
TRUNCATED QR ALGORITHMS AND THE SOLUTION OFLARGE-SCALE EIGENVALUE PROBLEMS�R. B. LEHOUCQyAbstract. The QR algorithm has emerged as the general-purpose method of choice for com-puting the Schur decomposition of a matrix. For most large eigenvalue problems, however, the QRalgorithm cannot be used because of the explicit storage of the matrix and because often only theaction of the matrix upon a vector (or group of vectors) is available. Typically, only a small numberof eigenvalues and the associated invariant subspace are required. This article considers a truncatedQR algorithm. We show that a truncated QR algorithm is a generalization of Sorensen's implicitlyrestarted Arnoldi method to block Arnoldi reductions. Moreover, implicitly restarting an Arnoldireduction is simultaneous iteration with an implicit projection step to accelerate convergence to theinvariant subspace of interest. This is a generalization of the Rayleigh{Ritz procedure on a blockKrylov subspace for a non Hermitianmatrix. The moral of our story is that the large scale eigenvalueproblem is intimately involved with the dense one.Key words. QR algorithm, simultaneous iteration, Arnoldi reduction, restarting, eigenvalues.AMS subject classi�cations. 65F15, 65G051. Introduction. The QR algorithm is a general-purpose method for computingall the eigenvalues of a matrix. The LR-iteration of Rutishauser [31], which precededits discovery, is based on a triangular sequence of similarity transformation. The QRalgorithm, developed independently by both Francis [11, 12] and Kublanovskaya [20],instead uses a sequence of unitary similarity transformations. The algorithm itera-tively computes an approximation to a Schur decomposition of the matrix. The QRalgorithm is implemented in the EISPACK [42] and LAPACK [1] software packages.Unfortunately, for large-scale eigenvalue problems, the QR algorithm is not apractical method. An eigenvalue problem is considered large if it cannot be solvedwith the standard QR algorithm (as implemented in EISPACK and LAPACK). ThisQR algorithm relies on dense matrix similarity transformations that require explicitstorage of the matrix. For most large eigenvalue problems, this requirement is pro-hibitive; quite often, only the action of the matrix upon a small group vectors isavailable. Moreover, users typically require only a small number of eigenvalues rela-tive to the dimension of the problem. A further complication is that a representationfor the associated invariant subspace is often required.This article consider a truncated QR algorithm. We show that a truncated QRalgorithm is equivalent to simultaneous iterations. This relationship allows us toexploit the well-known connection [29, 47, 50] between simultaneous iteration andthe QR algorithm. In [48], Stewart presented a generalization of the Rayleigh{Ritzmethod to non-Hermitian matrices. This involved performing an explicit projectionstep on the matrix with orthonormal columns representing the subspace. We showthat a block truncated QR algorithm performs simultaneous iteration with an implicitprojection step. A block truncated QR algorithm is an extension of Sorensen's im-plicitly restarted Arnoldi method [43] to block Arnoldi reductions. The moral of our� This work was supported in part by ARPA (U.S. Army ORA4466.01), by the U.S. Departmentof Energy (Contracts DE-FG0f-91ER25103 and W-31-109-Eng-38), and by the National ScienceFoundation (Cooperative agreement CCR-9120008).y Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439lehoucq@mcs.anl.gov, http://www.mcs.anl.gov/home/lehoucq/index.html.1



2 R. B. LEHOUCQstory is that the large-scale eigenvalue problem is intimately involved with the denseone.Since our goal is to provide a viewpoint in which to consider connecting the large-scale eigenvalue problem with the small one, this report works with general complexmatrices. We will mention the standard simpli�cations when the matrix is Hermitianor can be computed in real arithmetic. The article is organized as follows. Notationis given in x 2 and x 3 where the eigenvalue problem introduced. The QR algorithm'sconnection with simultaneous iteration is the subject of x 4. The Arnoldi method,including a block formulation, is discussed in x 5. Because it will prove fundamental tothe development of a QR algorithm, we discuss some of the technicalities of the implicitQR algorithm in x 6. We discuss how to compute a partial Schur decomposition froman Arnoldi reduction in x 7. The stage is �nally set in x 8 for the main subject of atruncated QR algorithm. We review restarting methods for eigenvalue problems inx 9. The convergence of a truncated QR algorithm is discussed in x 10. Two importantissues needed for a practical truncated QR algorithm are summarized in x 11.2. Notation and De�nitions. This section establishes the basic notation tobe used in this article. We employ Householder notational conventions. Capital andlower-case letters denote matrices and vectors, respectively, while lower-case Greekletters denote scalars.The order of A will always be denoted by n: The identity matrix of order m isdenoted by Im: The jth canonical basis vector is denoted by ej, the jth column ofthe identity matrix, and Ej � � e(j�1)b+1 � � � ejb � ; where b is a positive integer.We will call b the block size.A matrix of lower bandwidth b will be called a banded upper Hessenberg matrix.We drop \upper" when the context is clear. Omission of the word band implies thatthe block size is one. We say that a band Hessenberg matrix is unreduced if all theelements on the bth subdiagonal are nonzero.We now de�ne several matrices that will prove useful. Hj denotes a band Hessen-berg matrix of order bj of lower bandwidth b; Tj denotes an upper triangular matrixof order j; regardless of any block size b; and Fj and Uj denote matrices with n rowsand b columns, where the subscript acts as an index. On the other hand, Vj , Zjdenote matrices with n rows and bj columns. Uj denotes the jth block of b vectorsof Vm, and Gi;j denotes the square matrix of order b located in the i; jth block oforder b of Hm: Note that Gj+1;j is an upper triangular matrix. These matrices willde�ne the dimensions of other matrices used in this article.The transpose of a vector x is denoted by xT , and the complex conjugate of xTis denoted by xH : The norms used are the Euclidean and Frobenius, denoted by k � kand k � kF , respectively. The range of a matrix A is denoted by R(A):3. The Eigenvalue Problem. Let A be a real matrix of order n: We are in-terested in a speci�ed set of k� n solutions to the matrix eigenvalue problemAx = �x:(3.1)The eigenvalues and eigenvectors of A are denoted by �j and xj , respectively, forj = 1; : : : ; n: We shall refer to these k eigenvalues as the wanted ones. The wantedeigenvalues of A requiring approximation typically are contained within some convexset of interest in the complex plane. Examples include those nearest the origin andof largest real part. An important exception might be the dominant eigenvalues ofA, those largest in magnitude. The following decomposition proves central to the



