
IMPLEMENTATION OF AN IMPLICITLY RESTARTED BLOCKARNOLDI METHOD�R. B. LEHOUCQy AND K. J. MASCHHOFFzAbstract. Although block Arnoldi methods and their symmetric Lanczos counterparts are notnew, studies comparing their relative strengths and merits are lacking. In this report, we investigatethe e�ect of changing the block size when computing a selected portion of the eigenvalues (andassociated invariant subspace) of a large sparse matrix within the framework of implicit restarting.In particular, we demonstrate how Sorensen's implicitly restarted Arnoldi method may be extendedto block formulations. Our experimental results indicate that our implicitly restarted scheme issuperior to other block methods.Key words. Arnoldi method, Lanczos method, block methods, eigenvalues, de
ation, implicitrestartingAMS subject classi�cations. 65F15, 65G051. Introduction. This report considers the use of both blocked and unblockedArnoldi reductions for large-scale eigenvalue computations. Block methods are usedfor two major reasons. The �rst one is for reliably determining multiple and/or clus-tered eigenvalues. The second reason is related to issues dealing with computationale�ciency. In many instances, the cost of computing a few matrix-vector productsis commensurate with that of one matrix-vector product. On the other hand, twomajor drawbacks of block methods are the (not insigni�cant) added computationalcomplexity of the software implementation and the comparative lack of theoreticalunderstanding. There also remains the selection of the block size.Recent work [15] indicates that an unblocked Arnoldi method coupled with a de
a-tion strategy may be used reliably to compute multiple and/or clustered eigenvalues.However, an unblocked reduction may prove ine�cient for some eigenvalue problemsbecause of the cost of computing the Arnoldi subspace. Moreover, a relatively smallconvergence tolerance (no larger than the square root of machine precision) is re-quired to reliably compute nearby eigenvalues. Many problems do not require thismuch accuracy, and such a criterion can result in unnecessary computation.For symmetric matrices, Cullum and Donath [4] propose what appears to be the�rst block Lanczos method. Golub and Underwood [11] also discuss the method. The�rst industrial implementation is in [12].The history for nonsymmetric matrices is much shorter. Sadkane [25] discusses ablock Arnoldi algorithm within a restarting method. The books by Chatelin [3] andSaad [24] also include material for block Arnoldi/Lanczos methods. More recently,Scott [27] provides software for a block Arnoldi method.An independent but parallel development of our ideas is laid out in the report byBaglama, Calvetti, Reichel, and Ruttan [2]. However, their study considers only the� The work of R. B. Lehoucq was supported by the Mathematical, Information, and Computa-tional Sciences Division subprogram of the O�ce of Computational and Technology Research, U.S.Department of Energy, under Contract W-31-109-Eng-38. The work of K. J. Maschho� was sup-ported in part by NSF cooperative agreement CCR-9120008, NSF contract ASC-9408795, and byARPA contract number DAAL03-91-C-0047 (administered by the U.S. Army Research O�ce).y Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439lehoucq@mcs.anl.gov, http://www.mcs.anl.gov/home/lehoucq/index.html.z Computational and Applied Mathematics Department, Rice University, Houston, TX 77251kristyn@caam.rice.edu, http://www.caam.rice.edu/~kristyn.1



2 R. B. LEHOUCQ AND K. J. MASCHHOFFsymmetric case, while our research considers nonsymmetric matrices.The article is organized as follows. We �rst consider the careful numerical im-plementation of block methods. Robust de
ation, orthogonalization, and restartingstrategies are presented. In particular, we demonstrate how Sorensen's implicitlyrestarted Arnoldi method [29] may be extended to a block one.Finally, we perform a series of numerical experiments to assess the di�erencesbetween the blocked and unblocked variants. The goal of our study is to provide thenumerical analyst and software developer a better understanding of the many issuesinvolved.2. Notation and De�nitions. This section establishes the basic notation tobe used in this article. We employ Householder notational conventions. Capital andlower-case letters denote matrices and vectors, respectively, while lower-case Greekletters denote scalars. All matrices consist of complex numbers unless stated other-wise.The order of A will always be denoted by n: The identity matrix of order m isdenoted by Im: The jth canonical basis vector is denoted by ej, the jth column ofthe identity matrix, and Ej � � e(j�1)b+1 � � � ejb � ; where b is a positive integer.We will call the