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Abstract. Although block Arnoldi methods and their symmetric Lanczos counterparts are not
new, studies comparing their relative strengths and merits are lacking. In this report, we investigate
the effect of changing the block size when computing a selected portion of the eigenvalues (and
assoclated Invariant subspace) of a large sparse matrix within the framework of implicit restarting.
In particular, we demonstrate how Sorensen’s implicitly restarted Arnoldi method may be extended
to block formulations. Our experimental results indicate that our implicitly restarted scheme is
superior to other block methods.
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1. Introduction. This report considers the use of both blocked and unblocked
Arnoldi reductions for large-scale eigenvalue computations. Block methods are used
for two major reasons. The first one is for reliably determining multiple and/or clus-
tered eigenvalues. The second reason is related to issues dealing with computational
efficiency. In many instances, the cost of computing a few matrix-vector products
is commensurate with that of one matrix-vector product. On the other hand, two
major drawbacks of block methods are the (not insignificant) added computational
complexity of the software implementation and the comparative lack of theoretical
understanding. There also remains the selection of the block size.

Recent work [15] indicates that an unblocked Arnoldi method coupled with a defla-
tion strategy may be used reliably to compute multiple and/or clustered eigenvalues.
However, an unblocked reduction may prove inefficient for some eigenvalue problems
because of the cost of computing the Arnoldi subspace. Moreover, a relatively small
convergence tolerance (no larger than the square root of machine precision) is re-
quired to reliably compute nearby eigenvalues. Many problems do not require this
much accuracy, and such a criterion can result in unnecessary computation.

For symmetric matrices, Cullum and Donath [4] propose what appears to be the
first block Lanczos method. Golub and Underwood [11] also discuss the method. The
first industrial implementation is in [12].

The history for nonsymmetric matrices is much shorter. Sadkane [25] discusses a
block Arnoldi algorithm within a restarting method. The books by Chatelin [3] and
Saad [24] also include material for block Arnoldi/Lanczos methods. More recently,
Scott [27] provides software for a block Arnoldi method.

An independent but parallel development of our ideas is laid out in the report by
Baglama, Calvetti, Reichel, and Ruttan [2]. However, their study considers only the
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symmetric case, while our research considers nonsymmetric matrices.

The article 1s organized as follows. We first consider the careful numerical im-
plementation of block methods. Robust deflation, orthogonalization, and restarting
strategies are presented. In particular, we demonstrate how Sorensen’s implicitly
restarted Arnoldi method [29] may be extended to a block one.

Finally, we perform a series of numerical experiments to assess the differences
between the blocked and unblocked variants. The goal of our study is to provide the
numerical analyst and software developer a better understanding of the many issues
involved.

2. Notation and Definitions. This section establishes the basic notation to
be used in this article. We employ Householder notational conventions. Capital and
lower-case letters denote matrices and vectors, respectively, while lower-case Greek
letters denote scalars. All matrices consist of complex numbers unless stated other-
wise.

The order of A will always be denoted by n. The identity matrix of order m 1s
denoted by IL,,. The jth canonical basis vector is denoted by e;, the jth column of
the identity matrix, and E; = [ e _1)p+1 T € ] , where b 1s a positive integer.
We will call the block size b.

A matrix of lower bandwidth b will be called a banded upper Hessenberg matrix.
We drop “upper” when the context is clear. Omission of the word band implies that
the block size is one. We say that a band Hessenberg matrix is unreduced if all the
elements on the bth subdiagonal are nonzero.

We now define several matrices that will prove useful. H; denotes a band Hessen-
berg matrix of order b5 of lower bandwidth &; T; denotes an upper triangular matrix
of order j, regardless of any block size b; and F; and U; denote matrices with n rows
and b columns, where the subscript acts as an index. On the other hand, V; denotes
a matrix with n rows and bj columns. U; denotes the jth block of b vectors of V,,,
and G; ; denotes the square matrix of order b located in the 7, jth block of order b of
H,,. Note that G;4,; is an upper triangular matrix. These matrices will define the
dimensions of other matrices used in this article.

The transpose of a vector x is denoted by x”, and the complex conjugate of x”
is denoted by xf. The norm used is the Euclidean one denoted by || -||.

3. Block Arnoldi Reductions. Let A be a matrix of order n and b > 0 be the
block size. We say that
(3.1) AV, =V,H, +F,E]

is a block Arnoldi reduction of length m when VXAV, = H,, is a banded upper
Hessenberg matrix, Vng = I,.;, and an{Fm = 0. Let U411 Gppy1,m denote the
QR factorization of F,,. Using the notation established in § 2, we have

Gi1 - Gim
AV,=[U - U, ] G?@
6 o Gm,.m—l Gm,m

+Um+1 Gm+1,mEZ:L .
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e Let AV,, = V,,H,, + FmEﬁ be a length-m block Arnoldi reduction where
VEF,, =o0.
1. Compute the QR factorization U411 Gpy1,m = Fin using iterated classical
Gram-Schmidt.
2. Vi1 =[ Vi Upp |
3. W=AU,1; and Gmg1,mt1 = UZ WL

H,. VEW
4. Hppe1 = m .
+ |: Gm-l-l,mEﬁ Gm-l-l,m-l-l :|

H
5. Fm+1 =W —Vm+1 |: Vmw :| .