TRUNCATED QR ALGORITHMS 3� Let A(0) = A and let f�jgpj=1 be a sequence of real shifts. Set Z(1)  In:� For j = 1; : : : ; p1. Compute the QR factorization Q(j)R(j) = A(j�1) � �j�1In:2. Update A(j)  R(j)Q(j) + �j�1In:3. Update Z(j)  Z(j)Q(j):Fig. 4.1. The QR algorithmeigenvalue algorithms considered in this article. Its value is in providing us witha canonical form for which stable algorithms may be developed. For us, a stablealgorithm computes the exact Schur decomposition of nearby matrix.Theorem 3.1. (Schur Decomposition) If A 2 Cn�n, then there exists a unitaryZ 2 Cn�n such that ZHAZ = T;(3.2)where T is an upper triangular matrix. The eigenvalues can appear in any order alongthe diagonal.Proof. See [14, page 313].Let D be a diagonal unitary matrix. Then (ZD)HAZD = DHTD has diagonalblocks equal to those of T: Thus, apart from the eigenvalues of multiplicity largerthan one, the decomposition is essentially unique, given some ordering of the eigen-values. Denote the leading principal matrix of k blocks of T by Tk: Let Zk be thecorresponding columns of Z: Then AZk = ZkTk is a partial Schur decomposition ofA of order k:When A is Hermitian T is a diagonal matrix, and hence the eigenvaluesare real numbers.This decomposition is computed by the practical QR algorithm in the EISPACKand LAPACK software packages. A real Schur decomposition allows all computationto take place in real arithmetic; see [14, p. 341] for further details. There is alsosoftware to reorder the computed Schur decomposition.The methods reported here attempt to compute a partial Schur decomposition forA with the group of the wanted eigenvalues located on the diagonal blocks of Tk: Themethods considered require O(kn) storage and O(kn2) work. The full decompositionrequires O(n2) storage and O(n3) work. We say an eigenvalue problem is large if thedense QR algorithm is prohibitive, in storage and/or e�ciency.4. The QR Algorithm. We quickly examine the QR algorithm and some of itsfundamental properties. A wealth of excellent material exists on the QR algorithm.Thorough introductions are given by Golub and Van Loan [14], Parlett [29], Stew-art [47], Watkins [50, 51] and of course Wilkinson [53]. Figure 4.1 lists the explicitlyshifted QR iteration.The following properties are consequences of the iteration. They are easily estab-lished using mathematical induction; see, for example, [47, pp. 351{354]. Assume thenotation of the algorithm listed in Figure 4.Theorem 4.1. AZ(p) = Z(p)A(p):Theorem 4.2. Let T(p) = R(p) � � �R(1): Then Z(p)T(p) = P(A), where P(�) =(� � �1) � � � (� � �p):Theorem 4.1 gives that A(p) is unitarily similar to A:What is remarkable is thatthe o�-diagonal elements in the last row of A(p) approach zero with the choice of zero



4 R. B. LEHOUCQshifts. The second theorem explains why. It follows thatA(p) � e1 � � � ei � = Z(p)i T(p)i ;(4.1)where T(p)i is the leading principal matrix of order i of T(p) and Z(p)i contains the�rst i columns of Z(p)i : Thus, the QR algorithm computes the QR factorization ofthe matrix on the left-hand side of (4.1). But this expression is nothing more thansimultaneous iteration (with the starting subspace being the span of the �rst b columnsof the identity matrix). Since 1 � b � n, the QR algorithm is performing a nestedsequence of simultaneous iteration. Orthonormal iteration is a more descriptive termbecause the columns of Z(p) are themselves orthonormal.We emphasize that the above two theorems imply that after the initial QR fac-torization of A; orthonormal iteration can be carried out without explicit use of A: Itis also clear that the QR algorithm is invariant under a unitary change of basis. To-gether, these two observations suggest that a similarity transformation might allow usto perform orthonormal iteration more e�ciently. Indeed, a truncated QR algorithmis motivated precisely by this observation.The basic convergence of the iteration is easily established. If the eigenvaluesof A are ordered in decreasing order of magnitude, it can be shown (under a mildcondition on the starting subspace) that the o�-diagonal elements in row i to left ofthe diagonal element converge to zero at a rate of proportional to j�i=�i�1j: Thus,the Z(p)i T(p)i tends toward a partial Schur decomposition for A associated with thedominant i eigenvalues. See [14, p. 333] for details.A comprehensive geometric convergence theory for the shifted QR iteration ispresented byWatkins and Elsner [52] within the more general framework of generic GRalgorithms. A GR algorithm is an iterative procedure in which the QR factorizationis replaced with any other decomposition of the formGR = H��I, where R is uppertriangular and G is a nonsingular matrix.4.1. A Practical QR Algorithm. We list and brie
y discuss the issues in-volved in a practical implementation of the QR algorithm. The remainder of thereport will discuss these issues in more detail when when we wish to draw analogiesbetween a full and truncated QR algorithm.1. Initial reduction to upper Hessenberg form. A is initially reduced to upperHessenberg form via a unitary similarity transformation. Each step of theresulting QR algorithm then becomes an O(n2) process instead of an O(n3)one.2. Selection of shifts. In practice, a set of shifts are computed that lead toquadratic and cubic rates of convergence for non-Hermitian and Hermitianmatrices, respectively.3. De
ation. Since the o�-diagonal elements in the last row A(j) tend to con-verge to zero rapidly, they are set to zero, and the last diagonal element ofA is an approximation to an eigenvalue. This process continues up the di-agonal of A(j). After n � 1 such de
ations, a Schur decomposition has beencomputed.4. The implicitly shifted QR iteration. The explicit computation of the QRfactorization is not carried out. Instead, the implicit Q theorem allows com-putation of Z(j) and A(j) to be interleaved.5. Possible reordering of the Schur decomposition. If only k eigenvalues are ofinterest, these can be e�ciently moved to the leading portion of the �nal



