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1 IntroductionConsider the weighted least-squares (WLS) problemmin kD1=2(b�Ax)k2; (1)where D 2 Rm�m; A 2 Rm�n, b 2 Rm; and m � n: In this formula and forthe remainder of this article, k�k indicates the 2-norm. We make the followingassumptions: D is a diagonal positive de�nite matrix and rankA = n. Theseassumptions imply that (1) is a nonsingular linear system with a uniquesolution. The normal equations for (1) have the formATDAx = ATDb: (2)Weighted least-squares problems arise in several application domains in-cluding linear programming, electrical power networks, elliptic boundaryvalue problems and structural analysis, as observed by Strang [21]. Thisarticle focuses on the case when matrix D is severely ill-conditioned. Thishappens in certain classes of electrical power networks. In this case, A isa node-arc adjacency matrix, D is matrix of load conductivities, b is thevector of voltage sources, and x is the vector of voltages of the nodes. Ill-conditioning occurs when resistors are out of scale, for instance, when mod-eling leakage of current through insulators.Ill-conditioning also occurs in linear programming when an interior-pointmethod is used. To compute the Newton step for an interior-point method,we need to solve a weighted least-squares equation of the form (2). Sincesome of the slack variables become zero at the solution, matrix D always be-comes ill-conditioned as the iterations approach the boundary of the feasibleregion. In Section 9, we cover this application in more detail. Ill-conditioningalso occurs in �nite element methods for certain classes of boundary valueproblems, for example, in the heat equilibrium equation r� (cru) = 0 whenthermal conductivity �eld c varies widely in scale.An important property of problem (1) or (2) is the norm bound on thesolution, which was obtained independently by Stewart [20], Todd [22] andseveral other authors. See [6] for a more complete bibliography. Here westate this result as in the paper by Stewart.Theorem 1 Let D denote the set of all positive de�nite m�m real diagonalmatrices. Let A be an m�n real matrix of rank n. Then there exist constants2



�A and ��A such that for any D 2 Dk(ATDA)�1ATDk � �A; and (3)kA(ATDA)�1ATDk � ��A: (4)Note that the matrix appearing in (3) is the solution operator for the nor-mal equations (2), in other words, (2) can be rewritten as x = (ATDA)�1ATDb.Since the bounds (3), (4) exist, we can hope that there exist algorithmsfor (2) that possess the same property, namely, the forward error bound doesnot depend on D. We will call these algorithms stable, where stability, asde�ned by Vavasis [23], means that forward error in the computed solutionx̂ satis�es kx� x̂k � � � f(A) � kbk; (5)where � is machine precision and f(A) is some function of A not dependingon D. Note that the underlying rationale for this kind of bound is that theconditioning problems in (1) stem from an ill-conditioned D rather than anill-conditioned A.This stability property is not possessed by standard direct methods suchas QR factorization, Cholesky factorization, symmetric inde�nite factoriza-tion, range-space and null-space methods, nor by standard iterative methodssuch as conjugate gradient applied to (2). The only two algorithms in litera-ture that are proved to have this property are the NSH algorithm by Vavasis[23] and the complete orthogonal decomposition (COD) algorithm by Houghand Vavasis [12], both of them direct. See Bj�orck [1] for more informationabout algorithms for least-squares problems.We would like to have stable iterative methods for this problem becauseiterative methods can be much more e�cient than direct methods for largesparse problems, which is the common setting in applications.This article presents an iterative algorithm for WLS problems calledMINRES-L. MINRES-L consists of applying the MINRES algorithm of Paigeand Saunders [14] to a certain layered linear system. We prove that MINRES-L satis�es (5). This proof of the forward error bound for MINRES-L is basedon a simpli�ed model of how roundo� error a�ects Krylov space methods.This analysis is then con�rmed with computational experiments in Section 8.3



(The simpli�ed model itself is described in Section 5.) An analysis of round-o� in MINRES-L starting from �rst principles is not presented here becausethe e�ect of roundo� on the MINRES iteration is still not fully understood.MINRES-L imposes the additional assumption on the WLS problem in-stance that D is \layered." This assumption is made without loss of gener-ality (i.e., every weighted least-squares problem can be rewritten in layeredform), but the MINRES-L algorithm is ine�cient for problems with manylayers.This article is organized as follows. In Section 2 we state the layeringassumption, and also the layered least-squares (LLS) problem. In Section 3we consider previous work. In Section 4 we describe the MINRES-L methodfor two-layered WLS problems. In Section 5 we analyze the convergence inthe two-layered case using the simplifying assumptions about roundo� error.In Section 6 and Section 7 we extend the algorithm and analysis to the caseof p layers. In Section 8 we present some computational experiments insupport of our claims. In Section 9 we consider application of MINRES-L tointerior-point methods for linear programming.2 The Layering AssumptionRecall that we have already assumed that the weight matrix D appearingin (1) is diagonal, positive de�nite and ill-conditioned. For the rest of thisarticle we impose an additional \layering" assumption: we assume, aftera suitable permutation of the rows of (A;b) and corresponding symmetricpermutation of D, that D has the structureD = 0BB@ �1D1 . . . �pDp 1CCA ; (6)where each Dk is well-conditioned and scaled so that its smallest diagonalentry is 1, and where �1 � �2 � � � � � �p > 0. Let � denote the maximumdiagonal entry among D1; : : : ;Dp. The layering assumption is that � is notmuch larger than 1.Note that this assumption is made without any loss of generality (and wecould assume � = 1), since we could place each diagonal entry of D in its ownlayer. Unfortunately, the complexity of our algorithm grows quadraticallywith p. Furthermore, our upper bound on the forward error degrades as p4