block size b.A matrix of lower bandwidth b will be called a banded upper Hessenberg matrix.We drop \upper" when the context is clear. Omission of the word band implies thatthe block size is one. We say that a band Hessenberg matrix is unreduced if all theelements on the bth subdiagonal are nonzero.We now de�ne several matrices that will prove useful. Hj denotes a band Hessen-berg matrix of order bj of lower bandwidth b; Tj denotes an upper triangular matrixof order j; regardless of any block size b; and Fj and Uj denote matrices with n rowsand b columns, where the subscript acts as an index. On the other hand, Vj denotesa matrix with n rows and bj columns. Uj denotes the jth block of b vectors of Vm,and Gi;j denotes the square matrix of order b located in the i; jth block of order b ofHm: Note that Gj+1;j is an upper triangular matrix. These matrices will de�ne thedimensions of other matrices used in this article.The transpose of a vector x is denoted by xT , and the complex conjugate of xTis denoted by xH : The norm used is the Euclidean one denoted by k � k:3. Block Arnoldi Reductions. Let A be a matrix of order n and b > 0 be theblock size. We say that AVm = VmHm +FmETm(3.1)is a block Arnoldi reduction of length m when VHmAVm = Hm is a banded upperHessenberg matrix, VHmVm = Imb, and VHmFm = 0: Let Um+1Gm+1;m denote theQR factorization of Fm: Using the notation established in x 2, we haveAVm = � U1 � � � Um � 266664 G1;1 � � � � � � G1;mG2;1 . . . ... ...... . . . ... ...0 � � � Gm;m�1 Gm;m 377775+Um+1Gm+1;mETm:



IMPLICITLY RESTARTED BLOCK ARNOLDI METHOD 3� Let AVm = VmHm + FmETm be a length-m block Arnoldi reduction whereVHmFm = 0:1. Compute the QR factorization Um+1Gm+1;m = Fm using iterated classicalGram-Schmidt.2. Vm+1 = � Vm Um+1 � :3. W = AUm+1 and Gm+1;m+1 =UHm+1W:4. Hm+1 = � Hm VHmWGm+1;mETm Gm+1;m+1 � :5. Fm+1 =W�Vm+1 � VHmWGm+1;m+1 � :Fig. 3.1. Extending a Block Arnoldi ReductionThe columns of Vm are an orthogonal basis for the block Krylov subspaceKm(A;U1) � fU1;AU1; � � � ;Am�1U1g:If m > �m � ceiling(n=b), then Fm = 0 and H �m is the orthogonal reduction of Ainto banded upper Hessenberg form. We assume, for the moment, that Fm is of fullrank and further suppose that the diagonal elements of Gm+1;m are positive. Thus,a straightforward extension of the implicit Q theorem [9, pp. 367{368] gives that Fmis (uniquely) speci�ed by the starting block U1: Note that if A = AH , then Hm isa block tridiagonal matrix. Figure 3.1 lists an algorithm to compute a block Arnoldireduction.The QR factorization in Step 1 is computed via an iterated classical Gram-Schmidt (CGS) algorithm using a possible correction step. See [5] for details andthe simple test used to determine whether a correction step is necessary. One bene�tof this scheme is that it allows the use of the Level 2 BLAS [7] matrix-vector multi-plication subroutine GEMV. Moreover, this scheme also gives a simple way to �ll outa rank-de�cient Fm: If a third step of orthogonalization is needed when generatingcolumn j ofUm+1; then the corresponding column of Fm is linearly dependent on theprevious j � 1 columns of Um+1: The jth diagonal element of Gm+1;m is set to zero,and a random unit vector is orthogonalized against Vm and the �rst j � 1 columnsof Um+1:Step 3 allows the application ofA to a group of vectors. This might prove essentialwhen accessing A is expensive. Clearly, the goal is to amortize the cost of applyingA over several vectors.As written, Step 5 is one step of block classical Gram-Schmidt (bCGR). Thisallows the use of the Level 3 BLAS [6] matrix-matrix multiplication subroutine GEMMfor computing VHmW: To ensure the orthogonality of Fm+1 with Vm+1, a secondstep of bCGR is performed except when b = 1: In this latter case, the simple testin DGKS [5] is used to determine whether a second orthogonalization step is needed.See [16] for details.The scheme given for computing Vm+1 is equivalent to the one proposed byRuhe [20] and is the one used by the implicitly restarted block Lanczos code [2].Although the approach in [2] cleanly deals with the problem of rank de�cient Fm, theimplementation does not exploit the ability to apply A as in Step 3 above. Instead,as proposed in [20], A is applied to each column of Fm followed by computing thecorresponding column of Um+1 and Hm+1: Our implementation reorganizes Ruhe's



4 R. B. LEHOUCQ AND K. J. MASCHHOFFapproach so that the computation of the matrix of coe�cients VHmW is separatedfrom the QR factorization of Fm: The advantage is that Steps 3{5 reduce the cost ofI/O by a factor of the blocksize and increase the amount of 