TRUNCATED QR ALGORITHMS 5Schur matrix.The last point gives a simple method for computing a partial Schur decompositionof interest. Its drawback is the O(n2) storage required, as well as the O(n3) workassociated with the computation of a (full) Schur decomposition.In the remainder of this article, we will develop the idea of a truncated QRalgorithm that only requires O(kn) storage and O(n2) work for computing a partialSchur decomposition.5. Partial Reduction to Band Hessenberg Form. The initial step of thepractical QR algorithm reduces A to an upper Hessenberg matrix via a sequenceof elementary unitary matrices. Unfortunately, these elementary matrices requireaccessing the entire matrix, possibly destroying any sparsity or structure the matrixpossess. The Arnoldi reduction [2], on the other hand, requires only the application ofA with a vector. Moreover, it allows us to sequentially reduce A to upper Hessenbergform, producing the leading portion of the �nal upper Hessenberg matrix at everystep. In fact, this was the motivation in Arnoldi's study. When the matrix A isHermitian, the Lanczos reduction [21] is recovered.Since our concern is in the solution of eigenvalue problems in which A is not onlylarge but expensive to apply, block Arnoldi reductions [39, 40] are considered. Inmany instances, the cost of computing a few matrix vector products is commensuratewith that of one matrix vector product. There is also the issue of reliably computingclustered and/or multiple eigenvalues. See [17] for references and information on ablock Lanczos reduction.Let b > 0, an integer, be the block size. We say thatAVm = VmHm +FmETm(5.1)is a block Arnoldi reduction of length m when VHmAVm = Hm is a banded upperHessenberg matrix, VHmVm = Imb, and VHmFm = 0:The columns of Vm are an orthogonal basis for the block Krylov subspaceKm(A;U1) � fU1;AU1; � � � ;Am�1U1g:Hm is the projection of A onto the column span of Vm: If m > �m � ceiling(n=b),then Fm = 0 andH �m is the orthogonal reduction of A into banded upper Hessenbergform. Note that if A = AH , then Hm is a block tridiagonal matrix.Figure 5.1 lists an algorithm to compute a block Arnoldi reduction. In practi-cal computation, two steps of orthogonalization are needed to ensure that Vm+1 isorthonormal to Fm+1: If Fm is rank de�cient, then care must be taken to �ll outthe block with vectors that result in a Vm+1 with orthonormal columns. Using thenotation established in x 2, we haveAVm = � U1 � � � Um � 266664 G1;1 � � � � � � G1;mG2;1 . . . ... ...... . . . ... ...0 � � � Gm;m�1 Gm;m 377775+Um+1Gm+1;mETm:The following classical result explains that a block Arnoldi reduction is completelyspeci�ed by the starting block.



6 R. B. LEHOUCQ� Let AVm = VmHm + FmETm be a length-m block Arnoldi reduction1. Compute the orthogonal factorization Um+1Gm+1;m = Fm:2. Vm+1 = � Vm Um+1 � :3. W = AUm+1 and Gm+1;m+1 =UHm+1W:4. Hm+1 = � Hm VTmWGm+1;mETm Gm+1;m+1 � :5. Fm+1 =W�Vm+1 � VTmWGm+1;m+1 � :Fig. 5.1. Extending a Block Arnoldi ReductionTheorem 5.1. (Implicit Q) Let two length-m block Arnoldi reductions be givenby AWm =WmBm +CmETm;AVm = VmHm +FmETm;whereWm and Vm have orthonormal columns, and Hm and Bm are band Hessenbergmatrices with positive elements on the bth subdiagonal. If the �rst b columns of Wmand Vm are equal and WHmCm = 0 = VHmFm, then Hm = Bm, Wm = Vm andCm = Fm:Proof. The extension of [14, page 367] to a block formulation is straightforward.The requirement on the elements on the bth subdiagonal is equivalent to uniquelyspecifying the QR factorization of Fj for j = 1; : : : ;m� 1:6. The Implicit QR Algorithm on Band Hessenberg Matrices. We nowpresent a technical lemma that will provide useful in the remainder of the report.One of its conclusions is that a step of the QR algorithm on a band upper Hessenbergmatrix remains one.Lemma 6.1. Let H � �I = QR be a QR factorization, where H is an unreducedupper Hessenberg matrix of order mb � mb with lower bandwidth b: Denote eTi Rei =�i: Then the following properties hold:1. Q is an upper Hessenberg matrix with lower bandwidth b:2. �i 6= 0 for i = 1; : : : ;mb � 1:3. �mb = 0 if and only if � is an eigenvalue of H:4. eTmb (RQ+ �I) = �eTmb if and only if � is an eigenvalue of H:Proof. A sequence of elementary unitary matrices Pi is easily constructed so thatPHmb�1 � � �PH1 (H � �I)is upper triangular [14, p. 233]. Each Pi is designed to annihilate the entries below thediagonal element of PHi�1 � � �PH1 (H� �I)ei: The product P1 � � �Pmb�1 is band upperHessenberg, and PHmb�1 � � �PH1 (H � �I) is upper triangular. Set Q = P1 � � �Pmb�1and R = QH(H � �I):A simple calculation reveals that eTi+b(H � �I)ei = eTi+bQei�i: Since H is anunreduced band upper Hessenberg matrix, 0 < jeTi+bHeij = jeTi+bQeij j�ij � j�ij fori = 1; : : : ;mb � 1, establishing the second property.The matrix H � �I is singular if and only if � is an eigenvalue of H: The thirdproperty follows immediately, since det(H � �I) = det(R) = �1 � � ��mb is zero if andonly if �mb is.



