
SOWING MPICH: A CASE STUDY IN THE DISSEMINATION OF APORTABLE ENVIRONMENT FOR PARALLEL SCIENTIFICCOMPUTING�WILLIAM GROPPy AND EWING LUSKzAbstract. MPICH is an implementationof theMPI speci�cation for a standardmessage-passinglibrary interface. In this article we focus on the lessons learned from preparing MPICH for diverseparallel computing environments. These lessons include how to prepare software for con�gurationin unknown environments; how to structure software to absorb contributions by others; how toautomate the preparation of man pages, Web pages, and other documentation; how to automateprerelease testing for both correctness and performance; and how to manage the inevitable problemreports with a minimum of resources for support.1. Introduction. MPI is a speci�cation for a standard message-passing libraryinterface. MPI was intended to facilitate widespread portability of programs amongdiverse parallel architectures. To help achieve this goal, at the �rst meeting of theMPI Forum in 1992, we volunteered to provide a reference implementation of MPI.The implementation was to begin immediately and to track the evolution of the MPIstandard from meeting to meeting instead of waiting for its completion. Within aweek, major parts of the initial draft were implemented, and MPICH continued totrack the development through to completion.What enabled us to implement the initial draft so quickly was considerable expe-rience with the portable parallel message-passing systems Chameleon [15] and p4 [3].As a result of those experiences, we decided to pursue an aggressive program of relyingon automated tools|both existing ones and those we would write{to help us design,write, test, distribute, and maintain MPICH.In our opinion, this program has been quite successful: we have developed along-side MPICH a set of procedures and tools for disseminating portable parallel softwarethat is independent of MPICH itself. In this article we discuss our experiences; of-fer advice to other tool developers involved in large, multiperson, multiyear projects;�This work was supported by the Mathematical, Information, and Computational Sciences Di-vision subprogram of the O�ce of Computational and Technology Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38.yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439zMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 604391

and describe simple tools that users are welcome to appropriate from the MPICHdistribution and adapt to their own purposes.The article is organized as follows. In Section 2 we outline in more detail thegoals of the MPICH project, which motivated the procedures and tools we used. InSection 3 we describe how we dealt with the problem of multisite development of alarge system. Section 4 describes how the system was designed for portability. Inparticular, we describe our heavy reliance on GNU autoconf, which is a fundamentalcomponent of the MPICH distribution strategy. In Section 5 we describe how wemanage documentation in the form of manuals, man pages, and Web pages. Section 6describes how we conduct automated testing of the system, and Section 7 describesthe process of releasing the system for distribution. In Section 8 we discuss our toolsfor managing interactions with users. We conclude with a summary of what we havelearned and how we would design tools and procedures for the next portable parallelprogramming project.2. Goals. The strategies and tools we describe here were directly motivated bythe original goals of the MPICH project. MPICH has been both a research project anda software project. As a research project, it has explored the degree to which portablesystems could achieve high performance. As a software project, it has promoted theadoption of the MPI standard by providing users with an early, free implementationand vendors with a running start on their own proprietary implementations. Thearchitecture of MPICH, as well as the tradeo�s made between portability and per-formance, has been described in [13]. Here, we focus on the project goals that wereindependent of the particular system being implemented. Such goals presumably areshared by developers of other portable parallel environments.Goals for the code. The goals we had for our code were the normal ones|robustness and performance|plus the extra one of extreme portability. We wishedMPICH to be installable in a great variety of parallel environments, ranging fromdistributed-memory machines to shared-memory parallel machines to heterogeneousworkstation networks. Parallel systems o�er particular challenges in the area of porta-bility, both because they must rely on a number of operating system features andbecause approaches to parallelism are so di�erent in various systems.Goals for users. Ease of con�guration and installation were major goals. Docu-mentation was critical. We also expected users to take advantage of MPICH's porta-2