oating-point operationsper memory reference.4. Restarting a Block Arnoldi Reduction. For symmetric A, Saad [21]shows that as m increases, the quality of the extremal eigenvalues of Hm improves tothe well-separated extremal eigenvalues of A: For the unblocked Arnoldi reduction,he also shows [23] a similar improvement for increasing m: Unfortunately, given alarge value of n, the value of m needed for a desired degree of approximation may beimpractical because of storage constraints required for the Arnoldi/Lanczos vectors.This situation is particularly exacerbated for nonsymmetricA: A way to alleviate thecost of building a large reduction is to periodically restart the reduction.Although restarting an Arnoldi/Lanczos reduction is not a new idea, only recentlywith the availability of ARPACK [16] has it become a powerful method for computingselected eigenvalues (and eigenvectors) of a large sparse matrix. Karush [13] proposeswhat appears to be the �rst example of a restarted iteration for use with the Lanczosreduction. Saad [22] investigated its use for nonsymmetric matrices. Repeatedlyrestarting a reduction gives an iteration de�ned by a two-stage process. First, ablock Arnoldi/Lanczos reduction of length m < n is computed. From the informationavailable in this reduction, a subsequent reduction is computed. This de�nes theiteration and is deemed successful if improved estimates to the eigenvalues ofA appearin the subsequent reductions.Sorensen [29] proposed restarting a reduction in an implicit fashion. A high-quality software implementation is found in the software package ARPACK [16]. Wenow develop an implicitly restarted block Arnoldi iteration, extending the resultsin [29].Suppose that � is a real shift, and let Hm+1 � �I = QR with Q orthogonal andR upper triangular matrices, respectively. Then from (3.1)(A� �I)Vm+1 �Vm+1(Hm+1 � �I) = Fm+1ETm+1;(4.1) (A � �I)Vm+1 �Vm+1QR = Fm+1ETm+1;(4.2) (A � �I)(Vm+1Q)� (Vm+1Q)(RQ) = Fm+1ETm+1Q;A(Vm+1Q)� (Vm+1Q)(RQ+ �I) = Fm+1ETm+1Q:(4.3)The matrices are updated via V+m+1  Vm+1Q and H+m+1  RQ + �I, and thelatter matrix remains upper band Hessenberg, since R is upper triangular and Q isupper band Hessenberg. Partitioning the matrices in the updated equation results inA � V+m V+m+1Em+1 � = � V+m V+m+1Em+1 � � H+m CR+m+1ETm B �(4.4) +Fm+1 � 0 � � � ETm+1QEm ETm+1QEm+1 � ;revealing that the last 2 � b columns of the rightmost matrix are no longer zero ones.However, if we equate the �rst m � b columns of (4.4), it follows thatAV+m = V+mH+m + (V+m+1Em+1R+m+1 + Fm+1ETm+1QEm)ETm:(4.5)If we perform the update F+m  V+m+1Em+1R+m+1 +Fm+1ETm+1QEm and note that(V+m)TF+m = 0, it follows that Equation (4.5) is a length m block Arnoldi reduction.



IMPLICITLY RESTARTED BLOCK ARNOLDI METHOD 5� Input: A length r block Arnoldi reduction AV(1)r = V(1)r H(1)r +F(1)r ETr .� Iteration loop: For i = 1; 2 � � � until convergence1. Extend the length r block Arnoldi reduction by p blocks:AV(i)r+p = V(i)r+pH(i)r+p +F(i)r+pETr+p2. Compute the Schur decomposition of H(i)r+p, and check for convergence of thek wanted eigenvalues.3. Lock the Ritz values that satisfy the convergence tolerance.4. Select p shifts, and determine r:5. Apply p implicit QR steps with shifts toH(i)r+p. Retain a length r block Arnoldireduction.Fig. 5.1. Implicitly Restarted Block Arnoldi Method (bIRAM)An induction argument shows that up to p = m shifts may be applied in thismanner, resulting in an updated length m + 1 � p block Arnoldi reduction. A �nalm + 1-th shift may be applied without involving A, since(A � �m+1I)V+1 = V+1 (H+1 � �m+1I) + F+1and orthogonalizing the righthand side gives a new starting block. This approach wasproposed in [1].Denote by the polynomial�p(�) = (���1) � � � (���p): Post-multiplicationof (4.2)with E1 results in the important relationship�p(A)V1 = Vm+1QRE1 = Vm+1Q1R1;(4.6)where R1 is the leading principal sub-matrix of R of order b and Q1 contains the �rstb columns of Q: If the polynomial �p(�) = �p is used, the above relationship givesa connection with subspace iteration. Speci�cally, it shows how subspace iterationis implicitly performed on the current Arnoldi matrix Vm+1: However, instead ofrestarting a subsequent Arnoldi reduction with Vm+1Q1; we apply Q as in (4.3).Thus, a polynomial in A is applied implicitly|just as in the traditional implicitlyshifted QR algorithm. The bene�t is that matrix-vector products with A are avoided.If matrix-vector products with A are expensive, implicitly restarting leads to a moree�cient algorithm. See [14] for details on a connection with subspace iteration andthe QR algorithm.5. Practical Algorithm. Figure 5.1 lists a generic block implicitly restartedArnoldi method (bIRAM). The remainder of this section discusses some of the imple-mentation issues necessary for a robust software implementation. In particular, weaddress the issues of block size (b), the selection of shifts during the implicit restartand choice of p, convergence considerations, and a de