TRUNCATED QR ALGORITHMS 7The third property gives �mb = 0 if � is an eigenvalue ofH: Since eTmbR = eTmb�mb ;the �nal property holds.When b = 1, we may substitute plane rotations in the above lemma. Note thatwhen b = 1, the QR factorization is an O(b(mb)2) process. Thus, for small values ofb the QR algorithm is an O((mb)2) process.Practical de
ation procedures are motivated by Part 4 of Lemma 6.1. If theelements in the last row of RQ + �I = QHHQ to the left of the diagonal elementare small, the diagonal element is regarded as an approximation to an eigenvalue.The o�-diagonal elements are set to zero, and the QR algorithm works on the leadingprincipal matrix of order bm� 1 of H: This procedure is summarized in the followingresult.Lemma 6.2. Suppose p steps of the QR algorithm are applied on a band Hessen-berg matrix of order bm: Let Q denote the accumulation of the unitary matrices inthe QR algorithm so that HQ = QH+:If the p shifts are eigenvalues of H; thenH+ = � H+1;1 H+1;20 H+2;2 � ;where H1;1 contains the bm� p eigenvalues that were not used as shifts.Proof. The proof is by induction on p: The base case p = 1 is just Part 4 ofLemma 6.1. Assume the lemma's truth for p: Re-apply Part 4 of Lemma 6.1 on H+1;1to establish the lemma's conclusion for p + 1 eigenvalues as shifts.This lemma implies that the last p columns of Q are an unitary basis of the lefteigenspace associated with these de
ated eigenvalues.As remarked in x 4.1, practical implementations use the implicit QR algorithm.We �rst outline this procedure and discuss its implications. Theorems 4.1 and 4.2imply that only the unitary matrix matters, while the Implicit Q Theorem uniquelyspeci�es any procedure computing a partial band Hessenberg reduction. Let's put allthis together.Suppose we have the shifts �1; : : : ; �p and de�ne the polynomial P(�) = (� ��1) � � � (� � �p): The implicit QR algorithm �rst computes the QR factorization ofP(Hm)E1 =U1Rb � � U110 �Rb;where Rb is an upper triangular matrix of order b and U11 has (p + 1)b rows and bcolumns. Then, the similarity transformationH+m = � U11 00 I(m�p�1)b �HHm � U11 00 I(m�p�1)b �is performed. This updated matrix is returned to band Hessenberg form via a se-quence of elementary unitary matrices. This is a straightforward generalization of thefamiliar bulge chasing sweeps in the standard (b = 1) Hessenberg QR algorithm. Thecrucial observation is that these bulge chasing sweeps in the band Hessenberg QRalgorithm do not modify U1: Thus, the implicit Q theorem implies that the implicitQR algorithm on band Hessenberg matrices is equivalent to performing the explicitversion of the algorithm.Francis [12] originally proposed use of the implicit QR algorithm in order toperform the the algorithm on real matrices in real arithmetic. This allows a complex



8 R. B. LEHOUCQconjugate pair of shifts to be applied by using the degree 2 polynomial (���1)(����1):The LAPACK subroutines SHEQR also allow more than two shifts to be applied. Thisis based on the multi-shift QR algorithm [5] by Bai and Demmel for upper (b = 1)Hessenberg matrices.7. Computing Eigenvalues. Since our interest is in partial Schur decomposi-tions, we use employ the following convergence criterion. Suppose that HmYm =YmTm is a Schur decomposition ordered so that the k best approximations to theeigenvalues of interest are located in the initial portion of Tm: Thus,kAVmYk �VmYkTkk = kFmETmYkk = kGm+1;mETmYkk(7.1)where HmYk = YkTk and the �rst k columns of Ym are denoted by Yk: In words,the last b rows of Yk need to be small. This Schur decomposition based criterion willalways ensure that we compute a partial Schur decomposition of a nearby matrix. Ifapproximate eigenvectors are of interest, they can be computed from Tk: If Tksi =si�i, 1 � i � k, then AVmYksi �VmYksi� = FmETmYksi(7.2)and so kAVmYksi � VmYksi�ik = kFmETmYksik: We call VmYksi a Ritz vectorand �i a Ritz value. Note that Yks1 = Yke1: The �rst Schur vector is always aneigenvector.For symmetric A, Saad [34] shows that as m increases, the quality of the ex-tremal Ritz values improves to the well-separated extremal eigenvalues of A: For theunblocked Arnoldi reduction, he also shows [36] a similar improvement for increasingm: Unfortunately, given a large value of n, the value of m needed for a desired degreeof approximation may be impractical because of storage constraints required for theArnoldi vectors. This situation is particularly exacerbated for non-Hermitian A:Because of the connection with a block Krylov space, a block Arnoldi Reductionis a generalization of subspace iteration in that a sequence of subspaces are joinedtogether. Let Km(A;U1) � � U1 AU1 � � � Am�1U1 � : The relationshipAKm(A;U1) = Km(A;U1)266664 0 � � � 0 
0Ib ... 
1... . . . ... ...0 � � � Ib 
m�1 377775+ ~FmETm(7.3)holds with each 
i a matrix of order b: We denote the square matrix of order bm byCm: Equation (7.3) is equivalent to the least-squares problemmink(AmU1)�Km(A;U1)
k = k~Fmk:(7.4)Let 
� be the least-squares solution partitioned conformably with the last column ofthe square matrix in (7.3).Denote the QR factorization of Km(A;U1) = WmRm, where Rm is an uppertriangular matrix of order bm: If Rm is invertible, thenAWm =Wm(RmCmR�1m ) + ~Fm(ETmR�1m Em)ETm;where we use the identity ETmR�1m = � 0 � � � 0 ETmR�1m Em � : By the implicit Qtheorem, it follows that Wm = Vm, ~Fm(ETmR�1m Em) = Fm and Hm = RmCmR�1m ,



