orfour more steps. In Section 2, we chose to present the proof of the Lemma 1 condi-tion (from the search m5-50) because it leads to a simpler overall proof|Winker'sproof (and the computer proof in Appendix B) that Condition 1 is su�cient ismuch less complicated than his proof (or our computer proof [10]) that Condi-tion 2 is su�cient. We have not presented any of the Huntington equation proofsbecause of their lengths. 77 The Huntington axiom proof lengths (194 and 86), when compared with the Condition 1proof lengths (17 and 12), do not indicate relative complexity of the proofs. Most of the stepsin the Huntington axiom proofs are simple (and many are unnecessary), and most of the stepsin the Condition 1 proofs are complicated. paper.tex; 22/01/1997; 13:39; no v.; p.7



8 WILLIAM McCUNEWorld Wide Web ReferenceThe program EQP (including the source code), the input �les, and the EQPproofs referred to in this article are available on the World Wide Web throughthe pagehttp://www.mcs.anl.gov/home/mccune/ar/robbins/Appendix A: Detailed Proof of Lemma 3This appendix contains a detailed proof of Lemma 3 (i.e., Condition 1). We startwith the Robbins equation (7) and derive equation (8871) with AC uni�cationand matching. The numbering of the steps is the same as in the less-detailedproof in Section 2.n(n(n(x)+y)+n(x+y)) = y (7)n(n(3x)+x)+2x = 2x (8871)Step 10With (7), let x be n(x)+y and y be n(x+y):n(n(n(n(x)+y)+n(x+y))+n(n(x)+y+n(x+y))) = n(x+y).Use (7) to replace the underlined term; then rearrange:n(n(n(x+y)+n(x)+y)+y) = n(x+y). [7!7] (10)Step 11With (7), let y be n(n(x)+y) and x be x+y:n(n(n(x+y)+n(n(x)+y))+n(x+y+n(n(x)+y))) = n(n(x)+y).Use (7) to replace the underlined term; then rearrange:n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y). [7!7] (11)Step 29With (7), let x be n(n(x)+y)+x+y and y be y:n(n(n(n(n(x)+y)+x+y)+y)+n(n(n(x)+y)+x+2y)) = y.paper.tex; 22/01/1997; 13:39; no v.; p.8



Solution of the Robbins Problem 9Use (11) to replace the underlined term; then rearrange:n(n(n(n(x)+y)+x+2y)+n(n(x)+y)) = y. [11!7] (29)Step 54With (7), let x be n(n(n(x)+y)+x+2y)+n(n(x)+y) and y be z:n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y))+z)+n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z)) = z.Use (29) to replace the underlined term; then rearrange:n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z)+n(y+z)) = z. [29!7] (54)Step 217With (7), let x be n(n(n(x)+y)+x+2y)+n(n(x)+y)+z and y be n(y+z):n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z)+n(y+z))+n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z+n(y+z))) = n(y+z).Use (54) to replace the underlined term; then rearrange:n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z) = n(y+z). [54!7] (217)Step 674With (7), let y be u and x be n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z:n(n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z)+u)+n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z+u)) = u.Use (217) to replace the underlined term; then rearrange:n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z+u)+n(n(y+z)+u)) = u. [217!7] (674)Step 6736With (10), let x be 3v and y be n(n(3v)+v)+2v:n(n(n(3v+n(n(3v)+v)+2v)+n(3v)+n(n(3v)+v)+2v)+n(n(3v)+v)+2v) =n(3v+n(n(3v)+v)+2v). (100)paper.tex; 22/01/1997; 13:39; no v.; p.9



10 WILLIAM McCUNEWith (674), let x be 3v, y be v, z be 2v and u be n(n(3v)+v):n(n(n(n(n(n(3v)+v)+5v)+n(n(3v)+v)+n(3v)+2v)+2v+n(n(3v)+v))+n(n(3v)+n(n(3v)+v))) = n(n(3v)+v). (6740)Replace the underlined term of (6740), which is AC-identical to the left-hand side of (100),with the right-hand side of (100):n(n(3v+n(n(3v)+v)+2v)+n(n(3v)+n(n(3v)+v))) = n(n(3v)+v).Rename the variable and rearrange:n(n(n(n(3x)+x)+n(3x))+n(n(n(3x)+x)+5x)) = n(n(3x)+x). [10!674] (6736)Step 8855With (7), let x be n(n(3x)+x)+n(3x) and y be n(n(n(3x)+x)+5x):n(n(n(n(n(3x)+x)+n(3x))+n(n(n(3x)+x)+5x))+n(n(n(3x)+x)+n(3x)+n(n(n(3x)+x)+5x))) = n(n(n(3x)+x)+5x).Use (6736) to replace the underlined term:n(n(n(3x)+x)+n(n(n(3x)+x)+n(3x)+n(n(n(3x)+x)+5x))) = n(n(n(3x)+x)+5x).With (54), let x be 3x, z be n(3x) and y be x:n(n(n(n(n(3x)+x)+5x)+n(n(3x)+x)+n(3x))+n(x+n(3x))) = n(3x).The left-hand sides of the preceding two equations are AC-identical; hencen(n(n(3x)+x)+5x) = n(3x). [6736!7:54] (8855)Step 8865With (7), let y be n(n(3x)+x)+2x and x be 3x:n(n(n(3x)+n(n(3x)+x)+2x)+n(3x+n(n(3x)+x)+2x)) = n(n(3x)+x)+2x.Uset (8855) to replace the underlined term; then rearrange:n(n(n(n(3x)+x)+n(3x)+2x)+n(3x)) = n(n(3x)+x)+2x. [8855!7] (8865)Step 8866With (7), let x be n(n(3x)+x)+4x and y be x:paper.tex; 22/01/1997; 13:39; no v.; p.10