ation strategy. The superscript(i) is dropped whenever convenient.5.1. Block Size. We now consider some of the issues and tradeo�s that shouldbe considered when selecting the block size. For this discussion we assume thatcomparisons are made using a �xed maximum dimension for the subspace.As the blocksize increases, the length of the Arnoldi reduction m = r+p decreases.Since the degree of the largest power of A in the corresponding Krylov space is m�1;



6 R. B. LEHOUCQ AND K. J. MASCHHOFFsmaller block sizes allow a polynomials of larger degree to be applied. The downsideto an unblocked method is that it cannot compute multiple copies of an eigenvalue ofA unless the reduction already well approximates some of the associated eigenvectors.For example, the �rst Ritz pair should give a residual of O(�M ) or smaller relative tothe norm of A before the second copy emerges.One of the bene�ts of block methods is that they are more reliable for comput-ing approximations to the clustered and/or multiple eigenvalues using a relativelylarge convergence criterion. Note that the block size used may be varied during eachiteration.5.2. Filter Choice. Each iteration of Algorithm (5.1) implicitly replaces thestarting block U1 with �p(A)U1: Recall that the polynomial �p(A) acts like a �lteron the starting block amplifying components in the direction of the desired invariantsubspace.Numerous choices are possible for the selection of the p shifts, including thespeci�c choice of p: If the shifts are in complex conjugate pairs, the implicit doubleshift [10, pp. 355{358] can be used to avoid complex arithmetic.Typically, the p shifts are selected by utilizing the spectral information containedin Hr+p . Partition the eigenvalues of Hm so thatf�1; : : : ; �r| {z }wanted g [ f�r+1; : : : ; �m| {z }unwanted g:(5.1)For an unblocked reduction, the p shifts are selected from the unwanted eigenvalues ofHm where r = k: Sorensen [29] proposed this as a exact shift strategy. This strategyis equivalent to restarting the subsequent reduction with a linear combination of theapproximate Schur vectors associated with the k wanted eigenvalues. Other choicesof shifts are possible. These include the roots of a Chebyshev polynomial, harmonicRitz values [17, 18, 28], and Leja points [1].In the algorithm listed in Fig. 5.1, the integer r is typically set to k, the number ofwanted eigenvalues, during the input step. Once the iteration loop has been entered,the values of r, p and thus m = r + p may vary for every value of i: When b > 1,we cannot apply all p = m � b� k unwanted eigenvalues as shifts. We are then facedwith the question of selecting which p shifts to apply and whether we should considerapplying more than p shifts.For example, m shifts can be applied until a Ritz pair satis�es the convergencetolerance. The Ritz pairs can then be de
ated (or locked). (This is equivalent tothe de
ated iterative Arnoldi algorithm given by Saad [24, p. 181] and used in theimplementations in [2, 27].) This approach allows us to implicitly apply a polynomial�lter of the maximum degree. (Application of more than r + p shifts will requireapplying explicit polynomials in A: ) However, as more shifts are applied, the cost incomputing the subsequent Arnoldi reduction increases.A strategy that varies r, p (relative to k) and the shifts used during every iterationwill give the best results. This is the subject of current research. The recent report [30]discusses an adaptive strategy for symmetric eigenvalue problems. A near-optimaladaptive strategy should be possible because of the connection between bIRAM andsubspace iteration [14].5.3. Convergence. Suppose that (s; �) is an eigenpair of Hm: It follows easilyfrom Equation (3.1) that AVms�Vms� = FmETms;(5.2)



IMPLICITLY RESTARTED BLOCK ARNOLDI METHOD 7and so kAVms � Vms�k = kFmk kETmsk = kGm+1;mk kETmsk: Thus, if the last bcomponents of s are small relative to the size of kGm+1;mk, then the Ritz pair (z =Vms; �) is an exact eigenpair for a matrix near A: This follows since (5.2) may berewritten as (A �FmETmszH)z = z�:The iteration in bIRAM terminates at the value of i when the k wanted eigenvaluesof H(i)m satisfy (5.2). The eigenvalues are partitioned as in (5.1) so that the wantedones correspond to the eigenvalues of A desired.5.4. De
ation. Because a bIRAM may be viewed as a truncation of the stan-dard implicitly shifted QR-iteration, it shares a number of the QR-iteration's desirableproperties. The main advantages of a numerically stable de