TRUNCATED QR ALGORITHMS 9since the matrix of the �rst b columns of Km(A;U1) is equal U1: Thus, the startingblock characterizes the reduction. The residual matrix Fm is a matrix polynomialfunction of the initial block.Ruhe [30] showed that the least-squares solution of (7.4) gives the coe�cients as-sociated with the monic polynomial of degree m that minimizes k ̂m(A)u1k over allmonic polynomials  ̂m of degree m: Saad [36] uses projection arguments to solve theminimization problem. For a block Arnoldi reduction, the situation is more compli-cated and there does not appear to be an equivalent minimization property. See [41]for a characterization of a block Arnoldi process in terms of matrix polynomials.8. A Truncated QR Algorithm. The following elementary but technical re-sult is needed for the connection with simultaneous iteration we desire.Lemma 8.1. Suppose that an integer p satis�es 2 � p � m, and let r = m � p:Let AVm = VmHm + FmETm be a length r + p Arnoldi reduction, where Hm is anunreduced band upper Hessenberg matrix. If p(�) = pYi=1(� � �i);then  p(A)Vm = Vm p(Hm) + pXj=1 pj+1(A)FmETm p�j(Hm);(8.1)where  j(�) = Qji=1(�� �i) and  pj (�) = Qpi=j(�� �i):Moreover,  p(A)Vr = Vm p(Hm) � E1 � � � Er �+ ~F1(8.2)where ~F1 �  p2(A)FmETm p�1(Hm)E1:Proof. The proof is by mathematical induction. De�ne m � r+p. The subscriptsare suppressed on Vm and Hm for the proof. Since  1(A)V = V 1(H) + FmETm,where  1(�) = � � �1, the base case for p = 1 is established. Assume the lemma'struth for polynomials  j(�) of degree j � p. Let  p+1(�) = (� � �p+1) p(�). Withthe induction hypothesis, it follows that p+1(A)V = (A� �p+1I) p(A)V= (A� �p+1I)8<:V p(H) + pXj=1 pj+1(A)FmETm p�j(H)9=;= V(H� �p+1I) p(H) + FmETm p(H)+ (A� �p+1I) pXj=1 pj+1(A)FmETm p�j(H)= V p+1(H) + p+1Xj=1 p+1j+1 (A)FmETm p+1�j(H);which establishes Equation (8.1).



10 R. B. LEHOUCQSince H is unreduced,  p�j(H) is a band Hessenberg matrix of lower bandwidth(p� j)b: Thus ETi  p�j(H)El = 0 for l � p + j < i, and the last matrix on the right-hand side of Equation (8.1) is zero through its �rst rb columns. Equation (8.2) isestablished. ~F1 is zero except when p = m:In plain words, Equation (8.2) shows that  p(A) applied to the �rst br columnsof Vm is equivalent  p(Hm) acting on the subspace consisting of the span of the�rst br columns of Ibm: The unitary basis constructed by the block Arnoldi reductionprovides the change of basis needed for the equivalence. The fundamental implicationhere is that considerable computation can be avoided by working with a signi�cantlysmaller Hm in the coordinate system given by Vm: We remark that for degree onepolynomials  1(�); the block Arnoldi reduction is not truncated.Recall from Theorems 4.1 and 4.2 that the unitary matrix Z(p) links simultaneousiteration with the QR algorithm. For a truncated QR algorithm, the previous lemmanearly provides the crucial link.Compute the QR factorization QrRr =  p(Hm) � E1 � � � Er � : From (8.2),we obtain  p(A)Vr = VmQrRr + ~F1 � V+r Rr + ~F1:This result gives rise to a truncated version of Theorem 4.1 with the starting subspacede�ned by the span of the columns of Vr: This establishes the following theorem.Theorem 8.2. Assume the hypothesis of Lemma 8.1 with p < m: Let the QRfactorization QrRr =  p(Hm) � E1 � � � Er � be given.Then, the columns of VmQr provide an unitary basis for the R( p(A)Vr):The theorem allows us to �lter the eigenvalues of Hm in a desired order. Byapplying a polynomial  p(�) that emphasizes the desired (or damps the unwanted)eigenvalues, the column space of Vm is ordered into VmQr: This is a generalizationof the acceleration technique discussed by Stewart [45, 48] for simultaneous iteration.This will be discussed further in x 8.1.We may now exploit the connection between simultaneous iteration and a QRiteration. This will allow us to a�ect an ordering of the eigenvalues of Hm suggestedby Theorem 8.2 without having to compute (or apply) the matrix polynomial p(Hm):The QR algorithm on Hm with the p < m shifts �1; : : : ; �p gives HmQm =QmH+m: Lemma 6.1 gives that Qm is a Hessenberg matrix of lower bandwidth bp,since it is a product of p unitary matrices each of lower bandwidth b: If we equate the�rst rb columns of the previous matrix equality, we getHmQr � � Qr W1 W2 � 24 H+rG+r+1;rETr0 35 :(8.3)Post-multiplying Equation (5.1) with Qr and using (8.3), we obtainAVmQr = VmHmQr + FmETmQr ;= VmQrH+r +VmW1G+r+1;rETr + FmETmQr ;(8.4) = VmQrH+r + F+r ETr ;where F+r � VmW1G+r+1;r + FmETmQrETr :(8.5)