increases (see (39) below). Thus, a tacit assumption is that the number oflayers p is not too large.From now on, we write A in partitioned form asA = 0BB@ A1...Ap 1CCAto correspond with the partitioning of D. We partition b = [b1; � � � ;bp]similarly.Under this assumption, we say that (1) is a \layered WLS" problem. Inthe context of electrical networks, this assumption means that there are sev-eral distinct classes of wires in the circuit, where the resistance of wires inclass l is of order 1=�l. For instance, one class of wires might be transmis-sion lines, whereas the other class might consist of broken wires (open lines)where the resistance is much higher. In the context of the heat equilibriumequation, the layering assumption means that the object under considerationis composed of a small number of di�erent materials. Within each materialthe conductivity �l is constant, but the di�erent materials have very di�erentconductivities. In linear programming, taking p = 2 means that the someof the slack variables at the current interior-point iterate are \small" whileothers are \large."A limiting case of layered WLS occurs when the gaps between the �l'stend to in�nity, that is, �1 is in�nitely larger than �2 and so on. As theweight gaps tend to in�nity, the solution to (1) tends to the solution of thefollowing problem, which we refer to as layered least squares (LLS). Constructa sequence of nested a�ne subspaces L0 � L1 � � � � � Lp ofRn. These spacesare de�ned recursively: L0 = Rn, andLl = fminimizers of kD1=2l (Alx� bl)k s.t. x 2 Ll�1g:Finally, x, the solution to the LLS problem, is the unique element in Lp. Thelayered least-squares problem was �rst introduced by Vavasis and Ye [25] asa technique for accelerating the convergence of interior-point methods. Theyalso established the result mentioned above in this paragraph: the solutionto the WLS problem in the limit as �l+1=�l ! 0 for all l converges to thesolution of the LLS problem.Combining this result with Theorem 1 yields the following corollary, alsoproved by Vavasis and Ye. 5



Corollary 1 Let x be the solution to the LLS problem posed with matrix Aand right-hand side vector b. Then kxk � �Akbk and kAxk � ��Akbk forany choice of diagonal positive de�nite weight matrices D1; : : : ;Dp.3 Previous WorkThe standard iterative method for least-squares problems, including WLSproblems, is conjugate gradient (see Golub and Van Loan [7] or Saad [18])applied to the normal equations (2). This algorithm is commonly referred toas CGNR, which is how we will denote it here. There are several variants ofCGNR in the literature; see, e.g., Bj�orck, Elfving, and Strako�s [2]. Note thatin most variants one does not form the triple product ATDA when applyingCG to (2); instead, one forms matrix-vector products involving matrices AT ,D and A. This trick can result in a substantial savings in the running timesinceATDA could be much denser than A alone. The same trick is applicableto our MINRES-L method and was used in our computational experiments.The di�culty with CGNR is that an inaccurate solution can be returnedbecause ATDA can be ill-conditioned when D is ill-conditioned. To under-stand the di�culty, consider the two-layeredWLS problem, which is obtainedby subtituting (6) in the case p = 2 into (2):�1AT1D1A1x+ �2AT2D2A2x = �1AT1D1b1 + �2AT2D2b2: (7)Observe that if �1 � �2 then Krylov sequenceATDb; (ATDA)ATDb; (ATDA)2ATDb; : : :constructed by CGNR is very close to�1AT1D1b1; �21(AT1D1A1)AT1D1b1; �31(AT1D1A1)2AT1D1b1; : : :In other words, information about A2, D2 and b2 is lost when forming theKrylov sequence. A di�erent framework for interpreting this di�culty isdescribed in Section 5.Another iterative method for least-squares problems is LSQR due to Paigeand Saunders [15]. This method shares the same di�culty with CGNR be-cause it works in the same Krylov space.A standard technique for handling ill-conditioning in conjugate gradi-ent is reorthogonalization; see, for example, Paige [16] and Parlett and6



Scott [17]. Reorthogonalization, however, cannot solve the di�culty withill-conditioning in (2) because even the act of forming the �rst Krylov vectorATDb causes a loss of information.Another technique for addressing ill-conditioned linear systems with it-erative methods is called \regularization"; a typical regularization techniquemodi�es the ill-conditioned system with additional terms. See Hanke [10].Regularization does not appear to be a good approach for solving (1) because(1) already has a well-de�ned solution (in particular, Theorem 1 implies thatsolutions are not highly sensitive to perturbation of the data vector b). Aregularization technique would compute a completely di�erent solution.In our own previous work [3], we proposed an iterative method for (2)based on \correcting" the standard CGNR search directions. We have sincedropped that approach because we found a case that seemingly could not behandled or detected by that algorithm.4 MINRES-L for Two LayersIn this section and the next we consider the two-layered case, that is, p = 2in (6). We consider the two-layered case separately from the p-layered casebecause the two-layered case contains all the main ideas of the general casebut is easier to write down and analyze. (In the p = 1 case, our algorithmreduces to MINRES applied to (2) and hence is not novel.) Furthermore, thep = 2 case is expected to occur commonly in practice. We mention also thatthe two-layered WLS and LLS problems were considered in x22 of Lawsonand Hanson [13].As noted in the preceding section, the two-layeredWLS problem is writtenin the form (7), in which the diagonal entries of D1;D2 on the order of 1 and�1 � �2. Let us introduce a new variable v such thatAT1D1A1v = (�1=�2)(AT1D1A1x�AT1D1b1): (8)Note that this equation always has a solution v because the right-hand sideis in the range of AT1 . Multiplying (8) by �2 and adding to (7) yieldsAT1D1A1v = AT2D2b2 �AT2D2A2x: (9)Putting (8) and (9) together, we get AT2D2A2 AT1D1A1AT1D1A1 (��2=�1)AT1D1A1 ! xv ! =  AT2D2b2AT1D1b1 ! : (10)7



Our algorithm, which we call MINRES-L (for MINRES \layered"), is theapplication of the MINRES iteration due to Paige and Saunders [14] to (10).Note that (10) is a symmetric linear system.In general, this linear system is rank de�cient because if (x;v) is a solutionand v0 satis�es A1v0 = A1v, then (x;v0) is also a solution. Thus, (10) isrank de�cient whenever the rank of A1 is less than n. This means we mustaddress existence and uniqueness of a solution. Existence follows becausethe original WLS problem (7) is guaranteed to have a solution. Uniquenessof x is established as follows: if we add �2 times the �rst row of (10) to �1times the second row, we recover the original WLS problem (7). Since (7)has a unique solution, (10) must uniquely determine x. Since x is uniquelydetermined, so is A1v.The question arises whether MINRES (in exact arithmetic) will �nd a so-lution of (10). MINRES can �nd a solution only if it lies in the Krylov space,which (because of rank de�ciency) is not necessarily full dimensional. Thisquestion was answered a�rmatively by Theorem 2.4 of Brown and Walker [4].(Their analysis concerns GMRES, but the same result applies to MINRES inexact arithmetic.) Furthermore, their result states that, assuming the initialguess is 0, the computed solution (x;v) will have minimum norm over allpossible solutions. Since x is uniquely determined, their result implies thatv will have minimum norm.Recall from Section 3 that the problem with applying conjugate gradientdirectly to (7) is that the linear system may be ill-conditioned when �1 � �2,and hence conjugate gradient may return an inaccurate answer. Thus, it mayseem paradoxical that we remedy a problem caused by ill-conditioning withan iterative method based on a truly rank-de�cient system. One explanationof this paradox concerns the limiting behavior as �1=�2 ! 1. In this case,(7) tends to the linear system AT1D1A1x = AT1D1b1. This system will, ingeneral, not have a unique solution (because A1 is not assumed to have rankn), so CGNR will compute some solution that may have nothing to do withA2, D2, or b2. Thus, the CGNR solution is not expected to have the forwardaccuracy that we demand.On the other hand, as �1=�2 !1, we see that (10) tends to AT2D2A2 AT1D1A1AT1D1A1 0 ! xv ! =  AT2D2b2AT1D1b1 ! :This system is easily seen to be the Lagrange multiplier conditions for thetwo-layered LLS problem: recall from Section 2 that the two-layered LLS8