Gm-l-l,m-l-l

Fia. 3.1. Extending a Block Arnoldi Reduction

The columns of V,,, are an orthogonal basis for the block Krylov subspace
Km(A,Up) ={U;, AU, - AU}

If m > m = ceiling(n/b), then F,,, = 0 and Hy, is the orthogonal reduction of A
into banded upper Hessenberg form. We assume, for the moment, that F,, is of full
rank and further suppose that the diagonal elements of Gy,41,, are positive. Thus,
a straightforward extension of the implicit Q theorem [9, pp. 367-368] gives that F,,
is (uniquely) specified by the starting block U;. Note that if A = A" then H,, is
a block tridiagonal matrix. Figure 3.1 lists an algorithm to compute a block Arnoldi
reduction.

The QR factorization in Step 1 is computed via an iterated classical Gram-
Schmidt (CGS) algorithm using a possible correction step. See [5] for details and
the simple test used to determine whether a correction step is necessary. One benefit
of this scheme is that it allows the use of the Level 2 BLAS [7] matrix-vector multi-
plication subroutine _GEMV. Moreover, this scheme also gives a simple way to fill out
a rank-deficient F,,. If a third step of orthogonalization is needed when generating
column j of Uy, 41, then the corresponding column of F,, is linearly dependent on the
previous j — 1 columns of U, ;. The jth diagonal element of Gy, 41, is set to zero,
and a random unit vector is orthogonalized against V,, and the first j — 1 columns
of Um+1 .

Step 3 allows the application of A to a group of vectors. This might prove essential
when accessing A is expensive. Clearly, the goal is to amortize the cost of applying
A over several vectors.

As written, Step 5 is one step of block classical Gram-Schmidt (bCGR). This
allows the use of the Level 3 BLAS [6] matrix-matrix multiplication subroutine _GEMM
for computing an{W. To ensure the orthogonality of F,,11 with V41, a second
step of bCGR is performed except when b = 1. In this latter case, the simple test
in DGKS [5] is used to determine whether a second orthogonalization step is needed.
See [16] for details.

The scheme given for computing V41 is equivalent to the one proposed by
Ruhe [20] and is the one used by the implicitly restarted block Lanczos code [2].
Although the approach in [2] cleanly deals with the problem of rank deficient F,,, the
implementation does not exploit the ability to apply A as in Step 3 above. Instead,
as proposed in [20], A is applied to each column of F,, followed by computing the
corresponding column of U,,;1 and H,,11. Our implementation reorganizes Ruhe’s
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approach so that the computation of the matrix of coefficients VIZW is separated
from the QR factorization of F,,. The advantage is that Steps 3-5 reduce the cost of
I/O by a factor of the blocksize and increase the amount of floating-point operations
per memory reference.

4. Restarting a Block Arnoldi Reduction. For symmetric A, Saad [21]
shows that as m increases, the quality of the extremal eigenvalues of H,, improves to
the well-separated extremal eigenvalues of A. For the unblocked Arnoldi reduction,
he also shows [23] a similar improvement for increasing m. Unfortunately, given a
large value of n, the value of m needed for a desired degree of approximation may be
impractical because of storage constraints required for the Arnoldi/Lanczos vectors.
This situation is particularly exacerbated for nonsymmetric A. A way to alleviate the
cost of building a large reduction is to periodically restart the reduction.

Although restarting an Arnoldi/Lanczos reduction is not a new idea, only recently
with the availability of ARPACK [16] has it become a powerful method for computing
selected eigenvalues (and eigenvectors) of a large sparse matrix. Karush [13] proposes
what appears to be the first example of a restarted iteration for use with the Lanczos
reduction. Saad [22] investigated its use for nonsymmetric matrices. Repeatedly
restarting a reduction gives an iteration defined by a two-stage process. First, a
block Arnoldi/Lanczos reduction of length m < n is computed. From the information
available in this reduction, a subsequent reduction is computed. This defines the
iteration and is deemed successful if improved estimates to the eigenvalues of A appear
in the subsequent reductions.

Sorensen [29] proposed restarting a reduction in an implicit fashion. A high-
quality software implementation is found in the software package ARPACK [16]. We
now develop an implicitly restarted block Arnoldi iteration, extending the results
in [29)].