TRUNCATED QR ALGORITHMS 11Note the use of the identity ETmQr = � 0 � � � 0 ETmQrEr � in Equation (8.5).This proves the following result.Theorem 8.3. Assume the hypothesis of Lemma 8.1 with p < m: Suppose that theQR algorithm on Hm with the p shifts �1; : : : ; �p gives HmQm = QmH+m, where Qmis a band Hessenberg matrix with lower bandwidth pb: If Qr is the matrix consistingof the �rst rb columns of Qm, thenAVmQr = VmQrH+r +F+r ETr ;(8.6)where equations (8.3) and (8.5) de�ne F+r .If p = m, the previous theorem gives that application of m � 1 shifts givesAU+1 =U+1H+1 +F+1 :(8.7)If QR = H+1 � �mI, post-multiplication of (8.7) results inAU+1Q = U+1 (RQ+ �mI) +F+1 Q = U+1H++1 + F+1Q:(8.8)The right-hand side of (8.8) de�nes a new starting block of vectors (after orthogonal-ization) for a subsequent block Arnoldi reduction.The two theorems allow us to link simultaneous iteration with a truncated QRalgorithm. They show how a QR algorithm performed on Hm is equivalent to atruncated QR algorithm on A:8.1. Subspace Iteration. A classical method of solution for the large-scaleeigenvalue problem is subspace (or simultaneous) iteration [6, 10, 32, 33, 37, 45, 48].Subspace iteration was originally introduced by Bauer [7], who called the methodTreppeniteration (staircase iteration). It is a straightforward method for computingthe eigenvalues of largest modulus of a matrix and is a generalization of the powermethod in that a matrix representation of a subspace of size larger than one is em-ployed.Suppose we have the length one block Arnoldi reductionAU1 = U1G1;1 + F1:(8.9)Since the block size is b;G1;1 is a dense matrix of that order representing the projectionof A onto the column span of U1: Equation (8.9) is nothing more than a step ofsimultaneous (or orthonormal) iteration in matrix form with error F1:If G1;1W = WTb is Schur decomposition ordered in decreasing order of mag-nitude, then the initial columns of W contain the directions associated with thedominant eigenvalues. Post-multiplying (8.9) with W givesAU1W = U1W(WHG1;1W) +F1W(8.10)as an accelerated length-one block Arnoldi reduction. Stewart [45, 48] shows how thisleads to improved convergence of orthonormal iteration to the dominant invariantsubspace. We emphasize that the convergence of U1W over U1 is not accelerated|only ordered so that the initial columns of U1W contain the best approximations tothe dominant invariant subspace from among the columns ofU1: It is the span of thesecolumns that are accelerated toward the dominant invariant subspace. Chatelin [8,pp. 253{257] and Saad [38, pp. 156{159] provide a discussion that builds upon thework of Stewart [45, 48]. This technique is also referred to as orthonormal iteration



12 R. B. LEHOUCQwith projection. It is a generalization of a Rayleigh{Ritz procedure to a non-Hermitianmatrix. Since it explicitly computes W; it is an explicit projection step.However, there is another way to a�ect the projection step. Suppose we areinterested in the k < b dominant eigenvalues. If we perform b � k QR steps on G1;1with the associated unwanted eigenvalues, Lemma 6.2 implies that the k columns ofU1Z span the same space as those of the initial k of U1W: That is, orthonormaliteration with projection is equivalent to implicitly restarting orthonormal iteration.For block Arnoldi reductions, Theorems 8.2 and 8.3 explain how to perform aprojection step in an implicit fashion. A truncated QR algorithm shows how topush the directions associated with the desired eigenvalues to the leading portionof the underlying Krylov subspace. This strategy not only reduces the number ofapplications with A but is also more stable than traditional methods of restartingArnoldi reductions.The next section reviews traditional restarting mechanisms and points to therecent work of Sorensen [43] as the impetus behind a truncated QR algorithm.9. Restarting Arnoldi Reductions. During each step of computing a blockArnoldi reduction, a partial orthogonal reduction of A into a banded upper Hes-senberg matrix is produced. The eigenvalues of this Hessenberg matrix are used toapproximate a subset of the eigenvalues of the large matrix A: The approximationto the eigenvalues of A generally improves as the order of the Hessenberg matrixincreases. Unfortunately, so do the cost and storage of the reduction.A popular alternative is to de�ne an iteration by restarting the reduction withinformation in a length m < n=b block Arnoldi reduction. The hope is that thisrestarted reduction has improved estimates to the eigenvalues of A:The iteration is de�ned by a two-stage process. First, an Arnoldi reduction oflength m < n=b is computed. From the information available in this reduction, a newreduction is computed. This de�nes the iteration and is deemed successful if improvedestimates to the eigenvalues of A appear in the subsequent reductions.A restarted Arnoldi iteration was introduced by Saad [35] to overcome thesedi�culties, based on similar ideas developed for the Lanczos process by Paige [28],Cullum and Donath [9], and Golub and Underwood [15]. Karush [19] proposes whatappears to be the �rst example of a restarted iteration. Sadkane considers a restartedblock Arnoldi method using Chebyshev polynomials [39]. Scott has produced a blockArnoldi code [40]. We call all these related schemes explicitly restarted Arnoldi meth-ods because they are not truncated QR algorithms. They do not use the implicit(or explicit) QR algorithm on Hm as a mechanism to restart a reduction. Instead,the matrix A is explicitly applied to some linear combination of the columns of Vm:Saad's original scheme used a linear combination of the wanted Ritz vectors.A relatively recent variant was developed by Sorensen [43] as a more e�cientand numerically stable way to implement restarting. This technique, the implicitlyrestarted Arnoldi method, is implemented in the ARPACK [25] software package. Thepaper [43] only considered the block size b = 1 and stated that the method is equivalentto a truncated QR algorithm. The results in the preceding section showed a directconnection. The remainder of this section reviews restarting schemes and then endwith an example.9.1. Explicit Polynomial Acceleration. Suppose A is diagonalizable witheigenpairs (xj ; �j) for j = 1; : : : ; n: If  (�) is some polynomial and we expand the