problem is minimize kD1=22 (A2x� b2)k2subject to AT1D1A1x = AT1D1b1:This is the correct limiting behavior: the WLS solution tends to the LLSsolution as �2=�1 ! 0. An in-depth explanation of MINRES-L's convergencebehavior follows.5 Convergence Analysis for Two LayersIn this section we consider convergence of MINRES-L in the presence ofroundo� error for the case p = 2. As mentioned in the introduction, we makea simplifying assumption concerning the e�ect of roundo� error in Krylovspace methods. The assumption concerns either CG or MINRES applied tothe symmetric linear system Mx = c. In our use of these algorithms, thereis no preconditioner, and the initial guess is x(0) = 0. Further, in our use ofMINRES, c lies in the range-space of M (i.e., the system is consistent). Inour use of CG, M is positive de�nite. With these restrictions in mind, ourassumption about the e�ect of roundo� is that after a su�cient number ofiterations, either method will compute an iterate x̂ satisfyingkc�M x̂k � C� � kMk � kxk (11)where C is a modest constant, � is machine epsilon, and x is the true solution.(If multiple solutions exist, we take x to be the minimum-norm solution.)As far as we know, this bound has not been rigorously proved, but it isrelated to a bound proved by Greenbaum [9] in the case of conjugate gradient.In particular, Greenbaum's result implies that (11) would hold for CG if wewere guaranteed that the recursively updated residual drops to well belowmachine precision, which always happens in our test cases.As for MINRES, less is known, but a bound like (11) is known to holdfor GMRES implemented with Householder transformations [5]. GMRES isequivalent to MINRES augmented with a full reorthogonalization process.We are content to assert (11) for MINRES, with evidence coming from ourcomputational experiments.This bound sheds light on why MINRES-L can attain much better accu-racy than CGNR. For CGNR, the error bound (11) implies that kATDb �ATDAx̂k gets very small, where x̂ is the computed solution. This latter9



quantity is the same as k(ATDA)(x � x̂)k. But recall that we are seekinga bound on the forward error, that is, on kx � x̂k. In this case, the factor(ATDA) can greatly skew the norm when �2=�1 is close to zero, so there isno bound on kx� x̂k independent of �1=�2, that is, (5) is not expected to besatis�ed by CGNR. This is con�rmed by our computational experiments.In contrast, an analysis of MINRES-L starting from (11) does yield theaccuracy bound (5). We need the following preliminary lemma.Lemma 1 Let A be an m � n matrix of rank n and �A an r � n submatrixof A. Suppose the linear system �AT �D �Ax = ATc is consistent. Here, c is agiven vector, and �D is a given diagonal positive de�nite matrix. Then forany solution x, k �Axk � k �D�1k � ��A � kck (12)and k �Axk � k �D�1k � �A � kATck: (13)Furthermore, there exists a solution x satisfyingkxk � k �D�1k � �A ��A � kck: (14)Proof. First, note the following preliminary result. Let H;K be two sym-metric n� n matrices such that H is positive semide�nite and K is positivede�nite. Let b be an n-vector in the range space of H. Then (H + �K)�1bconverges to a solution of Hx = b as �! 0+. This is proved by reducing tothe diagonal case using simultaneous diagonalization of H;K.Let D be the extension of �D to an m �m diagonal matrix obtained by�lling in zeros, so that ATDA = �AT �D �A. Since ATDAx = ATc is consistent,the limit of (AT (D+ �I)A)�1ATc as �! 0+ is some solution x of �AT �D �Ax =ATc, as noted in the preceding paragraph. Let M be an m � m diagonalmatrix with 1's in diagonal positions corresponding to �D and zeros elsewhere.10



We havek �Axk = kMAxk= lim�!0+ kMA(AT (D + �I)A)�1ATck= lim�!0+ kM(D + �I)�1(D + �I)A(AT(D + �I)A)�1ATck (15)� lim�!0+ kM(D + �I)�1k � sup�>0 k(D + �I)A(AT(D + �I)A)�1ATk � kck� k �D�1k � ��A � kck:The last line was obtained by the transpose of (4). This proves (12). Notethat this holds for all x satisfying �AT �D �Ax = ATc, since this latter equationuniquely determines �Ax. Similarly, to demonstrate (13), we start from (15):k �Axk � lim�!0+ kM(D + �I)�1(D + �I)A(AT(D + �I)A)�1ATck� lim�!0+ kM(D + �I)�1k � sup�>0 k(D + �I)A(AT(D + �I)A)�1k � kATck� k �D�1k � �A � kATck:For the second part of the proof, observe by the �rst part that ATc =�AT �D �Ax = ATDAx = ATDMAx. Hence,x = lim�!0+(AT (D + �I)A)�1ATc= lim�!0+(AT (D + �I)A)�1A(D + �I)MAxand thus kxk � sup�>0 k(AT (D + �I)A)�1A(D + �I)k � kMAxk� �Ak �Axk:Combining this with (12) proves (14).To resume the analysis of MINRES-L, we de�ner1 = AT2D2A2x̂+AT1D1A1v̂�AT2D2b2; and (16)r2 = AT1D1A1x̂� (�2=�1)AT1D1A1v̂ �AT1D1b1; (17)where (x̂; v̂) is the solution computed by MINRES-L. Then (11) applied to(10) yields the boundskr1k; kr2k � C� � kH2k � k(x;v)k: (18)11