Suppose that p is a real shift, and let H,, 41 — I = QR with Q orthogonal and
R upper triangular matrices, respectively. Then from (3.1)

(4.1) (A= uD)Vogs = Vo (Hpgy — pI) = FpupnEL
(A —pI)Vip1 = Vi1 QR = Fm+1E%+1a
(A = 1D)(Vps1Q) — (Vir1QIRQ) = F\ i E L1 Q,
(4.3) A(Virs1Q) = (Vi1 QURQ + 41) = Fru L, Q.
The matrices are updated via V:z+1 — V41Q and H;;_I_l — RQ + pI, and the

latter matrix remains upper band Hessenberg, since R is upper triangular and Q is
upper band Hessenberg. Partitioning the matrices in the updated equation results in

AAA[ VE VE Enp | = [ VE v;HEmHJ[ Hn C]
R’ El B
+Fm+1[0 E%HQEm E%+1QEm+1 ]a

revealing that the last 2 - b columns of the rightmost matrix are no longer zero ones.
However, if we equate the first m - b columns of (4.4), it follows that

(4.5) AV = VIR + (Vi Enp RE + Py By QE ES,

If we perform the update Ft — V;+1Em+1 R;;_I_l 4+ Fmt1 EZ@H QE,, and note that
(VEYIFE = 0, it follows that Equation (4.5) is a length m block Arnoldi reduction.
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e Input: A length r block Arnoldi reduction AV(rl) = V(rl)H(rl) + Fgl)E?.
e Iteration loop: For ¢ = 1,2 - until convergence
1. Extend the length r block Arnoldi reduction by p blocks:

0 _ vy g
AVr+p - Vr+pHr+p
(1)

T4p?

+F) ET

r+p r+p

2. Compute the Schur decomposition of H and check for convergence of the
k wanted eigenvalues.

3. Lock the Ritz values that satisfy the convergence tolerance.

4. Select p shifts, and determine r. ‘

5. Apply pimplicit QR steps with shifts to HY)

+4p- Retain alength r block Arnoldi
reduction.

Fia. 5.1. Implicitly Restarted Block Arnoldi Method (bIRAM)

An induction argument shows that up to p = m shifts may be applied in this
manner, resulting in an updated length m + 1 — p block Arnoldi reduction. A final
m 4+ 1-th shift may be applied without involving A | since

(A - ﬂm+1I)V1I— = VT(HT - ﬂm+11) + Fil—

and orthogonalizing the righthand side gives a new starting block. This approach was
proposed in [1].

Denote by the polynomial ®,(A) = (A—p1) - - - (A—pp ). Post-multiplication of (4.2)
with E; results in the important relationship

(4.6) ®,(A)V; = V,,11QRE; = V.11 Qi Ry,

where R is the leading principal sub-matrix of R of order b and Q; contains the first
b columns of Q. If the polynomial ®,(A) = A is used, the above relationship gives
a connection with subspace iteration. Specifically, it shows how subspace iteration
is implicitly performed on the current Arnoldi matrix V,,41. However, instead of
restarting a subsequent Arnoldi reduction with V,,11Q1, we apply Q as in (4.3).
Thus, a polynomial in A 1s applied implicitly—just as in the traditional implicitly
shifted QR algorithm. The benefit is that matrix-vector products with A are avoided.
If matrix-vector products with A are expensive, implicitly restarting leads to a more
efficient algorithm. See [14] for details on a connection with subspace iteration and

the QR algorithm.

5. Practical Algorithm. Figure 5.1 lists a generic block implicitly restarted
Arnoldi method (bIRAM). The remainder of this section discusses some of the imple-
mentation issues necessary for a robust software implementation. In particular, we
address the issues of block size (b), the selection of shifts during the implicit restart
and choice of p, convergence considerations, and a deflation strategy. The superscript
(7) is dropped whenever convenient.

5.1. Block Size. We now consider some of the issues and tradeoffs that should
be considered when selecting the block size. For this discussion we assume that
comparisons are made using a fixed maximum dimension for the subspace.

As the blocksize increases, the length of the Arnoldi reduction m = r+p decreases.
Since the degree of the largest power of A in the corresponding Krylov space is m—1,



6 R. B. LEHOUCQ AND K. J. MASCHHOFF

smaller block sizes allow a polynomials of larger degree to be applied. The downside
to an unblocked method is that it cannot compute multiple copies of an eigenvalue of
A unless the reduction already well approximates some of the associated eigenvectors.
For example, the first Ritz pair should give a residual of O(epr) or smaller relative to
the norm of A before the second copy emerges.

One of the benefits of block methods is that they are more reliable for comput-
ing approximations to the clustered and/or multiple eigenvalues using a relatively
large convergence criterion. Note that the block size used may be varied during each
iteration.