ation strategy are thereduction of the working size of the reduction and the ability to determine clustersof nearby eigenvalues without requiring the block size to greater than or equal to thesize of the cluster. The de
ation scheme developed for the bIRAM implementation isan extension of the techniques discussed by Lehoucq and Sorensen [15].Let H be an unreduced band upper Hessenberg matrix of order m with blocksize b: Then, given a Ritz value �, we construct an orthonormal matrix Q such thatQs = e1 and ETmQ = " ETms 0| {z }b columns 0 � � � C # ;where C is an upper triangular matrix of order b: This speci�cation for Q is morerestrictive than that originally proposed in [15], where Q needed to satisfy only Qs =e1 and kETmQk = O(kETmsk): Numerical experience indicates that this restrictive Qis more robust in practice.Applying this orthonormal matrix Q to the Arnoldi reduction givesAVQ = VQ � � �hT0 �H �+FETmQ:(5.3)The �rst column of the previous equation gives the relationshipAz1 = z1� +FETms:The Ritz vector z1 = Vms is considered locked , and subsequent implicit restarting isperformed on eVm consisting of the lastm�b�1 columns ofVQ: Equation (5.3) is not ablock Arnoldi reduction because �H no longer is a band Hessenberg matrix. However,a sequence of elementary unitary matrices may be applied without disturbing thestructure of FCETm and the �rst column of QTHQ: See [15] for details.This de
ation process allows us to incrementally build an approximate partialSchur decomposition AZj � ZjTj that satis�eskAZj � ZjTjk = O(kFmk kETmsk):Here Tj is an upper triangular matrix of order j containing the Ritz values of interest.When A is Hermitian, Tj is a diagonal matrix. See [15, pp. 801{802] for lockingcomplex conjugate pairs of Ritz values in real arithmetic so that complex arithmeticcan be avoided for real A:A signi�cant bene�t of this de
ation procedure is that as Ritz values convergethey can be implicitly de
ated from the active reduction without the need to build



8 R. B. LEHOUCQ AND K. J. MASCHHOFFa new reduction from scratch. This avoids additional matrix-vector products and or-thogonalization costs that would be incurred if the de
ation was performed explicitly.In terms of the current reduction we haveA � Zj Vm � = � Zj Vm � � Tj Mj0 Hm �+FmETm+j :Here Zj contains the j locked approximate Schur vectors. We de�ne the active re-duction to be ÂVm = VmHm + FmETm;(5.4)where Â = (I�ZmZHm)A: Note that the projector I�ZmZHm is never applied. Instead,as Vm is computed, orthogonality of its columns against Zj is maintained throughthe coe�cients Mj: This achieves a clean form of selective orthogonalization [19].An implementation detail is the selection of an appropriate locking criterion. Forthe numerical experiments, we used a locking tolerance ofkEmsik � max(10�2 �U ; �M )where �U is the user-speci�ed tolerance and �M is the machine precision.An algorithmic issue that arises is how to handle situations where the number ofconverged vectors to be locked is not a multiple of the block size. At the completionof the de
ation procedure, the active reduction has an incomplete last block. Tosimplify the implicit restarting mechanism, we �ll out this last block so that theactive reduction is of length m � b:6. Numerical Experiments. In this section we compare results for the blockedand unblocked methods. Our aim is to acquire a better understanding of the prac-tical behavior of these methods. Comparisons also are made to other block Arnoldimethods to demonstrate the e�ectiveness of implicit restarting.Experiments were conducted in MATLAB on a Sun SPARCstation20 using IEEEdouble-precision arithmetic. When comparing the di�erent algorithms and variousblock sizes, we �x the maximum number of vectors b � m in the subspace wherem = r + p: During every iteration the number of shifts applied is p: With theserequirements the orthogonalization costs per iteration remain approximately constant.Since this is only an experimental MATLAB code, we rely on the iteration count andthe total number of matrix-vector products to rank the performance of the methods.For the matrix-vector products we provide both an individual count and the numberof times the matrix is applied to a block of vectors. In many instances, the cost ofcomputing a few matrix vector products is commensurate with that of one matrix-vector product, and this primarily determines the e�ciency. Inherent in the numberof iterations is the cost associated with the solution of a small eigenvalue problem andthe QR iteration associated with the implicit restart mechanism.An eigenpair (�; s) of Hm is accepted as converged ifkETmsk kGm+1;mk � j�j �U ;where �U is a user-speci�ed tolerance. Each pair that satis�es the convergence tol-erance is then de
ated by using the techniques of x 5.4, resulting in a partial Schurdecomposition.