In this formula, H2 is shorthand for the coe�cient matrix of (10).We can extract another equation from (16) and (17); in particular, if wemultiply (16) by �2, multiply (17) by �1 and then add, we eliminate the termsinvolving v̂:�2r1 + �1r2 = �1AT1D1A1x̂+ �2AT2D2A2x̂� �1AT1D1b1 � �2AT2D2b2:Let x be the exact solution to the WLS problem. The last two terms of thisequation can be replaced with terms involving x by using (7). Interchangingthe left- and right-hand sides yields�1AT1D1A1(x̂� x) + �2AT2D2A2(x̂� x) = �2r1 + �1r2: (19)The goal is to derive an accuracy bound like (5) from (18) and (19). Westart by bounding the quantity on the right-hand side of (18). Note thatkH2k can be bounded by 2�kAk2 because the largest entries in D1;D2 arebounded by �. We can bound kxk by �Akbk using Theorem 1. Next we turnto bounding kvk in (18). Recall that, as mentioned in the preceding section,v is not uniquely determined, but MINRES will �nd the minimum-norm vsatisfying (10). Recall that v is determined by the constraintAT1D1A1v = AT1D1b1 �AT1D1A1x:One way to pick such a v is to make it minimize kA2vk subject to the aboveconstraint. In this case, v is a layered least-squares solution with right-handside data (b1 �A1x;0). Thus, Corollary 1 yields the boundkvk � �A � kb1 �A1xk� �A(kbk+ ��Akbk)= �A(��A + 1)kbkfor this choice of v. (The factor ��A + 1 can be improved to ��A by usingthe analysis of Gonzaga and Lara [8].) Combining the x and v contributionsmeans that we have bounded the right-hand side of (18); let us rewrite (18)with the new bound:kr1k; kr2k � 2C� � kAk2 � � � �A(��A + 2)kbk: (20)Next, we write new equations for r1; r2. Observe that r1 lies in the rangeof AT1 and AT2 , so we can �nd h1 satisfyingr1 = AT1D1A1h1 +AT2D2A2h1: (21)12



Similarly, by (17) there exists h2 satisfyingr2 = AT1D1A1h2: (22)By applying (13) to r1 and r2 separately, with \ATc" in the lemma taken tobe �rst r1 and then r2, we conclude from (21) and (22) thatk[A1;A2]h1k � �Akdiag(D�11 ;D�12 )k � kr1k; and (23)kA1h2k � �AkD�11 k � kr2k: (24)Substituting (21) and (22) into (19) yields�1AT1D1A1(x̂� x) + �2AT2D2A2(x̂� x) = �1AT1D1A1h2 + �2AT1D1A1h1+ �2AT2D2A2h1= �1AT1D1(A1h2 + (�2=�1)A1h1)+ �2AT2D2A2h1:Notice (by analogy with (7)) that the preceding equation is exactly a weightedleast-squares computation where the \unknown" is x̂�x and the right-handside data is (A1h2 + (�2=�1)A1h1;A2h1). Thus, by Theorem 1,kx̂� xk � �Ak(A1h2 + (�2=�1)A1h1;A2h1)k:We now build a chain of inequalities: the right-hand side of the precedinginequality is bounded by (23) and (24), and the right-hand side of (23) and(24) is bounded by (20). Combining all of this yieldskx̂� xk � 4C� � �3AkAk2 � � � (��A + 2) � kbk: (25)To obtain the preceding inequality, we used the facts that �2=�1 � 1 (byassumption) and that kdiag(D�11 ;D�12 )k � 1 (also by assumption, since thesmallest entry in each Di is taken to be 1).Thus, we have an error bound of the form (5) as desired; in particular,there is no dependence of the error bound on �2=�1. Note that this bound de-pends on �. Recall that � is de�ned to be the maximum entry in D1; : : : ;Dpand is assumed to be small. Indeed, as noted in Section 2, we can alwaysassume that � = 1 if we are willing to divide the problem into many layers.13



6 MINRES-L for p LayersIn this section we present the MINRES-L algorithm for the p-layered WLSproblem. The algorithm is the application of MINRES to the symmetriclinear system Hpw = cp, where Hp is a square matrix of size (1 + p(p �1)=2)n� (1+p(p�1)=2)n, cp is a vector of that order, and w is the vector ofunknowns. Matrix Hp is partitioned into (1 + p(p� 1)=2)� (1 + p(p� 1)=2)blocks each of size n � n. Vectors cp and w are similarly partitioned. TheWLS solution vector is the �rst subvector of w.In more detail, the vectorw is composed of x concatenated with p(p�1)=2n-vectors that we denote vi;j, where i lies in 2; : : : ; p and j lies in 1; : : : ; i�1.Recall that the p-layered WLS problem may be written�1AT1D1A1x+ � � �+ �pATpDpApx = �1AT1D1b1 + � � �+ �pATpDpbp: (26)Let x be the solution to this equation. Then we see from this equation thatATpDpApx�ATpbp lies in the span of [AT1 ; : : : ; ATp�1]. Therefore, there existsa solution [vp;p�1; : : : ;vp;1] to the equationATpDpApx+ATp�1Dp�1Ap�1vp;p�1 + � � �+AT1D1A1vp;1 = ATpDpb: (27)This equation is the �rst block-row of Hpw = cp. In other words, the �rstblock row of Hp contains one copy of each of the matrices ATi DiAi, and the�rst block of cp is ATpDpb.In general, the (p � i + 1)th block-row of Hpw = cp, for i = 1; : : : ; p, isthe equationATi DiAix+ i�1Xj=1ATj DjAjvi;j � pXj=i+1 �j�iATi DiAivj;i = ATi Dibi: (28)This completes the description of block-rows 1; : : : ; p of Hpw = cp. We nowestablish some properties of these block-rows, and we postpone the descrip-tion of block-rows p + 1; : : : ; 1 + p(p � 1)=2.Lemma 2 Suppose w is a solution to the linear equation (28) for each i =1; : : : ; p, where w denotes the concatenation of x and all of the vi;j's. Thenx is the solution to the WLS problem (26).14