5.2. Filter Choice. Each iteration of Algorithm (5.1) implicitly replaces the
starting block U; with ®,(A)U;. Recall that the polynomial ®,(A) acts like a filter
on the starting block amplifying components in the direction of the desired invariant
subspace.

Numerous choices are possible for the selection of the p shifts, including the
specific choice of p. If the shifts are in complex conjugate pairs, the implicit double
shift [10, pp. 355—-358] can be used to avoid complex arithmetic.

Typically, the p shifts are selected by utilizing the spectral information contained
in H,,,. Partition the eigenvalues of H,, so that

(5.1) {01,...,0,} U{br11,...,0m}.
wanted unwanted

For an unblocked reduction, the p shifts are selected from the unwanted eigenvalues of
H,, where » = k. Sorensen [29] proposed this as a exact shift strategy. This strategy
is equivalent to restarting the subsequent reduction with a linear combination of the
approximate Schur vectors associated with the £ wanted eigenvalues. Other choices
of shifts are possible. These include the roots of a Chebyshev polynomial, harmonic
Ritz values [17, 18, 28], and Leja points [1].

In the algorithm listed in Fig. 5.1, the integer r is typically set to &, the number of
wanted eigenvalues, during the input step. Once the iteration loop has been entered,
the values of r, p and thus m = r 4+ p may vary for every value of i. When b > 1,
we cannot apply all p = m - b — k unwanted eigenvalues as shifts. We are then faced
with the question of selecting which p shifts to apply and whether we should consider
applying more than p shifts.

For example, m shifts can be applied until a Ritz pair satisfies the convergence
tolerance. The Ritz pairs can then be deflated (or locked). (This is equivalent to
the deflated iterative Arnoldi algorithm given by Saad [24, p. 181] and used in the
implementations in [2, 27].) This approach allows us to implicitly apply a polynomial
filter of the maximum degree. (Application of more than » + p shifts will require
applying explicit polynomialsin A. ) However, as more shifts are applied, the cost in
computing the subsequent Arnoldi reduction increases.

A strategy that varies v, p (relative to k) and the shifts used during every iteration
will give the best results. This is the subject of current research. The recent report [30]
discusses an adaptive strategy for symmetric eigenvalue problems. A near-optimal
adaptive strategy should be possible because of the connection between bIRAM and
subspace iteration [14].

5.3. Convergence. Suppose that (s, ) is an eigenpair of Hy,. It follows easily
from Equation (3.1) that

(5.2) AV,,s — V50 = F,ELs,
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and so ||AV,,s — V80| = [|Fun|l[|ELs|| = [|Gmt1,ml| |IEL s||. Thus, if the last &
components of s are small relative to the size of ||Gp41,m]|, then the Ritz pair (z =
Vis,0) is an exact eigenpair for a matrix near A. This follows since (5.2) may be
rewritten as (A — F,, EL sz)z = z0.

The iteration in bIRAM terminates at the value of ¢ when the k wanted eigenvalues
of HYY satisfy (5.2). The eigenvalues are partitioned as in (5.1) so that the wanted
ones correspond to the eigenvalues of A desired.

5.4. Deflation. Because a bIRAM may be viewed as a truncation of the stan-
dard implicitly shifted QR-iteration, it shares a number of the QR-iteration’s desirable
properties. The main advantages of a numerically stable deflation strategy are the
reduction of the working size of the reduction and the ability to determine clusters
of nearby eigenvalues without requiring the block size to greater than or equal to the
size of the cluster. The deflation scheme developed for the bIRAM implementation is
an extension of the techniques discussed by Lehoucq and Sorensen [15].

Let H be an unreduced band upper Hessenberg matrix of order m with block
size b. Then, given a Ritz value 8, we construct an orthonormal matrix Q such that

Qs —e; and

Els0 0 ... C
——
b columns

El Q=

where C 1s an upper triangular matrix of order 5. This specification for Q is more
restrictive than that originally proposed in [15], where Q needed to satisfy only Qs =
e; and ||EL Q|| = O(||EL s||). Numerical experience indicates that this restrictive Q
1s more robust in practice.

Applying this orthonormal matrix Q to the Arnoldi reduction gives
(5.3) AVQ =VQ [ 0 H ] + FE, Q.

The first column of the previous equation gives the relationship
Az, =2z,0+ FEZ;S.

The Ritz vector z; = V8 is considered locked, and subsequent implicit restarting is
performed on V,, consisting of the last m-b—1 columns of VQ. Equation (5.3) is not a
block Arnoldi reduction because H no longer is a band Hessenberg matrix. However,
a sequence of elementary unitary matrices may be applied without disturbing the
structure of FCEZ, and the first column of QTHQ. See [15] for details.

This deflation process allows us to incrementally build an approximate partial
Schur decomposition AZ; ~ Z;T; that satisfies

IAZ; = Z;T; | = O(||F ]| [|E7sl)).