Solution of the Robbins Problem 11n(n(n(n(n(3x)+x)+4x)+x)+n(n(n(3x)+x)+5x)) = x.Replace the underlined term with the right-hand side of (8855):n(n(n(n(n(3x)+x)+4x)+x)+n(3x)) = x. (A2)With (11), let x be 3x and y be x:n(n(n(n(3x)+x)+4x)+x) = n(n(3x)+x). (A3)Use (A3) to replace the underlined term of (A2):n(n(n(3x)+x)+n(3x)) = x. [8855!7:11] (8866)Step 8870With (7), let x be n(n(3x)+x)+n(3x):n(n(n(n(n(3x)+x)+n(3x))+y)+n(n(n(3x)+x)+n(3x)+y)) = y.Use (8866) to replace the underlined term; then rearrange:n(n(n(n(3x)+x)+n(3x)+y)+n(x+y)) = y. [8866!7] (8870)Step 8871With (8870), let y be 2x:n(n(n(n(3x)+x)+n(3x)+2x)+n(3x)) = 2x.Use the preceding equation to simplify (8865):n(n(3x)+x)+2x = 2x. [8865:8870] (8871)Q.E.D.Appendix B: Proof of Lemma 1This appendix contains a proof of Lemma 1, conjectured and �rst proved byWinker [15, 16], then later proved automatically by EQP [10].To simplify the presentation, we �rst prove a stronger condition su�cient.Both computer proofs were found by EQP, the �rst in about 5 seconds, and thesecond in about 2319 seconds.Lemma 0. A Robbins algebra satisfying 9c(c+ c = c) is a Boolean algebra.Proof. We assert that the Huntington equation fails to hold, and we derive acontradiction. The terms A, B, and C are constants. (In the justi�cation, n0indicates the extension of equation n; that is, if n is t1 = t2, n0 is t1+x = t2+x.)paper.tex; 22/01/1997; 13:39; no v.; p.11