Proof. For each i, multiply (28) by �i and then sum all p equations obtainedin this manner. Observe that all the vi;j terms cancel out and we end upexactly with (26).We also need the converse to be true.Lemma 3 Suppose x is the solution to (26). Then there exist vectors vi;jfor 1 � j < i � p such that (28) is satis�ed for each i = 1; : : : ; p.Proof. The proof is by induction on (decreasing) k = p; : : : ; 1. We assumethat we have already determined vi;j for all i = k + 1; : : : ; p and all j =1; : : : ; i � 1 so that (28) is satis�ed for i = k + 1; : : : ; p, and now we mustdetermine vk;j for j = 1; : : : ; i � 1 to satisfy (28) for the particular valuei = k. The base case of the induction is that we can select vp;1; : : : ;vp;p�1to satisfy (28) in the case i = p because, as noted above, ATpDpApx�ATpbplies in the range of [AT1 ; : : : ; ATp�1] because of (26).Now for the induction case of k < p. Rewrite (28) for the case k = i, andmultiply through by �k:�kATkDkAkx+ �k k�1Xj=1ATj DjAjvk;j � pXj=k+1 �jATkDkAkvj;k = �kATkDkbk:(29)Recall that our goal is to choose vk;j for j = 1; : : : ; k�1 to make this equationvalid.Multiply (28) for each i = k + 1; : : : ; p by �i and add this to (29). Afterrearranging and summations and cancelling common terms on the left-handside, we end up withpXi=k �iATi DiAix+ pXi=k k�1Xj=1 �iATj DjAjvi;j = pXi=k �iATi Dibi: (30)Dividing through by �k and separating out the vk;j terms from the secondsummation yields:AT1D1A1vk;1 + � � � +ATk�1Dk�1Ak�1vk;k�1= pXi=k �i�kATi Di(bi �Aix)� pXi=k+1 k�1Xj=1 �i�kATj DjAjvi;j: (31)But from (26) we know that Ppi=k �iATi Di(bi � Aix) lies in the range of[AT1 ; : : : ; ATk�1]. Clearly the rightmost summation of (31) also lies in the same15



range. Therefore, there exist vk;j for j = 1; : : : ; k � 1 to make (31) valid.But then these same choices will make (29) valid because the algebraic stepsused to derive (31) from (29) can be reversed. This proves the lemma.Note that the preceding proof actually demonstrates a strengthened ver-sion of the lemma. The strengthened version states that if we are given xsatisfying (26) and, for some k, vectors vi;j for k � j < i � p that satisfy(28) for all i = k; : : : ; p, then we can extend the given data to a solution of(28) for all i = 1; : : : ; p. This strengthened version is needed below.We now explain the remaining p(p � 1)=2 block-rows of Hp. These rowsexist solely for the purpose of making Hp symmetric. First, we have toorder the variables and equations correctly. The variables will be listed inthe order (x;vp;p�1;vp;p�2; : : : ;vp;1;vp�1;p�2; : : : ;vp�1;1; : : : ;v2;1). The �rstp equations will be listed in the order (28) for i = p; p�1; : : : ; 1. This meansthat the �rst p rows of Hp have the format [Sp; Tp], where Sp is a p�p matrixand Tp is a p � (p � 1)(p � 2)=2 matrix. Furthermore, it is easily checkedthat Sp is symmetric: its �rst block-row and �rst block-column both consistof ATi DiAi listed in the order i = p; : : : ; 1; the (p� i+1)st entry of its maindiagonal is �(�p=�i)ATi DiAi for i = 1; : : : ; p� 1; and all its other blocks arezeros. Then we de�ne Hp to beHp =  Sp TpT Tp 0 ! :We de�ne cp as cp = 0BBBBBBBBBB@ ATpDpbp...AT1D1b10...0 1CCCCCCCCCCA ;where there are p(p� 1)=2 blocks of zeros. For example, the following linear16



system is H3w = c3:0BBBB@ AT3D3A3 AT2D2A2 AT1D1A1 0AT2D2A2 � �3�2AT2D2A2 0 AT1D1A1AT1D1A1 0 � �3�1AT1D1A1 � �2�1AT1D1A10 AT1D1A1 � �2�1AT1D1A1 0 1CCCCA0BBB@ xv3;2v3;1v2;1 1CCCA= 0BBB@ AT3D3b3AT2D2b2AT1D1b10 1CCCA :We now must consider whether Hpw = cp has any solutions; in particular,we must demonstrate that the new group of equations T Tp w0 = 0 is consistentwith the �rst p rows. Here w0 denotes the �rst p blocks of w, that is,w0 = (x;vp;p�1; : : : ;vp;1). Studying the structure of Tp, we see that there are(p� 1)(p � 2)=2 block-rows of T Tp indexed by (i; j) for 1 � j < i � p� 1 (incorrespondence with the columns of Tp, which correspond to variables vi;j fori; j in that range). The row indexed by (i; j) has exactly two nonzero blockentries that yield the equationATj DjAjvp;i � �i�jATj DjAjvp;j = 0: (32)Our task is therefore to show that we can simultaneously satisfy (28) fori = 1; : : : ; p and (32) for (i; j) such that 1 � j < i � p � 1.Our approach is to select the vp;j's in the order vp;p�1;vp;p�2; : : : ;vp;1. Inparticular, assuming vp;j+1; : : : ;vp;p�1 are already selected, we de�ne vp;j tobe any solution tojXk=1 �kATkDkAkvp;j = �j 0@ATpDpbp �ATpDpApx� p�1Xk=j+1ATkDkAkvp;k1A :(33)The following lemma shows that this linear system is consistent.Lemma 4 If the vp;j's are chosen in reverse order to satisfy (33), then ateach step the linear system is consistent, and (32) is satis�ed.Proof. The proof is by reverse induction on j. The base case is j = p�1, inwhich case (33) has a solution because, as noted above, ATpDpbp�ATpDpApx17



lies in the span of [AT1 ; : : : ; ATp�1]. In the case j = p � 1, (32) is vacuouslytrue: there is no i in the speci�ed range.Now consider the case j < p� 1. Pick any i in the range j+1; : : : ; p� 1.Start with the version of (33) satis�ed by vp;i, which holds by the inductionhypothesis:iXk=1 �kATkDkAkvp;i = �i0@ATpDpbp �ATpDpApx� p�1Xk=i+1ATkDkAkvp;k1A :Move the terms k = j + 1; : : : ; i of the �rst summation to the right-handside:jXk=1 �kATkDkAkvp;i = �i0@ATpDpbp �ATpDpApx� iXk=j+1 �k�iATkDkAkvp;i� p�1Xk=i+1ATkDkAkvp;k1A= �i0@ATpDpbp �ATpDpApx� iXk=j+1ATkDkAkvp;k� p�1Xk=i+1ATkDkAkvp;k1A= �i0@ATpDpbp �ATpDpApx� p�1Xk=j+1ATkDkAkvp;k1A :The second line was obtained from the �rst by applying (32) inductively(with \j" in (32) taken to be k). The third line was obtained by merging thetwo summations on the right.But notice that the preceding equation means that vp;i satis�es the samelinear system as vp;j, that is (33), except with the right-hand side scaled by�i=�j. This proves that (33) is consistent for the j case since we have con-structed a solution to it. Although this linear system does not necessarilyhave a unique solution, a linear system of the form ATAx = b uniquely de-terminesAx. Thus, we have also proved that �jATkDkAkvp;i = �iATkDkAkvp;jfor all k = 1; : : : ; j. This result is actually a strengthening of (32) for j; forthat equation we need only the speci�c case of k = j.The reader may have noticed that the preceding proof is apparently toocomplicated and that we could establish the result more simply by solving18