Here T; is an upper triangular matrix of order j containing the Ritz values of interest.
When A is Hermitian, T; is a diagonal matrix. See [15, pp. 801-802] for locking
complex conjugate pairs of Ritz values in real arithmetic so that complex arithmetic
can be avoided for real A.

A significant benefit of this deflation procedure is that as Ritz values converge
they can be implicitly deflated from the active reduction without the need to build
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a new reduction from scratch. This avoids additional matrix-vector products and or-
thogonalization costs that would be incurred if the deflation was performed explicitly.
In terms of the current reduction we have

T; M;

Al Val=(2z Vol o

T
]+FmEm+j.

Here Z; contains the j locked approximate Schur vectors. We define the active re-
duction to be

(5.4) AV, =V, H, +F,ET

where A = (I—-Z,Z2) A Note that the projector I—Z,, Z is never applied. Instead,
as V,, is computed, orthogonality of its columns against Z; is maintained through
the coefficients M. This achieves a clean form of selective orthogonalization [19].

An implementation detail is the selection of an appropriate locking criterion. For
the numerical experiments, we used a locking tolerance of

|IEmsi|| < max(1072 ny, ear)

where 5y is the user-specified tolerance and ey is the machine precision.

An algorithmic 1ssue that arises is how to handle situations where the number of
converged vectors to be locked is not a multiple of the block size. At the completion
of the deflation procedure, the active reduction has an incomplete last block. To
simplify the implicit restarting mechanism, we fill out this last block so that the
active reduction is of length m - b.

6. Numerical Experiments. In this section we compare results for the blocked
and unblocked methods. Our aim is to acquire a better understanding of the prac-
tical behavior of these methods. Comparisons also are made to other block Arnoldi
methods to demonstrate the effectiveness of implicit restarting.

Experiments were conducted in MATLAB on a Sun SPARCstation20 using IEEE
double-precision arithmetic. When comparing the different algorithms and various
block sizes, we fix the maximum number of vectors b - m in the subspace where
m = r + p. During every iteration the number of shifts applied is p. With these
requirements the orthogonalization costs per iteration remain approximately constant.
Since this is only an experimental MATLAB code, we rely on the iteration count and
the total number of matrix-vector products to rank the performance of the methods.
For the matrix-vector products we provide both an individual count and the number
of times the matrix is applied to a block of vectors. In many instances, the cost of
computing a few matrix vector products is commensurate with that of one matrix-
vector product, and this primarily determines the efficiency. Inherent in the number
of iterations is the cost associated with the solution of a small eigenvalue problem and
the QR iteration associated with the implicit restart mechanism.

An eigenpair (6,s) of H,, is accepted as converged if

IELSIHIGmermll < 10170,

where 7y is a user-specified tolerance. Each pair that satisfies the convergence tol-
erance is then deflated by using the techniques of § 5.4, resulting in a partial Schur
decomposition.
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TABLE 6.1
2-D Laplacian (p = 0) matriz of order 2500. Results are for finding the siz eigenvalues of
smallest magnitude using a tolerance of 10710 and a mazimum subspace dimension of m -b = 24.
The tmplicit restarting strategy uwsed was to apply the p least wanted Ritz values as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTsll|2
16182441 608  (608) 010~ %)
16|18 | 24 | 41 608 (608) 010712
212]10]12 |35 694 (347) 010712
213]9 | 12|30 540 (270) 010712
31206 |8 |42 744 (248) 010712
4124 |6 |49 800  (200) 010712
611|3 |4 |58 1068 (178) 010712
8|12 |3 |82 1344 (168) 010712
TABLE 6.2

2-D Laplacian (p = 0) matriz of order 2500. Results are for finding the siz eigenvalues of
smallest magnitude using a tolerance of 10~ and a mazimum subspace dimension of m -b = 24.
The tmplicit restarting strategy uwsed was to apply the p least wanted Ritz values as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTsll|2
1618 |24 |35 |509 (509 O10—")
2021012 |21 |420 (210) O(107)
2039 |12 |24 |43¢ (217) 0(107%)
3126 |s [30 |43 (181) 0(10~%)
al2l4 |6 |40 |65 (164) 0(107%)
6113 |4 [44 |s04 (134) O(107)

6.1. Model Problem. The first problem for which we present results 1s a two-
dimensional convection—diffusion problem

—Au+ p(ug + uy) = Au.

Here we discretize using centered finite differences on the unit square with zero
boundary data. We have chosen this example because it has the following interesting
properties:

e Eigenvalues and eigenvectors of the resulting matrix are known explicitly.

e Many eigenvalues have multiplicity two.

e As the mesh size decreases, relative separation of all the eigenvalues decreases.
All are contained within the interval (0, 8).

e As p increases, so does the non-normality of the matrix.