IMPLICITLY RESTARTED BLOCK ARNOLDI METHOD 9Table 6.12-D Laplacian (� = 0) matrix of order 2500. Results are for �nding the six eigenvalues ofsmallest magnitude using a tolerance of 10�10 and a maximum subspace dimension of m � b = 24:The implicit restarting strategy used was to apply the p least wanted Ritz values as shifts.b r p m Iters. MV Products jjAZ6 � Z6T6jj21 6 18 24 41 608 (608) O(10�12)1 6 18 24 41 608 (608) O(10�12)2 2 10 12 35 694 (347) O(10�12)2 3 9 12 30 540 (270) O(10�12)3 2 6 8 42 744 (248) O(10�12)4 2 4 6 49 800 (200) O(10�12)6 1 3 4 58 1068 (178) O(10�12)8 1 2 3 82 1344 (168) O(10�12)Table 6.22-D Laplacian (� = 0) matrix of order 2500. Results are for �nding the six eigenvalues ofsmallest magnitude using a tolerance of 10�6 and a maximum subspace dimension of m � b = 24.The implicit restarting strategy used was to apply the p least wanted Ritz values as shifts.b r p m Iters. MV Products jjAZ6 � Z6T6jj21 6 18 24 35 509 (509) O(10�8)2 2 10 12 21 420 (210) O(10�8)2 3 9 12 24 434 (217) O(10�9)3 2 6 8 30 543 (181) O(10�8)4 2 4 6 40 656 (164) O(10�9)6 1 3 4 44 804 (134) O(10�8)6.1. Model Problem. The �rst problem for which we present results is a two-dimensional convection{di�usion problem��u+ �(ux + uy) = �u:Here we discretize using centered �nite di�erences on the unit square with zeroboundary data. We have chosen this example because it has the following interestingproperties:� Eigenvalues and eigenvectors of the resulting matrix are known explicitly.� Many eigenvalues have multiplicity two.� As the mesh size decreases, relative separation of all the eigenvalues decreases.All are contained within the interval (0; 8):� As � increases, so does the non-normality of the matrix.Although block algorithms are not always required for determining multiplicities,they require fewer applications of A than does the unblocked variant. Block methodsdemonstrate group convergence to multiple eigenvalues, whereas an unblocked methodrequires a Ritz value and vector to be fairly well approximated before any additionalcopies emerge.6.2. Two-Dimensional Laplacian. Tables 6.1 and 6.2 list the results for �nd-ing the six eigenvalues of smallest magnitude and corresponding eigenvectors for thetwo-dimensional Laplacian (� = 0) matrix of order 2500 for convergence tolerances of10�10 and 10�6, respectively. A moderate maximum subspace dimension of m �b = 24was used with an exact shifting strategy where the p least wanted Ritz values (relativeto magnitude-based ordering) were used as shifts. Although when b > 1 the number



10 R. B. LEHOUCQ AND K. J. MASCHHOFFTable 6.32-D Laplacian (� = 0) matrix of order 2500. Results are for �nding the six eigenvalues ofsmallest magnitude using a tolerance of 10�10 and a maximum subspace dimension of m � b = 36.The implicit restarting strategy used was to apply the p least wanted Ritz values as shifts.b r p m Iters. MV Products jjAZ6 �Z6T6jj21 6 30 36 21 540 (540) O(10�13)2 3 15 18 65 1916 (958) O(10�13)3 2 10 12 109 3171 (1057) O(10�12)4 2 7 9 71 2004 (501) O(10�12)6 1 5 6 67 2040 (340) O(10�12)9 1 3 4 49 1341 (149) O(10�12)Table 6.42-D Laplacian (� = 0) matrix of order 2500. Results are for �nding the six eigenvalues ofsmallest magnitude using a tolerance of 10�6 and a maximum subspace dimension of m � b = 36.The implicit restarting strategy used was to apply the p least wanted Ritz values as shifts.b r p m Iters. MV Products jjAZ6 � Z6T6jj21 6 30 36 18 483 (483) O(10�9)2 3 15 18 17 514 (257) O(10�8)3 2 10 12 28 846 (282) O(10�8)4 2 7 9 21 604 (151) O(10�8)6 1 5 6 28 852 (142) O(10�9)9 1 3 4 49 1026 (114) O(10�8)of Ritz values we are able to �lter out is less than the total number of unwantedRitz values (in this case 18), we still obtain good convergence to the eigenvalues ofinterest. Here the bene�t of group convergence outweighs any possible degradationin performance due to a smaller value of p:Tables 6.3 and 6.4 show the results for the same matrix using a larger subspacem � b = 36 with the same exact shifting strategy described above. By using a largersubspace we gain the advantages of a longer recurrence in the Arnoldi process. How-ever, a larger subspace also translates into an increase in the number of unwantedeigenvalues that cannot be used as shifts. For instance, in the previous examplewhere we used a maximum basis of 24 and b = 2, we are able to apply 9 of the 18unwanted eigenvalues. Using a maximumbasis of 36 and b = 2, we can apply only 15of 30 unwanted eigenvalues. We observed in our experiments that when a large sub-space is used relative to the number of