bility and use it in multiple parallel environments. Thus, we tried to achieve porta-bility not only of the user's application programs, but also of the user's Makefilesand execution scripts.Goals for us. We naturally wished to minimize the e�ort of developing parallelcode for a wide variety of environments. We needed to manage a relatively largeamount of code and to collaborate with others in both writing and maintaining it.We needed to minimize the overhead of release management. Finally, we wishedto respond to bug reports, both to ensure user satisfaction and to increase systemrobustness.3. Managing Code Development. The MPICH distribution contains 2,449�les, of which 1,188 contain the 231,220 lines of source code. While these numbers areonly an approximate measurement of size and complexity, they do show that MPICHis a nontrivial project and is large enough to justify investment in automated toolsand procedures.3.1. Structuring of MPICH Code. MPICH contains many pieces: sourcecode for the MPI standard library routines (in C and Fortran), documentation inthe form of man pages and manuals, examples and test programs, and assorted toolsand programming environment add-ons (such as pro�ling and graphics libraries). Wedecided to maintain a single directory tree containing all components. The MPICHdistribution is extracted from this tree when a release is made (see Section 7).Three particular decisions served us well. The �rst was to divide the implementa-tion into layers, as described in [13]. The lower layer comprises multiple implementa-tions of a single \abstract device." Somewhat inaccurately, we refer to these multipleimplementations as \devices." Many of these devices are direct interfaces to the ex-isting communication libraries of particular vendors (for example, the T3D, NX, andMeiko devices); others are implemented on lower-level portable systems (such as thep4, Nexus, shared-memory, and TCP devices). The main bene�t of this structure isthat most of the MPICH source code is shared among all the devices. Such sharingapplies not only to high-level MPI routines such as datatype and topology manip-ulation functions (which one would expect to be portable) but also to the memorymanagement and data structure manipulation code associated with the abstract de-vice itself, which de�nes a uniform message-passing layer based on multiple protocolsfor messages of varying sizes. The lower-level devices are then used to implement this3

layer. As a result, we have been able to� spend most of our time working on code that is common to all platforms onwhich MPICH runs (even much of the device code is shared among multipledevices);� accept new device implementations from vendors and others, smoothly ab-sorbing them into MPICH (in particular, the T3D, Meiko, NX, Convex SPP,and Nexus devices were written outside our group and plugged into MPICHvia the Abstract Device Interface described in [9] with a minimum of di�-culty); and� experiment with new devices wthout impacting the stability of existing code(a recent example was a new version of the generic shared-memory devicethat avoided most uses of locks [12]).Our second decision regarding the source code management concerned the Fortran-callable versions of the MPI library routines. The Fortran interface consists of a setof wrapper functions that transform their arguments into the correct form for the Cversions and then call the standard C versions of the functions. Automated produc-tion of the wrapper functions was especially useful during the period when the MPIstandard was changing every six weeks and the language bindings were in ux. Weused the highly con�gurable bfort program, described in [6]. Particular problemsthat bfort handled automatically for us were� adding the extra error return code argument for all Fortran MPI functions,and setting it as the return value of the corresponding MPI function;� converting C pointers to Fortran integers and back again;� automatically generating Fortran names (the wrapper functions are writtenin C but must have Fortran names, which di�er from one system to another;we used configure to �gure them out, as described in Section 4.1.)� dealing with 64-bit problems as necessary (e.g., if a pointer �ts into an in-teger, we just cast it, but otherwise we used a mapping; again, configuredetermined what was necessary).The third decision involved code modularity with respect to subsystems of theMPI implementation. The modular approach made it easy to completely replace thecode for dealing with datatypes, for example. We expect to be able to upgrade thealgorithms used in the collective operations without impacting any other code.4

3.2. Distributed Development of MPICH. Because the number of peopleworking at any one time on MPICH was small, we did not need a sophisticateddistributed source code management system. We relied on RCS, using it primarilythrough the Emacs interface. (Emacs itself, of course, provides considerable supportfor writing programs.) To handle the large number of �les in many subdirectories, wewrote a few scripts to help us with the low-level RCS-related tasks:� needrcs searches the whole mpich directory tree for �les and directories thatappear to require being put under RCS control.� torcs puts a �le, a list of �les, or a whole directory under RCS control,supplying our own values as the arguments to the rcs -i command.� findlocks searches all the RCS directories for locked �les and identi�es whoholds the lock. This is useful for �nding �les left in the locked state acciden-tally.We are now beginning to experiment with CVS [1], which provides more support formulti-site work by allowing checkout of whole subsystems at a time.4. Managing Portability. MPICH runs on massively parallel processors suchas the IBM SP-2, Cray T3D, Intel Delta and Paragon, Meiko CS-2, TMC CM-5, andNCUBE; shared-memory multiprocessors such as the Convex Exemplar, SGI PowerChallenge, and NEC SX-4; on Cray C-90's; on workstations from Sun (both SunOSand Solaris), IBM, DEC, and HP; and on PC's running Linux, FreeBSD, or Solaris.Although these are all \Unix machines," they collectively illustrate the di�culties ofwriting portable Unix programs. Some of the obstacles to portability are� di�erent OS functionalities (e.g., how signals work);� compiler names and ags;� lengths of basic data types, including long integers, pointers, and long doubles;� locations of header �les and libraries (X);� multiple, incompatible C and Fortran compilers; and� library contents and locations (-lsocket, -lthread).(We note that some of the major obstacles to portability of Unix applications aredue to the failure of the Unix community to standardize aspects of the operating sys-tem and environment important to software developers. The mechanisms we describein this section are a far cry from the \setup" command familiar to PC users.)5