Although block algorithms are not always required for determining multiplicities,
they require fewer applications of A than does the unblocked variant. Block methods
demonstrate group convergence to multiple eigenvalues, whereas an unblocked method
requires a Ritz value and vector to be fairly well approximated before any additional
copies emerge.

6.2. Two-Dimensional Laplacian. Tables 6.1 and 6.2 list the results for find-
ing the six eigenvalues of smallest magnitude and corresponding eigenvectors for the
two-dimensional Laplacian (p = 0) matrix of order 2500 for convergence tolerances of
10710 and 107%, respectively. A moderate maximum subspace dimension of m-b = 24
was used with an exact shifting strategy where the p least wanted Ritz values (relative
to magnitude-based ordering) were used as shifts. Although when 6 > 1 the number
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TABLE 6.3
2-D Laplacian (p = 0) matriz of order 2500. Results are for finding the siz eigenvalues of
smallest magnitude using a tolerance of 10710 and a mazimum subspace dimension of m -b = 36.
The tmplicit restarting strategy uwsed was to apply the p least wanted Ritz values as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTs||2
1[6]30]36]21 540  (540) 0(10~")
2 (3]15| 18|65 1916 (958) 01071
3 02]10 12109 | 3171 (1057) 010712
412|7 |9 |7 2004 (501) 010712
6115 |6 |67 2040 (340) 010712
9113 |4 |49 1341 (149) 010712
TABLE 6.4

2-D Laplacian (p = 0) matriz of order 2500. Results are for finding the siz eigenvalues of
smallest magnitude using a tolerance of 10~ and o mazimum subspace dimension of m -b = 36.
The tmplicit restarting strategy uwsed was to apply the p least wanted Ritz values as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTsll|2
16303618 183 (483) O10~")
23|15 18 |17 514 (257) O(107)
312101228 846 (282) 0(10~%)
al2|7 |9 |2 604 (151) O(107)
6115 |6 |28 852 (142) 0(107%)
9113 |4 |49 1026 (114) 0(10~%)

of Ritz values we are able to filter out is less than the total number of unwanted
Ritz values (in this case 18), we still obtain good convergence to the eigenvalues of
interest. Here the benefit of group convergence outweighs any possible degradation
in performance due to a smaller value of p.

Tables 6.3 and 6.4 show the results for the same matrix using a larger subspace
m - b = 36 with the same exact shifting strategy described above. By using a larger
subspace we gain the advantages of a longer recurrence in the Arnoldi process. How-
ever, a larger subspace also translates into an increase in the number of unwanted
eigenvalues that cannot be used as shifts. For instance, in the previous example
where we used a maximum basis of 24 and b = 2, we are able to apply 9 of the 18
unwanted eigenvalues. Using a maximum basis of 36 and b = 2, we can apply only 15
of 30 unwanted eigenvalues. We observed in our experiments that when a large sub-
space 1s used relative to the number of eigenvalues desired, the exact shifting strategy
was not necessarily the best choice. This situation was especially evident for smaller
values of ny.

If we instead use the roots of a Chebyshev polynomial of degree p defined on
the interval that excludes the six smallest eigenvalues of H,, as shifts, a better filter
results for small block sizes. For larger values of b, the degree of the Chebyshev
polynomial p is not sufficient to adequately characterize the particular region of the
spectrum which we would like to filter. When the maximum number b - m of vectors
is small (say less than 10), the use of Leja shifts gives the best results [2].

6.2.1. Two-Dimensional Convection-Diffusion Matrix. Tables 6.7 and 6.8
list the results for finding the six eigenvalues of smallest magnitude and the cor-
responding Schur vectors for the two-dimensional convection-diffusion matrix with
p = 20. Again by using a moderate maximum subspace dimension we get promising
results for b > 1. For ny = 107°, the number of applications of A decreases as the
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TABLE 6.5
2-D Laplacian (p = 0) matriz of order 2500. Results are for finding the siz eigenvalues of
smallest magnitude using a tolerance of 10710 and a mazimum subspace dimension of m -b = 36.
The implicit restarting strategy used was to apply the roots of a Chebyshev polynomial of degree p
as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTsll|2
1]6]30]36]21 569  (569) 010~ ")
23|15 |18 |29 866  (433) 01071
31211012 |47 1410 (470) 010712
4027 |9 |62 1740 (435) 010712
6|1 |5 |6 |142 | 4290 (715) 010712

TABLE 6.6
2-D Laplacian (p = 0) matriz of order 2500. Results are for finding the siz eigenvalues of
smallest magnitude using a tolerance of 10~% and o mazimum subspace dimension of m -b = 36.
The implicit restarting strategy used was to apply the roots of a Chebyshev polynomial of degree p
as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTsll|2
16303618 183 (483) O10~")
2013|1518 |20 598 (299) O(107)
312101231 930 (310) 0(10~%)
al2|7 |9 |43 1216 (304) O(107)
6115 |6 |93 |2820 (470) O(107)

block size increases. This trend is also displayed for 5y = 1070, But this smaller
tolerance also requires a significant number of additional applications of A as the
blocksize increases.