eigenvalues desired, the exact shifting strategywas not necessarily the best choice. This situation was especially evident for smallervalues of �U :If we instead use the roots of a Chebyshev polynomial of degree p de�ned onthe interval that excludes the six smallest eigenvalues of Hm as shifts, a better �lterresults for small block sizes. For larger values of b, the degree of the Chebyshevpolynomial p is not su�cient to adequately characterize the particular region of thespectrum which we would like to �lter. When the maximum number b �m of vectorsis small (say less than 10), the use of Leja shifts gives the best results [2].6.2.1. Two-Dimensional Convection-Di�usionMatrix. Tables 6.7 and 6.8list the results for �nding the six eigenvalues of smallest magnitude and the cor-responding Schur vectors for the two-dimensional convection-di�usion matrix with� = 20. Again by using a moderate maximum subspace dimension we get promisingresults for b > 1: For �U = 10�6, the number of applications of A decreases as the



IMPLICITLY RESTARTED BLOCK ARNOLDI METHOD 11Table 6.52-D Laplacian (� = 0) matrix of order 2500. Results are for �nding the six eigenvalues ofsmallest magnitude using a tolerance of 10�10 and a maximum subspace dimension of m � b = 36:The implicit restarting strategy used was to apply the roots of a Chebyshev polynomial of degree pas shifts. b r p m Iters. MV Products jjAZ6 � Z6T6jj21 6 30 36 21 569 (569) O(10�13)2 3 15 18 29 866 (433) O(10�13)3 2 10 12 47 1410 (470) O(10�12)4 2 7 9 62 1740 (435) O(10�12)6 1 5 6 142 4290 (715) O(10�12)Table 6.62-D Laplacian (� = 0) matrix of order 2500. Results are for �nding the six eigenvalues ofsmallest magnitude using a tolerance of 10�6 and a maximum subspace dimension of m � b = 36:The implicit restarting strategy used was to apply the roots of a Chebyshev polynomial of degree pas shifts. b r p m Iters. MV Products jjAZ6 � Z6T6jj21 6 30 36 18 483 (483) O(10�9)2 3 15 18 20 598 (299) O(10�8)3 2 10 12 31 930 (310) O(10�8)4 2 7 9 43 1216 (304) O(10�8)6 1 5 6 93 2820 (470) O(10�8)block size increases. This trend is also displayed for �U = 10�10: But this smallertolerance also requires a signi�cant number of additional applications of A as theblocksize increases.6.2.2. Matrices from Harwell-Boeing Collection. Other matrices that wehave used to evaluate the potential of implicit restarting for block methods are takenfrom the Harwell-Boeing collection [8] of sparse matrices. These problems were cho-sen because they have appeared in the literature for sparse nonsymmetric eigenvalueproblems. For these matrices we used �U = 10�12:Tables 6.9 and 6.10 show the results for the matrix GRE1107. This matrix, takenfrom a simulation study for a computer system, has a dimension of 1107 with 5664nonzero entries. The matrix is real nonsymmetric. Here we are able to directly com-pare our results with another block Arnoldi implementation [27] EB13. We includethis comparison to emphasize the potential of implicit restarting for block Arnoldimethods. In all cases we compare our results with the \best" results obtained fromEB13. EB13 provides both blocked and unblocked Arnoldi methods and includes op-tions for Chebyshev acceleration and Chebyshev preconditioning. Restarting for EB13is done explicitly using linear combinations of approximate Schur vectors. Compar-isons are made for maximum subspace dimensions of 24 and 40.For GRE1107 the best results from EB13 were obtained using the unblockedArnoldi method with Chebyshev preconditioning. The preconditioned method ex-hibits very fast convergence (2 iterations); but because the operator used to generatethe Arnoldi reduction is a high degree polynomial in A, this approach requires a largenumber of matrix-vector products. (Implicit restarting is performed by using the pleast wanted Ritz values as shifts.) bIRAM requires substantially fewer matrix-vectorproducts regardless of the blocksize.Sadkane [26] also presents numerical results using a block Arnoldi method for