for vp;p�1 in (33) with j = p � 1, and then setting vp;j = (�j=�p�1)vp;p�1 forj = 1; : : : ; p� 2. This simpler approach does not yield the bounds on kvp;jkneeded in the next section.This proof shows that the above method for selecting vp;1; : : : ;vp;p�1 isconsistent and satis�es (32). We also see that (27) is satis�ed; this followsimmediately from taking j = 1 in (33). To complete the proof that there isa solution to Hpw = cp, we need only verify (28) in the case i = p�2; : : : ; 1.But recall from the proof of Lemma 3 that the remaining vi;j's for i =p� 2; : : : ; 1 can be determined sequentially by using the construction in theproof. Thus, the arguments of this section have established the followingtheorem.Theorem 2 There exists at least one solution w to Hpw = cp, and further-more, any such solution has as its �rst n entries the vector x that solves(26).7 Convergence Analysis for p LayersThe convergence analysis for p layers follows the same basic outline as theconvergence analysis for two layers. In particular, we use (11) as the startingpoint for the error analysis. Observe that (11) has the norm of the truesolution on the right-hand side. Thus, to apply that bound, we must get anorm bound on vi;j for all i; j satisfying 1 � j < i � p.We start with bounds on vp;j for j = p � 1; p � 2; : : : ; 1. Apply Lemma1 to (33) in the case j = p � 1. In the lemma, take �A = [A1; : : : ;Ap�1] and�D = diag(�1D1; : : : ; �p�1Dp�1). As noted above, ATpDpbp�ATpDpApx lies inthe range of [AT1 ; : : : ; ATp�1] so (33) is consistent. The right-hand side of (33)in the j = p�1 case has the form ATc with c = �p�1[0; � � � ;0;Dp(bp�Apx)].Note that kDp(bp �Apx)k is bounded by �(��A + 1)kbk. Thus, from (12),k[A1; : : : ;Ap�1]vp;p�1k � kdiag(�1D1; : : : ; �p�1Dp�1)�1k� ��A � �p�1�(��A + 1)kbk= kdiag((�p�1=�1)D�11 ; : : : ; (�p�1=�p�1)D�1p�1)k� ���A(��A + 1)kbk� ���A(��A + 1)kbk: (34)To derive the third line from the second, we used the facts that kD�1i k � 1for each i and �i=�j � 1 for i � j. 19



Now we use the same line of reasoning to get a bound on vp;p�2 based on(33) for the case j = p � 2. In this case, the right-hand side of (33) has theform ATc, wherec = �p�2[0; � � � ;0;�Dp�1Ap�1vp;p�1;Dp(bp �Apx)]:Thus, kck is bounded by �p�2(�(��A+1)kbk+�2��A(��A+1)kbk), which is atmost 2�p�2�2 ��A(��A + 1)kbk.We continue this argument inductively. Each time the bound grows by afactor 2���A to take into account the fact that vp;i appears on the right-handside for the equation determining vp;i�1. In the end we conclude thatk[A1; � � � ;Ai]vp;ik � (2���A)p�i(��A + 1)kbk: (35)Next we must bound vi;j for 1 � j < i � p � 1. These vectors aredetermined by (28). We can �nd a solution to (28) by �rst solving�AT �D �Azi = ATi Di 0@bi �Aix+ pXj=i+1 �j�iAivj;i1A ;for zi, where �A = [A1; : : : ;Ai�1], �D = diag(D1; : : : ;Di�1). This equationis already known to be consistent. Furthermore, �j=�i � 1 in the precedingequation. We set vi;1 = � � � = vi;i�1 = zi. Using (12), we conclude thatk �Avi;kk � ��A�0@kbk+ ��Akbk+ pXj=i+1 kAivj;ik1A (36)for each k = 1; : : : ; j.We now claim thatk[A1; � � � ;Aj]vi;jk � (4���A)p�i(��A + 1)kbkfor 1 � j < i < p. This is proved by induction on decreasing i usingrecurrence (36). The j = p term on the right-hand side of (36) is boundedby (35), and the remaining terms are bounded by the induction hypothesis.We omit the details.For the right-hand side of (11) we need a bound on kvi;jk. Note that upto now we have not uniquely determined vi;j itself. Recall that in each case20



Lemma 1 was used to bound kAkvi;jk. We can force unique determinationby choosing the vi;j as in the proof of Lemma 1, yieldingkvi;jk � (4���A)p�i(��A + 1)�Akbk (37)by (14). Note that MINRES does not necessarily select this vi;j, but becauseof its minimization property (that is, Theorem 2.4 of Brown and Walker [4]described in Section 4), it will select vi;j whose norm is no larger than in thepreceding bound.We now can apply (11). The other factor on the right-hand side, namely,kHpk, is easily seen to be bounded by p2kAk2�. Let ŵ be the solutioncomputed by MINRES-L, and let r = Hpŵ�cp, i.e., r = Hpŵ�Hpw. Then,substituting (37) on the right-hand side of (11) yieldskrk � C�p4kAk2 � �(��A + 1)�A � (4���A)p�1 � kbk: (38)Let rp; : : : ; r1 be the �rst p block-entries of r. Note that rj must lie in thespan of [AT1 ; : : : ; ATj ] in order for the equation Hp(ŵ � w) = r to have asolution, because it can be seen from (28) that the (p� i+1)st block-row ofHp involves onlyA1; : : : ; Ai. Thus, let us �nd hi that solves ri = AT1D1A1hi+� � �+ATi DiAihi for each i. By (13) we know that k[A1; : : : ;Ai]hik � �Akrik.Let x̂ be the �rst n entries of ŵ, that is, the computed WLS solution. Ifwe multiply the (p�i+1)st block row of Hp(ŵ�w) = r by �i for i = 1; : : : ; pand add these p rows, we obtainpXi=1 �iATi DiAi(x̂� x) = pXi=1 �iri= pXi=1 �i0@ iXj=1ATj DjAjhi1A= pXi=1 �iATi DiAi pXj=i �j�ihj :The third line was obtained from the second by interchanging the order ofsummation. Thus, we see from the third line above that x̂�x solves a WLSproblem in which the ith entry of the data vector is AiPpj=i �j�ihj. Since�j=�i � 1 for i; j in this range, we conclude that the data vector is boundedin norm by p2maxi<j kAihjk, that is, by p2�Amaxi krik. Then Theorem 1implies that kx̂� xk � p2�2Amaxi krik:21