TRUNCATED QR ALGORITHMS 13� Start: Build a length m block Arnoldi reduction.� Iteration:1. Compute the eigensystem of Hm, and determine convergence. Exit if a partialSchur decomposition of order k satis�es the approximation criterion.2. Restart: Compute a new starting blockU+1 =  (A)Y, whereR(Y) � R(Vm):3. Extend the length r block Arnoldi reduction to a length m one.Fig. 9.1. A Polynomial Accelerated Arnoldi Iterationcurrent starting vector u1 in terms of the basis of eigenvectors, then (A)u1 = x1 (�1)�1 + � � �+ xn (�n)�n:(9.1)Assuming that the eigenpairs (xi; �i) are ordered so that the wanted k ones are atthe beginning of the expansion, we seek a polynomial such thatmaxi=k+1;:::;n j (�i)j < mini=1;:::;k j (�i)j:(9.2)A good polynomial  (�) acts as a �lter . Components in the direction of unwantedeigenvectors are damped, or, equivalently, components in the direction of wantedeigenvectors are ampli�ed.The acceleration techniques and hybrid methods presented by Saad in Chapter 7of [38] attempt to improve explicit restarting by approximately solving the min-maxproblem of equation (9.2). Motivated by Manteu�el's scheme [26], Saad �rst proposedthe use of Chebyshev polynomials in [37]. A Chebyshev polynomial (A) on an ellipsecontaining the unwanted Ritz values is applied to the restart vector in an attemptto accelerate convergence of the original era iteration. The polynomial is appliedwith the use of the familiar three-term recurrence. Figure 9.1 outlines the procedure.Note that after application of the polynomial �lter, the reduction must be built fromscratch. The columns of the n by b matrix Y typically contain the Ritz or Schurvectors of interest. By the results in x 7,Y = U1�0 +AU1�1 + � � �+Am�1U1�m�1;so that Y itself is a matrix polynomial in U1:9.2. Implicit Restarting. Figure 9.2 lists a truncated QR algorithm. Theo-rems 8.2 and 8.3 give that this is mathematically equivalent to explicitly computing(A� �1I) � � � (A� �pI)U1 for the next starting vector. If p > 1, a restart from scratchis not needed|a length r Arnoldi reduction remains.In his paper that introduced implicit restarting, Sorensen [43] suggested using theunwanted m�k eigenvalues ofHm as shifts in line 2. By Lemma 6.2,H+k contains thek eigenvalues of interest. As Sorensen showed in Lemma 3.10, this is mathematicallyequivalent to an explicit restart with a linear combination of the wanted Ritz vectors(or Schur vectors). This is called an exact shift strategy.It is important to realize that implicit restarting is always performed with abasis of Schur vectors of Hm without explicit application of A or construction ofthe approximating Schur vectors for A: Implicit restarting, as pointed out in x 8, isformally equivalent to a Rayleigh{Ritz step (the projection) on the current Arnoldibasis.



14 R. B. LEHOUCQ� Start: Build a length m block Arnoldi reduction.� Iteration:1. Compute the eigensystem of Hm and determine convergence. Exit if a partialSchur decomposition of order k satis�es the approximation criterion.2. Perform m� r = p steps of the QR algorithm with the p shifts �i resulting inHmQm = QmH+m:3. Restart: Postmultiply the length m block Arnoldi reduction with Qr (the �rstbr columns of Qm) to obtain the length r block Arnoldi reductionAVmQr = VmQrH+r +F+r ETr :4. Extend the length r block Arnoldi reduction to a length m one.Fig. 9.2. A Truncated QR Algorithm.9.3. Explicit and Implicit Restarting. We present a striking example thatcompares the explicit and implicit restarting an (unblocked) Arnoldi reduction. LetA 2 R10�10 be zero everywhere except for diagonal elements�11 = 1; �22 = 1; �33 = 0; �44 = 0; �ii = (5� i) � 10�1; for i = 1; : : : ; 6;and ones on the subdiagonal. Suppose that the vector e1 is used to compute aninitial Arnoldi reduction. We set k = 2 and m = 4 with the interest to computethe k eigenvalues equal to one. Using the two unwanted eigenvalues as shifts forthe QR iteration, an implicit restart computes the approximate partial real Schurdecomposition AQ2 � Q2R2, whereR2 � � :94919 :95789�2:6952 � 10�3 1:0508 � ;with eigenvalues equal to 1�i1:129168612228906�10�8: The number of restarts neededwas four, for a total of ten matrix vector products.However, explicitly restarting the Arnoldi reduction stagnates if the expansioncoe�cients are chosen as originally proposed by Saad. This restart chooses the lin-ear combination Vmy  Vm(s1
1 + s2
2), where 
i = jeTmsij kfmk(= kAVmsi �Vmsi�ik): The e�ect is to emphasize the Ritz vectors associated with Ritz values thatare not yet acceptable approximations. The resulting vector Vmy is a linear combi-nation of the wanted Ritz vectors. If �i has a nonzero imaginary part, we set s1 ands2 to be the real and imaginary portions of the complex eigenvector of Hm associatedwith �1:In fact, the starting vector e1 is continually computed at every restart. At everyrestart, H4 = 2664 1 0 0 01 1 0 00 1 0 00 0 1 0 3775is computed. The MATLAB function EIG computes the two eigenvectorssT1 = � 0 :57735 :57735 :57735 � ;sT2 = �sT1 + 1:8 � 10�18eT1 ;



TRUNCATED QR ALGORITHMS 15corresponding to the two eigenvalues equal to one. (Note that in exact arithmetics1 = s2:) Choosing y4 to be an unit vector in the linear span of� kAV4s1 �V4s1k kAV4s2 �V4s2k 0 0 �Tgives that V4 = �e1:The explanation is simple. Although e1 is orthogonal to the eigenspace associatedwith the eigenvalue one of A; it is not orthogonal to the invariant subspace associatedwith the unit eigenvalue. Hence, why implicit restarting works where explicitly doingso does not.The major drawback of using a linear combination of the eigenvectors of Hm isthat they may form a poor choice for the starting vector. If Hm is defective, theremight not be enough eigenvectors associated with the wanted eigenvalues. A pair ofapproximate eigenvectors is produced that are aligned to working precision. On theother hand, using an expansion in terms of the Schur vectors of Hm gives a \richer"starting vector.We remark that both restarting techniques di�er only in the polynomial �lterapplied. For a detailed computational study comparing software based on these twodi�erent restarting mechanisms, we refer the reader to [23]. For an unblocked Arnoldireduction, Morgan [27] shows that an implicit restarting mechanism is a better be-haved numerical process than an explicit one.10. Convergence of a Truncated QR Algorithm. Orthonormal iterationwith a projection step converges at a linear rate. Unlike orthonormal iteration withoutthe projection step, the jth column (1 � j � b) of V1W1 converges to the j Schurvector (ordered in decreasing order of magnitude) at a rate of j�b+1=�jj: See [52] fordetails on more general shifting strategies.For the collection of subspaces underlying a block Arnoldi reduction, the situationis considerably more complicated. Saad [35] considered the distance between a Ritzvector drawn from a block Lanczos reduction to an eigenvector of A as a function ofthe length m of the reduction. He extended his result to a b = 1 Arnoldi reductionin [36] with the assumption that A is diagonalizable. Jia [18] removed this restriction.One of Jia's main conclusions is that although a Arnoldi reduction may produce anapproximation to an eigenvalue of A, the associated eigenvector may not be wellapproximated by the reduction. This situation occurs when the eigenvector is sensitiveto perturbations or, in other words, is ill conditioned. The resolution of this dilemmais to instead consider the convergence of an invariant subspace.Suppose that k = b`, where k is at least as large as the actual number of Ritzvalues needed. Since AV` = V`H` +F`ET̀ ; a truncated QR algorithm is attemptingto drive kG`+1;`k to zero so that V` approaches an invariant subspace. Suppose wecomplete this block Arnoldi reduction to the full one:A � V` W � = � V` W � � H` M`G`+1;`ET̀ C` � :(10.1)Watkins and Elsner [52] discuss the rate of convergence of kG`+1;`k as a function ofthe shifts given mild conditions on the initial block U1 within the context of a QRalgorithm.When kG`+1;`k is small, the R(V`) is an exact invariant subspace for A�F`UH̀where kF`UH̀k = kG`+1;`k: However, whether the distance from V` to an invariantsubspace is small depends upon the sensitivity of A's invariant subspaces.