6.2.2. Matrices from Harwell-Boeing Collection. Other matrices that we
have used to evaluate the potential of implicit restarting for block methods are taken
from the Harwell-Boeing collection [8] of sparse matrices. These problems were cho-
sen because they have appeared in the literature for sparse nonsymmetric eigenvalue
problems. For these matrices we used ny = 10712,

Tables 6.9 and 6.10 show the results for the matrix GRE1107. This matrix, taken
from a simulation study for a computer system, has a dimension of 1107 with 5664
nonzero entries. The matrix is real nonsymmetric. Here we are able to directly com-
pare our results with another block Arnoldi implementation [27] EB13. We include
this comparison to emphasize the potential of implicit restarting for block Arnoldi
methods. In all cases we compare our results with the “best” results obtained from
EB13. EB13 provides both blocked and unblocked Arnoldi methods and includes op-
tions for Chebyshev acceleration and Chebyshev preconditioning. Restarting for EB13
is done explicitly using linear combinations of approximate Schur vectors. Compar-
isons are made for maximum subspace dimensions of 24 and 40.

For GRE1107 the best results from EB13 were obtained using the unblocked
Arnoldi method with Chebyshev preconditioning. The preconditioned method ex-
hibits very fast convergence (2 iterations); but because the operator used to generate
the Arnoldi reduction is a high degree polynomial in A | this approach requires a large
number of matrix-vector products. (Implicit restarting is performed by using the p
least wanted Ritz values as shifts.) bIRAM requires substantially fewer matrix-vector
products regardless of the blocksize.

Sadkane [26] also presents numerical results using a block Arnoldi method for
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TABLE 6.7
2-D convection-diffusion matriz of order 2500, p = 20. Results are for finding the siz eigenvalues
of smallest magnitude using a tolerance of 10710 and o maezimum subspace dimension of m-b = 24.
The tmplicit restarting strategy uwsed was to apply the p least wanted Ritz values as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTsll|2
1]6]18]24]34 530 (530) 010~ %)
21319 |12 34 610 (305) 010712
214]8 |12 34 544 (272) oo~
31206 |8 |40 720 (240) 010712
4124 |6 |47 760 (190) 0(1071%)
6|13 |4 |65 1182 (197) oo~
TABLE 6.8

2-D convection-diffusion matriz of order 2500, p=20. Results are for finding the siz eigenvalues
of smallest magnitude using a tolerance of 1076 and a mazimum subspace dimension of m -b = 24.
The tmplicit restarting strategy uwsed was to apply the p least wanted Ritz values as shifts.

b|r|p m | Tters. | MV Products | ||AZs — ZsTsll|2

16|18 |24 |30 | 445 (445) O(107%)

2210|1222 |444 (222) 0(107%)

2039 [12]26 |462 (231) 0(1078)

3206 [8 |30 528 (176) 0(1077)

41204 |6 |38 616  (154) 0(10~7)
TABLE 6.9

GRE_1107, Harwell-Boeing collection. Results are for finding the eight rightmost eigenvalues
using a tolerance of 10712 and a mazimum subspace dimension of m-b = 24. The implicit restarting
strategy used for bIRAM was to use the p least wanted Ritz values as shifts. A3 uses the Chebyshev
preconditioned Arnoldi option of EB13.

b|r|p m | Tters. MV Prod. ||AZs — ZsTs||2
TRA [ 1|8]16]24]33 448 (448) O(1071%)

2148 |12 |37 580  (290) 0(1071%)

31216 40 720 (240) 0(10712)

4124 |6 |62 980  (245) 0(10712)

g l1]2 |3 |101 1664  (208) 0(1071%)
A3 |1 24 | 2 984  (984) o0~

TABLE 6.10
GRE_1107, Harwell-Boeing collection. Results are for finding the eight rightmost eigenvalues
using a tolerance of 10712 and a mazimum subspace dimension of m-b = 40. The implicit restarting
strategy uwsed for bIRAM was to use the p least wanted Ritz values as shifts. A3 and ABS use
unblocked and blocked Chebyshev preconditioned Arnoldi options, respectively, available in EB13.