4.1. Portability for the Developers. The basic problem that we had to ad-dress was the multiplicity and variability of target environments. Although the num-ber of systems is small enough to make a list of system names that could be testedfor with #ifdefs, we have found this method too restrictive because of the manyvariations among and within the systems. These variations arise both from release-to-release variability and from local installation variations. It is far better to test forspeci�c capabilities and properties than for a system name.Our previous experiences led us to rule out certain mechanisms for managingportability. Chameleon used include statements in its make�les to enable users toassemble the make�les required on a given system. This mechanism proved inconve-nient for users and is not supported by some makes (such as BSD 4.4). p4 used anenvironment de�nition �le, with a set of Makefile variables for each environment,that was grafted onto prototype makefiles. This was convenient for users who hadone of the supplied environments, but inconvenient for the authors, who constantlyhad to increase the set of supported environments, often just to provide a minorvariation. We also considered using xmkmf but found it more cumbersome to usethan autoconf, as well as being tied to the X distribution and local installation. Wefound GNU autoconf [1] to provide an excellent solution. GNU autoconf is a setof m4 macro de�nitions from the Free Software Foundation that makes it easy fora developer to create a configure script for delivery with a software package. Therecipient does not need to have autoconf on site; the configure script is a Bourneshell script that can be executed by all but the worst implementations of sh. Whenthe configure is run in a particular user environment, it investigates the environ-ment dynamically to determine such information as the name of the C compiler, theexistence of certain header �les, and the location of the X libraries. It can also rundeveloper-supplied programs to test properties of the environment and system soft-ware. We used configure to determine everything that we needed to build MPICH,from the data type returned by malloc to the external names used by the linkerto recognize Fortran functions. Our configure recognizes various OS versions andsets compiler ags appropriately. Some of the more interesting tests carried out byMPICH's configure script are� identifying strange makes,� testing for known bugs in certain compilers,6

� testing for availability of international message catalogs,� testing whether Fortran accepts -I,� testing whether signals are reset when used, and� determining the number of arguments for gettimeofday.Arguments to configure can control MPICH options, such as which device touse, whether to build all the mpe support libraries, or whether to compile in variousdebugging modules. Even with no arguments, however, the configure script candeduce enough of the environment to produce a working con�guration. The outputof configure includes Makefiles in all MPICH subdirectories and several speciallyprepared scripts.Here is a fragment of output from configure as run on a DEC alpha workstation:Configuring with args -device=ch_shmemConfiguring MPICH Version 1.0.13.*#*# You should register your copy of MPICH with us by sending mail*# to majordomo@mcs.anl.gov containing the message*# subscribe mpi-users*# This will allow us to notify you of new releases of MPICH.Trying to guess architecture ...configuring for "alpha" target architecturechecking for ranlibchecking gnumake... nochecking BSD 4.4 make... no - whewchecking OSF V3 make... Found OSF V3 makeThe OSF V3 make does not allow comments in target code.Using this make may cause problems when building programs.You should consider using gnumake instead.. . .checking for mmap... yeschecking for msem_init... yeschecking for mutex_init... nochecking for shmat... yeschecking for semop... yes 7

checking that signals work correctly... yeschecking for hostname... found /usr/ucb/hostname (1). . .checking for nl_types.h... yesGenerating message catalogs... donechecking for ANSI C header fileschecking for stdlib.h... yeschecking for malloc return type... void. . .Fortran externals have a trailing underscore and are lowercasechecking for Fortran include argument... supports -Ichecking Fortran has pointer declaration... yeschecking for correct handling of conditionals...... yeschecking for correct handling of conditionals part 2 yeschecking that compiler truncates unsigned char correctly yes. . .checking for size of void *... 8checking for pointers greater than 32 bits... yeschecking for size of int... 4checking for int large enough for pointers... nochecking for long double... yeschecking for long long int... yeschecking size of double... 8checking size of long double... 8. . .Assembling the master configure.in�le, fromwhich autoconf builds configure,was a complex and incremental task, since we encountered various avors and releasesof Unix over time. However, in many cases now, no changes need to be made. Thereason is that configure asks speci�c questions about the environment and thus canadapt to a new system never seen before.We learned from using configure that it is important not to associate lines ofsource code with speci�c architectures or operating systems (e.g., with #ifdef AIX... #endif). Rather, the #ifdef's should refer to a speci�c capability tested for by8