16 R. B. LEHOUCQStewart [46] considers how close V` is to an invariant subspace of A for smallkG`+1;`k: He considers whether an orthonormal matrixY deviating little from In canbe found so that V`Y is an invariant subspace for A: Stewart choosesY = � I` �PHP In�` �� (I` + PHP)�1=2 00 (In�` + PPH)�1=2 � ;where, since both I`+PHP and In�`+PPH are Hermitian positive de�nite matrices,the square roots are uniquely de�ned. The answer to whether the column space of V`is an accurate approximation to an invariant subspace ofA becomes that of analyzingthe interaction of P with H`, M`, G`+1;` and C`: The following result explains thesituation.Theorem 10.1. Suppose that AV` = V`H` + F`ET̀ is a length ` block Arnoldireduction. Suppose the reduction is completed to a band Hessenberg decomposition ofA given by Equation (10.1), where kG`+1;`k = kF`k: Let�` = sep(H`;C`) � minX6=0 kXH` �C`XkFkXkF ;and denote �`+1 � kG`+1;`k, 
` = kC`k:If 4�`+1
` < �2̀, there is a matrix P that satis�es the boundkPk � 2�`+1�`so that the columns of Z` = (V` +WP)(I + PHP)�1=2 are an unitary basis for aninvariant subspace of A:Proof. The conclusion now follows directly from Theorem 4.1 of Stewart [46].The size of 
` measures the amount of coupling between the R(V`) and R(W):The reciprocal of �` measures the sensitivity of the R(Z`) as an invariant subspace.Varah [49] shows that if the matrices involved are highly nonnormal, the smallestdi�erence between the spectrums of H` and C` may be an overestimate of the trueseparation.Theorem 10.1 shows the dependence of �`+1 upon 
` and �` in determining thequality of theR(V`) as an eigenspace ofA: SinceVH̀Z` = (I+PHP)�1=2, Stewart [46]shows that the singular values of P are the tangents of the canonical, or principal,angles [8, 13, 46] between the two spaces spanned by the columns of V` and Z`,respectively.Golub and Wilkinson [16] also examine the many practical di�culties involvedwhen computing invariant subspaces. They conclude that working with a basis ofSchur vectors is a better-behaved numerical process. Within the context of subspaceiteration, Stewart [48] also arrives at the same conclusion.In conclusion, that a Ritz vector drawn from a block Arnoldi reduction never\settles down" implies that we must enlarge our view. What we should try to ap-proximate is a well-conditioned invariant subspace. A truncated QR algorithm allowsus to do this by varying b, `, and r:11. Practical Considerations. We brie
y discuss two important issues re-quired for a practical truncated QR algorithm. They are a shift selection strategyand de
ation scheme.



TRUNCATED QR ALGORITHMS 1711.1. Shift Selection. The shift strategy that leads to cubic and quadratic con-vergence rates of convergence for the QR algorithm on Hermitian and non-Hermitianeigenvalue problems cannot be adopted for a truncated QR algorithm. The shiftstrategy requires information available only when a full band Hessenberg reduction isat hand.An exact shift strategy was already mentioned in x 9.2. By using the unwantedeigenvalues as shifts, the interesting Ritz values are places in H+r : This is the strategyused by ARPACK. However, it is not clear which of the bm�k eigenvalues should be usedas shifts when a block Arnoldi reduction is used. In this situation, m � 1 shifts canbe applied, resulting in a length one Arnoldi reduction. Equations (8.7){(8.8) explainhow to apply the mth shift. Thus, even if k eigenvalues are of interest, the value rmay be varied in the algorithm of Figure 9.2 from k for an adaptive strategy. This is avariation on a strategy proposed by Baglama, Calvetti, and Reichel [3] for symmetricA: They employ Leja shifts and demonstrate how this strategy can outperform anexact shift strategy for small m: They have also extended their results to a blockformulation [4].The question of a near-optimal shift strategy is still the work of current research.However, it is clear from the results in [52] that an approximation  p(�) to theminimization problem (9.2) is required. This should help guide the selection of m andr relative to k: The recent report [44] discusses an adaptive strategy for symmetriceigenvalue problems.11.2. De
ation. Saad [38, pp. 234{235] explains how a de
ation scheme leadsto a far more reliable and e�cient algorithm. When a Ritz pair (z; �) has a smallresidual, it is locked into the leading portion of an Arnoldi reduction. SubsequentArnoldi reductions are computed so that Vm is orthonormal to this Ritz vector. Thisis equivalent to working with the de
ated Krylov subspace Km((I � zzH )A;U1):As Ritz pairs of this de
ated matrix are computed, a partial Schur decomposition isincrementally computed. This is an outline of the procedure discussed in [38, pp. 179{182]. Scott [40] employs this de
ation scheme within a block Arnoldi reduction.However, these explicit de
ation schemes require that the Arnoldi reduction berestarted from scratch in order to de
ate the Ritz pair. The recent paper [24] insteadexplains how to de
ate the Ritz pair in an implicit fashion, thus avoiding the needto build a new reduction. Although this implicit de
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