b r|p m Tters. MV Prod. ||AZs — ZsTs||2
TRA |1 [8[32]40 |15 392 (392) 010~ ")
2 | 4|16 |20 |16 506 (253) 01071
4 |28 |10 |24 788 (197) O(1071%)
10(1]3 |4 55 1710 (171) 010712
A3 |1 40 |2 1656 (1656) O(1071%)
AB3 | 10 4 3 4940 (494) 010712
AC | 8 320 2920 (365) 0(1079)
DAV | 8 320 3464  (433) 0(1077)
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TABLE 6.11
HOR131, (N=434) Harwell-Boeing Collection. Results are for finding the eight rightmost eigen-
values using a tolerance of 10712 and a mazimum subspace dimension of m -b = 24. The implicit
restarting strategy used for bIRAM was to use the p least wanted Ritz values as shifts. Al and A2
use a unblocked Arnoldi and Arnoldi with Chebyshev acceleration options, respectively, available in

EB13.

b|r|p m | Tters. MV Prod. ||AZs — ZsTs||2
TRA[1[8]16|24]5 77 (T7) 0(10~")
2148 |12 |5 84 (42) o107
3135 |8 |6 99 (33) 0(1071%)
412|4 |6 |6 108 (27) o107
8112 |3 |10 176 (22) 0(1071%)
Al |1 24 | 22 497 (497) 01071
A2 |1 24 | 11 439 (439) 01071
TABLE 6.12

HOR131, (N=434) Harwell-Boeing Collection. Results are for finding the eight rightmost eigen-
values using a tolerance of 10712 and o mazimum subspace dimension of m -b = 40. The implicit
restarting strategy used for bIRAM was to use the p least wanted Ritz values as shifts. Al and AB2
use a Arnoldi and block Arnoldi with Chebyshev acceleration options avatlable in EB13.

b r|p m Tters. MV Prod. ||AZs — ZsTs||2
IRA |1 [8]32]40 |2 71 (1) O(1071%)
2 | 4|16 |20 |2 72 (36) O(1071%)
4 |28 |10 |3 104 (26) O(1071%)
10(1]3 |4 6 190 (19) 0(1071%)
Al |1 40 |5 202 (202) 0(10712)
AB2 | 10 4 3 414 (42) 0(10712)
DAV | 8 320 264 (33) 0(107")

GRE1107. Here he uses explicit restarting (the polynomial filter is applied with the
matrix) with Chebyshev acceleration using polynomials of degree 40 and a maximum
subspace dimension of 40-8. We have appended his results for block Arnoldi-Chebyshev
(AC) and Davidson (DAV) methods to the bottom of Table 6.10 for reference. It
should be noted that the results for bIRAM and EB13 are for a maximum subspace
of 40 with a tolerance of ny = 10712,

Tables 6.11 and 6.12 show the results for the matrix HOR131. This matrix, taken
from a flow network problem, is of order 434 with 4182 nonzero entries. The matrix is
real nonsymmetric with symmetric structure. The performance of bIRAM is superior
when compared with EB13 and the unsymmetric Davidson method. (The results
for the unsymmetric Davidson implementation used the diagonal of the matrix as the
preconditioner.) One interesting observation is that by using implicit restarting we no
longer require large subspace dimensions to take advantage of block methods. Other
Arnoldi methods have typically required longer Arnoldi reductions in order to achieve
reasonable convergence. The ability to use smaller basis sets reduces the relative cost
of maintaining full orthogonality of the Arnoldi vectors.

It is clear from our numerical results for GRE1107 and HOR131 that implicit
restarting represents a substantial improvement over other implementations of block
Arnoldi methods.

Figure 6.13 show the results for the matrix NNC1374. This matrix, derived from
a model of an advanced gas-cooled reactor core, is of order 1374 with 8588 nonzero
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TABLE 6.13
NNC1374, Harwell-Boeing Collection. Results are for finding the eight eigenvalues of largest
magnitude using a tolerance of 10712 and a mazimum subspace dimension of m -b = 24. The

implicit restarting strategy used for bIRAM was to use the p least wanted Ritz values as shifts.

b|r|p m | Tters. MV Prod. ||AZs — ZsTs||2
TRA [ 1|8]16]24] 16 235  (235) oo~ "

2148 |12]18 286 (143) o012

31206 |9 |20 357 (119) oo

411 |5 |6 |23 464 (116) oo~

412 |4 |6 |28 456 (114) oo~

8 l1]2 |3 |62 1016 (127) oo

entries. The matrix is real nonsymmetric.

7. Conclusions. This article investigated an implicitly restarted block Arnoldi
method. The two benefits of increasing the block size used with an implicitly block
Arnoldi method are

e the ability to reliably compute multiple and/or clustered eigenvalues while
using a modest value of 5y, and

e the number of applications of A tends to decreases as the block size increases.
This will result in a substantial increase in efficiency if applying A to a group
of vectors is faster than applying A to a vector one at a time.

Our experimental results also indicate that an implicitly restarted scheme is superior
to other block methods that have appeared in the literature. Not only does bIRAM use
dramatically fewer matrix-vector products, it also requires significantly fewer Arnoldi
vectors to be stored.
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