Substituting (38) yieldskx̂� xk � C�p6kAk2 � �(��A + 1)�3A � (4���A)p�1kbk: (39)This is a bound of the form (5) as desired.8 Computational ExperimentsIn this section we present computational experiments on MINRES-L andCGNR to compare their accuracy and e�ciency. The �rst few tests involvea small node-arc adjacency matrix. The remaining tests are on matricesarising in linear programming and boundary value problems. All tests wereconducted in Matlab 4.2 running on an Intel Pentium under Microsoft Win-dows NT 4.0. Matlab is a software package and programming language fornumerical computation written by The Mathworks, Inc. All computationsare in IEEE double precision with machine epsilon approximately 2:2 �10�16.Matlab sparse matrix operations were used in all tests.Our implementation of CGNR is based on CGLS1 as in (3.2) of Bj�orck,Elfving and Strako�s [2]. These authors conclude that CGLS1 is a good wayto organize CGNR. There are two matrix-vector products per CGLS1 it-eration, one with matrix ATD1=2 and one with D1=2A. In our implemen-tation, the CGNR iteration terminates when the scaled computed resid-ual kskk=kATDbk drops below 10�13. Our implementation of MINRES isbased on [14], except Givens rotations were used instead of 2 � 2 House-holder matrices (so that there are some inconsequential sign di�erences).The MINRES-L iteration terminates when the scaled computed residualkrkk=k[AT1D1b1; : : : ;ATpDpbp]k drops below 10�13. eThe �rst matrix A used in the following tests is the reduced node-arcadjacency matrix of the graph depicted in Figure 1. A \node-arc adjacency"matrix contains one column for each node of a graph and one row for eachedge. Each row contains exactly two nonzero entries, a +1 and a �1 in thecolumns corresponding to the endpoints of the edge. (The choice of whichendpoint is assigned +1 and which is assigned �1 induces an orientationon the edge, but often this orientation is irrelevant for the application.) Areduced node-arc incidence (RNAI) matrix is obtained from a node-arc inci-dence matrix by deleting one column. RNAI matrices arise in the analysis ofan electrical network with batteries and resistors; see [23]. They also arise innetwork 
ow problems. In the case of Figure 1, the column corresponding to22



Figure 1: An 18� 9 RNAI matrix based on this graph was used for the �rstgroup of tests. The column corresponding to the top node is deleted. Edgesmarked with heavy lines are weighted 1, and edges marked with light linesare weighted �2, where �2 varies from test to test.the top node was deleted. Thus, A is an 18� 9 matrix. It is well known thatthe RNAI matrix for a connected graph always has full rank. RNAI matricesare known to have small values of �A and ��A [23].In all these tests, the weight matrix has two layers. We took D1 = I,D2 = I, and �1 = 1, while we let �2 vary from experiment to experiment.The rows of A in correspondence with D2 are drawn as thinner lines in Figure1. Finally, the right-hand side b was chosen to be the �rst 18 prime numbers.The results are displayed in Table 1, and the cases when �2 = 10�6 and�2 = 10�12 are plotted in Figure 2. The scaled error that is tabulated andplotted in all cases is de�ned to be kx̂ � xk=kbk. We choose this partic-ular scaling for the error because our goal is to investigate stability bound(5). The true solution x is computed using the COD method [12]. Notethat the accuracy of CGNR decays as �2 gets smaller, whereas MINRES-L'saccuracy stays constant. MINRES-L requires many more 
ops than CGNRbecause the system matrix is larger. The running time of CGNR is aboutthe same for the �rst four rows of the table as the ill-conditioning increases.In the last two rows the running time of CGNR drops because the matrixATDA masquerades as a low-rank matrix for small values of �2, causing earlytermination of the Lanczos process.Besides returning an inaccurate solution, CGNR has the additional dif-�culty that its residual (the quantity normally measured in practical use ofthis algorithm) does not re
ect the forward error, so there is no simple way23