12 R. B. LEHOUCQ AND K. J. MASCHHOFFTable 6.72-D convection-di�usion matrix of order 2500, � = 20: Results are for �nding the six eigenvaluesof smallest magnitude using a tolerance of 10�10 and a maximum subspace dimension of m � b = 24.The implicit restarting strategy used was to apply the p least wanted Ritz values as shifts.b r p m Iters. MV Products jjAZ6 � Z6T6jj21 6 18 24 34 530 (530) O(10�12)2 3 9 12 34 610 (305) O(10�12)2 4 8 12 34 544 (272) O(10�11)3 2 6 8 40 720 (240) O(10�12)4 2 4 6 47 760 (190) O(10�10)6 1 3 4 65 1182 (197) O(10�11)Table 6.82-D convection-di�usion matrix of order 2500, �=20. Results are for �nding the six eigenvaluesof smallest magnitude using a tolerance of 10�6 and a maximum subspace dimension of m � b = 24.The implicit restarting strategy used was to apply the p least wanted Ritz values as shifts.b r p m Iters. MV Products jjAZ6 � Z6T6jj21 6 18 24 30 445 (445) O(10�8)2 2 10 12 22 444 (222) O(10�8)2 3 9 12 26 462 (231) O(10�8)3 2 6 8 30 528 (176) O(10�7)4 2 4 6 38 616 (154) O(10�7)Table 6.9GRE 1107, Harwell-Boeing collection. Results are for �nding the eight rightmost eigenvaluesusing a tolerance of 10�12 and a maximum subspace dimension of m �b = 24. The implicit restartingstrategy used for bIRAM was to use the p least wanted Ritz values as shifts. A3 uses the Chebyshevpreconditioned Arnoldi option of EB13.b r p m Iters. MV Prod. jjAZ8 �Z8T8jj2IRA 1 8 16 24 33 448 (448) O(10�15)2 4 8 12 37 580 (290) O(10�13)3 2 6 8 40 720 (240) O(10�12)4 2 4 6 62 980 (245) O(10�12)8 1 2 3 101 1664 (208) O(10�13)A3 1 24 2 984 (984) O(10�11)Table 6.10GRE 1107, Harwell-Boeing collection. Results are for �nding the eight rightmost eigenvaluesusing a tolerance of 10�12 and a maximum subspace dimension of m �b = 40. The implicit restartingstrategy used for bIRAM was to use the p least wanted Ritz values as shifts. A3 and AB3 useunblocked and blocked Chebyshev preconditioned Arnoldi options, respectively, available in EB13.b r p m Iters. MV Prod. jjAZ8 �Z8T8jj2IRA 1 8 32 40 15 392 (392) O(10�13)2 4 16 20 16 506 (253) O(10�13)4 2 8 10 24 788 (197) O(10�12)10 1 3 4 55 1710 (171) O(10�12)A3 1 40 2 1656 (1656) O(10�12)AB3 10 4 3 4940 (494) O(10�12)AC 8 320 2920 (365) O(10�9)DAV 8 320 3464 (433) O(10�9)



IMPLICITLY RESTARTED BLOCK ARNOLDI METHOD 13Table 6.11HOR131, (N=434) Harwell-Boeing Collection. Results are for �nding the eight rightmost eigen-values using a tolerance of 10�12 and a maximum subspace dimension of m � b = 24. The implicitrestarting strategy used for bIRAM was to use the p least wanted Ritz values as shifts. A1 and A2use a unblocked Arnoldi and Arnoldi with Chebyshev acceleration options, respectively, available inEB13. b r p m Iters. MV Prod. jjAZ8 �Z8T8jj2IRA 1 8 16 24 5 77 (77) O(10�15)2 4 8 12 5 84 (42) O(10�14)3 3 5 8 6 99 (33) O(10�15)4 2 4 6 6 108 (27) O(10�14)8 1 2 3 10 176 (22) O(10�15)A1 1 24 22 497 (497) O(10�13)A2 1 24 11 439 (439) O(10�13)Table 6.12HOR131, (N=434) Harwell-Boeing Collection. Results are for �nding the eight rightmost eigen-values using a tolerance of 10�12 and a maximum subspace dimension of m � b = 40: The implicitrestarting strategy used for bIRAM was to use the p least wanted Ritz values as shifts. A1 and AB2use a Arnoldi and block Arnoldi with Chebyshev acceleration options available in EB13.b r p m Iters. MV Prod. jjAZ8 �Z8T8jj2IRA 1 8 32 40 2 71 (71) O(10�15)2 4 16 20 2 72 (36) O(10�15)4 2 8 10 3 104 (26) O(10�15)10 1 3 4 6 190 (19) O(10�15)A1 1 40 5 202 (202) O(10�12)AB2 10 4 3 414 (42) O(10�12)DAV 8 320 264 (33) O(10�7)GRE1107. Here he uses explicit restarting (the polynomial �lter is applied with thematrix) with Chebyshev acceleration using polynomials of degree 40 and a maximumsubspace dimension of 40�8:We have appended his results for block Arnoldi-Chebyshev(AC) and Davidson (DAV) methods to the bottom of Table 6.10 for reference. Itshould be noted that the results for bIRAM and EB13 are for a maximum subspaceof 40 with a tolerance of �U = 10�12:Tables 6.11 and 6.12 show the results for the matrix HOR131. This matrix, takenfrom a 
ow network problem, is of order 434 with 4182 nonzero entries. The matrix isreal nonsymmetric with symmetric structure. The performance of bIRAM is superiorwhen compared with EB13 and the unsymmetric Davidson method. (The resultsfor the unsymmetric Davidson implementation used the diagonal of the matrix as thepreconditioner.) One interesting observation is that by using implicit restarting we nolonger require large subspace dimensions to take advantage of block methods. OtherArnoldi methods have typically required longer Arnoldi reductions in order to achievereasonable convergence. The ability to use smaller basis sets reduces the relative costof maintaining full orthogonality of the Arnoldi vectors.It is clear from our numerical results for GRE1107 and HOR131 that implicitrestarting represents a substantial improvement over other implementations of blockArnoldi methods.Figure 6.13 show the results for the matrix NNC1374. This matrix, derived froma model of an advanced gas-cooled reactor core, is of order 1374 with 8588 nonzero
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