12 WILLIAM McCUNE1 C + C = C [hypothesis]2 n(n(n(x) + y) + n(x+ y)) = y [Robbins Equation]3 n(B + n(A)) + n(n(B) + n(A)) 6= A [denial of Huntington Equation]4 n(n(C) + n(C + n(C))) = C [1 ! 2]5 n(n(C + n(C) + x) + n(C + x)) = C + x [10 ! 2]8 n(n(C + x) + n(n(C) + n(C + n(C)) + x)) = x [4 ! 2]9 n(C + n(C + n(C) + n(C))) = n(C) [4 ! 2]13 n(n(C) + n(C + n(C) + n(C + n(C)))) = C [1 ! 8]20 n(n(C) + n(C + n(C) + n(C))) = C [9 ! 2,simp:1]22 n(C + n(C) + n(C)) = n(C + n(C)) [9 ! 2,simp:20,ip]24 n(C + n(C + n(C))) = n(C) [9,simp:22]32 C + n(C + n(C)) = C [24 ! 5,simp:13,ip]35 n(C + n(C)) + x = x [320 ! 2,simp:8,ip]42 n(n(n(x)) + n(x)) = n(C + n(C)) [35 ! 2,simp:35]50 n(n(n(n(x)) + x)) = n(n(x)) [42 ! 2,simp:35]52 n(n(n(x))) = n(x) [42 ! 2,simp:35,50]58 n(n(x)) = x [2 ! 52,simp:2]87 n(n(x) + y) + n(x+ y) = n(y) [2 ! 58,ip]88 A 6= A [3,simp:87,58]Lemma 1 (S. Winker [15, 16]). A Robbins algebra satisfying 9c9d(c+ d = c) isa Boolean algebra.Proof. The terms C and D are constants.2 D + C = C [hypothesis]3 n(n(n(x) + y) + n(x+ y)) = y [Robbins Equation]4 n(n(C) + n(D + n(C))) = D [2 ! 3]8 n(n(D + n(C + x) + y) + n(C + x+ y)) = D + y [20 ! 3]20 n(D + n(C + n(D + n(C)))) = n(D + n(C)) [4 ! 3]34 n(n(n(n(x) + y) + n(x+ y) + z) + n(y + z)) = z [3 ! 3]35 n(n(n(n(x) + y) + x+ y) + y) = n(n(x) + y) [3 ! 3]56 n(n(C) + n(D + n(C + n(x)) + n(C + x))) = D [2 ! 34]151 n(n(D + n(C + n(D + n(C))) + x) + n(n(D + n(C)) + x)) = x [20 ! 3]152 n(n(D + n(C)) + n(C + n(D + n(C)))) = D [20 ! 3,simp:2]173 n(D + n(D + n(C) + n(C + n(D + n(C))))) = n(C + n(D + n(C))) [152! 3]197 n(n(C + n(D + n(C))) + n(C + n(C + n(D + n(C))))) = C [20 ! 151]280 n(n(n(n(n(x) + y) + x+ y) + y + z) + n(n(n(x) + y) + z)) = z [35 ! 3]837 n(C + n(D + n(C))) = n(C) [4 ! 151,simp:173]839 n(n(C) + n(C + n(C))) = C [197,simp:837,837]842 n(n(C + x) + n(n(C) + n(C + n(C)) + x)) = x [839! 3]844 n(C + n(C + n(C + n(C)))) = n(C + n(C)) [839! 3]883 n(n(C + n(C)) + n(C +C + n(C + n(C)))) = C [844! 3]946 n(C+n(C+n(C)+n(C+C+n(C+n(C))))) = n(C+C+n(C+n(C))) [883! 3]1706 n(C +C + n(C + n(C))) = n(C) [839 ! 280,simp:946]1734 D + n(C + n(C)) = D [1706! 8,simp:56,ip]1745 C + n(C + n(C)) = C [20 ! 17340,simp:2]1802 n(C + n(C)) + x = x [17450 ! 3,simp:842,ip]
paper.tex; 22/01/1997; 13:39; no v.; p.12



Solution of the Robbins Problem 13From Equation 1802, we have a term e, namely n(C+n(C)), such that e+e = e.Hence, the result follows by Lemma 0. Q.E.D.References1. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superpo-sition. In D. Kapur, editor, Proceedings of the 11th International Conference on Automat-ed Deduction, Lecture Notes in Arti�cial Intelligence, Vol. 607, pages 462{476. Springer-Verlag, 1992.2. S. Burris. Correspondence, November 1996.3. L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras, Part I. North-Holland, 1971.4. J.-M. Hullot. Canonical forms and uni�cation. In R. Kowalski and W. Bibel, editors,Proceedings of CADE-5, LNCS Vol. 87, pages 318{334, Berlin, 1980. Springer-Verlag.5. E. V. Huntington. Boolean algebra. A correction. Trans. AMS, 35:557{558, 1933.6. E. V. Huntington. New sets of independent postulates for the algebra of logic, with specialreference to Whitehead and Russell's Principia Mathematica. Trans. AMS, 35:274{304,1933.7. D. Kapur and H. Zhang. RRL: Rewrite Rule Laboratory user's manual. Technical Report89-03, Department of Computer Science, University of Iowa, 1989.8. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,Computational Problems in Abstract Algebras, pages 263{297. Pergamon Press, Oxford,1970.9. W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, ArgonneNational Laboratory, Argonne, IL, 1994.10. W. McCune. 33 basic test problems: A practical evaluation of some paramodulationstrategies. Preprint ANL/MCS-P618-1096, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, IL, 1996.11. G. F. McNulty. Undecidable properties of �nite sets of equations. J. Symbolic Logic,41:589{604, 1976.12. R. Niewenhuis and A. Rubio. Theorem proving with ordering and equality constrainedclauses. J. Symbolic Computation, 19(4):321{351, 1995.13. H. Robbins. Phone conversation, October 1996.14. M. Stickel. A uni�cation algorithm for associative-commutative functions. J. ACM,28(3):423{434, 1981.15. S. Winker. Robbins algebra: Conditions that make a near-Boolean algebra Boolean. J.Automated Reasoning, 6(4):465{489, 1990.16. S. Winker. Absorption and idempotency criteria for a problem in near-Boolean algebras.J. Algebra, 153(2):414{423, 1992.17. L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduction andApplications, 2nd edition. McGraw-Hill, New York, 1992.
paper.tex; 22/01/1997; 13:39; no v.; p.13