Table 1: Behavior of the two-layered MINRES-L algorithm compared toCGNR for decreasing values of �2. The error reported is the scaled errorde�ned in the text. Note that the CG accuracy degrades while the MINRES-L accuracy stays about the same.MINRES-L MINRES-L MINRES-L CGNR CGNR CGNR�2 Flops Iterations Error Flops Iterations Error10�3 15032 23 1.9e-14 3479 11 3.0e-1410�6 15032 23 3.8e-14 4085 13 1.5e-1210�9 14387 22 2.7e-14 4085 13 7.9e-910�12 15032 23 3.8e-14 5297 17 1.2e-510�15 15032 23 3.7e-14 1964 6 8.2e-110�18 15032 23 4.2e-14 1064 6 8.2e-1to determine whether CGNR is computing good answers. In contrast, theerror and residual in MINRES-L are closely correlated. This correlation ispredicted by our theory.The next computational test involved a larger matrix A taken from theNetlib linear programming test set, namely, the matrix in problem AFIRO,which is 51�27. We used a matrixD with 1's in its �rst 27 diagonal positionsand 10�12 in its remaining 24 positions (i.e., D1 = I, D2 = I, p = 2, �1 = 1,�2 = 10�12). The right-hand side vector b was chosen to contain the �rst51 primes. MINRES-L required 137 iterations and 250 k
ops and yieldeda solution x̂ with scaled error 3:0 � 10�12 with respect to the true solutioncomputed by the COD method. For this matrix, �A and ��A are not known.CGNR on this problem required 69 iterations and 61 k
ops and returned ananswer with scaled error 2:2 � 10�3. The convergence plots are depicted inFigure 3.The excessive number of iterations required by MINRES is apparentlycaused by a loss of orthogonality in the Lanczos process. To verify thishypothesis, we ran GMRES on the same layered matrix. GMRES [19] ona symmetric matrix is equivalent to MINRES with full reorthogonalization.(In exact arithmetic the two algorithms are identical.) We call this algorithmGMRES-L. The same termination tests were used. The result is depicted inFigure 4. In this case, GMRES-L ran for 50 iterations (fewer than (1+p(p�1)=2)n = 54) and returned a more accurate answer, one with forward error1:2 � 10�14. However, the number of 
ops was higher, 350 k, because of the24
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Legend: |� = CGNR scaled error� � � � = CGNR scaled residual |� = MINRES-L scaled error� � � � = MINRES-L scaled residualFigure 2: Convergence behavior of CGNR and MINRES-L for the 18 � 9RNAI test case. The plots are for �2 = 10�6 (left) and �2 = 10�12 (right). Inthese plots and all that follow, the x-axis is the iteration number. For bothalgorithms the computed (i.e., recursively updated) residual is plotted ratherthan the true residual. Other experiments (not reported here) indicate thatthese are usually indistinguishable. The � on the y-axis indicates the cuto�below which the CGNR scaled residual must drop in order for (11) to be truewith � = 10�13. The � on the y-axis is the analog for MINRES-L.
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Figure 3: Convergence behavior of CGNR and MINRES-L for AFIRO. Thecurves are labeled as in Figure 2.Gram-Schmidt process in the GMRES main loop.The next computational test involves a larger matrixA arising from �nite-element analysis. The application is the solution of the boundary valueproblem r � (cru) = 0 on the polygonal domain depicted in Figure 5 withDirichlet boundary conditions. The conductivity �eld c is 1 on the outer partof the domain and is 1012 on the darker triangles. As discussed in [24], thistype of problem gives rise to a weighted least-squares problem in which Aencodes information about the geometry and D encodes the ill-conditionedconductivity �eld. The values of �A and ��A for this matrix are not known,although bounds are known for variants of these parameters. The particularmatrix A is 652�136. The right-hand side vector b was chosen according tothe Dirichlet boundary conditions described in [24]. The MINRES-L methodfor this problem gave scaled error of 1:3 � 10�13 after 382 iterations and 6.5m
ops. To compute the true solution, we used the NSHI method in [24].In this case, surprisingly, CGNR gave almost as accurate an answer, but thetermination test was never activated. (We cut o� CGNR after 10n iterations.)The residual of CGNR is quite oscillatory as depicted in Figure 6. In the�nite-element literature, CGNR would be referred to as conjugate gradienton the assembled sti�ness matrix, which is ATDA.A cause of this odd behavior of CGNR is as follows. Note that the regionof high conductivity is not incident on the boundary of the domain so b1 = 0.26
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Figure 5: Domain and �nite element mesh used for the �nite element exper-iment. Conductivity in the dark triangles is 1012 and in the light triangles is1. 27
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Figure 6: Convergence of CGNR and MINRES-L for the �nite element testproblem. The curves are labeled as in Figure 2.Thus, ATDb = �2AT2D2b2 for this problem. Since �2 is O(10�12), CGNRstarts from a right-hand side that is already almost zero. Furthermore, thisright-hand side is nearly orthogonal to the span of AT1D1A1, which dominatesthe sti�ness matrix ATDA. Thus, CGNR has trouble making progress. Thesurprisingly accurate answer from CGNR in this example is not so usefulin practice because there is no apparent way to detect that convergence isunderway.The �nal test is a three-layered problem based on the matrix A fromADLITTLE of the Netlib test set, a 138 � 56 matrix. Matrix D has as its�rst 28 diagonal entries 1, its next 28 diagonal entries 10�8 and its last 82entries 10�16. The right-hand side vector is the �rst 138 prime numbers.The convergence is depicted in Figure 7. As expected, the scaled error ofMINRES-L decreased to 2 � 10�10, while the scaled error of CGNR was 0:3.Note the excessive number of iterations required by MINRES-L. Again, thisis apparently due to loss of orthogonality because the number of iterationswas only 118 for GMRES-L to achieve a scaled error of 9:4 � 10�13. In fact,for this test GMRES-L was more e�cient than MINRES-L in terms of 
opcount.In most cases we see that the MINRES-L algorithm performs essentiallyas expected, except for the two cases in which a loss of orthogonality causesmany more iterations than expected. In every case, MINRES-L's runningtime is higher than CGNR's, but CGNR can produce bad solutions as mea-sured by forward error. 28
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Figure 7: Convergence of CGNR and MINRES-L for ADLITTLE. The curvesare labeled as in Figure 2. Note the excessive number of iterations forMINRES-L caused by a loss of orthogonality.9 An Issue for Interior-Point MethodsIn this section we describe an issue that arises when using the MINRES-Lalgorithm in an interior-point method for linear programming. Full consid-eration of this matter is postponed to future work.It is well known that the system of equations for the Newton step in aninterior-point method can be expressed as a weighted least-squares problem.To be precise, consider the linear programming problemminimize cTxsubject to ATx = b;x � 0;whose dual is maximize bTysubject to Ay+ s = c;s � 0(which is standard form, except we have transposed A to be consistent withleast-squares notation). A primal-dual method starting at a feasible interiorpoint (x;y; s) for this problem computes an update �y to y satisfyingATDA�y = ATD(s � ��X�1e); (40)where X = diag(x), S = diag(s), D = XS�1, � is an algorithm-dependentparameter usually in [0; 1], � is the duality gap, and e is the vector of all 1's.29



See Wright [26]. Since (40) has the form of a WLS problem, we can obtain�y using the MINRES-L algorithm.One way to compute �s is via �s := �A�y. This method is not stablebecause �s has very small entries in positions where s has very small en-tries; these small entries must be computed accurately with respect to thecorresponding entry of s. In contrast, the error in all components of �sarising from the product A�y is on the order of � � ksk (where � is machine-epsilon). A direct method for accurately computing all components of �swas proposed by Hough [11], who obtains a bound of the formj�si � d�sij=si � f(A) � � (41)for each i. We will consider methods for extending MINRES-L to accuratecomputation of �s in future work. As noted by Hough, �x is easily computedfrom �s with a similar accuracy bound assuming �s satis�es (41).10 ConclusionsWe have presented an iterative algorithm MINRES-L for solving weightedleast squares. Theory and computational experiments indicate that themethod is more accurate than CGNR when the weight matrix is highly ill-conditioned. This work raises a number of questions.1. Is there an iterative method that does not require the layering assump-tion?2. If layering is indeed required, can we get a more parsimonious layeredlinear system when p � 3? In particular, is there a 3n � 3n system ofequations with all the desired properties for the 3-layered case (insteadof the 4n � 4n system that we presented)?3. What is the best way to handle loss of orthogonality in MINRES thatwas observed in Section 8?4. Can this work be extended to stable computation of �x and �s in aninterior-point method? (This question was raised in Section 9.)5. What about preconditioning? In most of our computational tests, weran both MINRES and CG for more than n iterations because our aim30
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