configure. This more �ne-grained mechanism deals better with di�erent compilers(vendor-supplied compiler vs. gcc, for example), which may align doubles di�erently,or di�erent OS releases, which may requre di�erent numbers of arguments to systemroutines.4.2. Portability for Users. The advantage of our use of autoconf is that userscan build MPICH in any environment simply by typingconfiguremakeThe default make target in the top-level directory constructs all the libraries andexecutable commands that are part of the MPICH programming environment, andcompiles and links a small example to make sure everything is working.We supply portability for users' applications by having configure also buildthree scripts|mpicc, mpif77, and mpirun|that encapsulate the information learnedby configure when it was run. Hence, the user can usempicc myprog.cmpirun -np 16 myprogto compile, link, and run an MPICH application in any environment where MPICHhas been installed.Additionally, we have provided help for systems adminstrators who wish to installMPICH for use at their sites. Speci�cally, the mpiinstall script enables them to putthe libraries, executable commands (such as mpif77 and mpirun), and the man pagesinto standard places where their users expect to �nd them. Such an installation is alsomuch smaller than the entire MPICH source distribution, which contains extensiveexample and test programs in addition to the source code for the MPI library itself.5. Managing Documentation. A hallmark of high-quality software is its doc-umentation. The speci�cation for MPICH is given by the MPI standard itself, and wemaintain an HTML version of the standard for online reference [5]. MPICH augmentsthe standard with additional documentation, the preparation of which was facilitatedby a number of automated tools.5.1. Man Pages. MPICH inherited from PETSc [2] a tool for turning structuredcomments in the source code into man pages. The tool is called doctext [7]. Inparticular, source code of the form 9

/*@MPI_Comm_rank - Find rank of calling process in the communicatorInput Parameters:. comm - communicator (handle)Output Parameter:. rank - rank of the calling process in group of 'comm' (integer).N fortran.N Errors.N MPI_SUCCESS.N MPI_ERR_COMM@*/is turned into text using the nro� man macros that are recognized by all the standardman page display tools, such as xman, Emacs man command, or troff, and can alsobe turned into HTML text recognized by Web browers. A script, mpiman, is providedin MPICH as an interface to xman for reading the MPICH man pages. Nearly all thesource code in MPICH uses this convention, so that the man pages distributed withMPICH include not only all the MPI Standard routines, but also the MPE extensions,the user commands, and the abstract device interface routines. It is easy to maintainthe man pages automatically because their contents are embedded in the source codeitself. (The .N notations include text that is constant from one man page to another.)5.2. Manuals. We decided to separate the end user manual [11] from the in-stallation manual [10], so that each type of user would have only what was needed.In particular, the user's manual assumes that MPICH has already been installed andinstead focuses directly on how to build and run user applications. The LATEX-to-HTML converter tohtml [8] enabled us to put the MPICH User's Guide and theMPICH Installation Guide on the Web for easy reference and was critical for creatinga Web version of the MPI standard itself. These Web pages (and tohtml itself) areavailable for users to install on their own Web sites.10

5.3. Documenting Local Installation and Performance Data. An exper-imental part of MPICH is the program port, which can be used as a wrapper for theinstallation process. The command doc/port, issued in the top-level directory in-stead of configure, not only will con�gure and build MPICH, but also will prepare areport (in LATEX format) describing what configure learned about the environment,how long it took to install, what problems were encountered during installation, andgraphical performance results based on running the mpptest benchmark (see [13]).Such reports provide a snapshot of the MPICH status at any time on any machine.A full set of these reports is maintained on our Web site so that remote users cancompare their experiences with ours.5.4. Examples. It has been said that \a running example is worth a thousandman pages." MPICH comes with a rich set of example programs to help users getstarted with MPI programming. The most basic examples are minimal MPI pro-grams. The test suite (described in Section 6.1) contains examples of the use of everyMPI function. More elaborate demonstration programs, discussed in the book UsingMPI [14], are furnished; and more exotic programs, using the mpe parallel graphicslibrary that comes with MPICH, provide examples of how more complex applicationsmight be assembled.6. Managing Testing. One goal in distributing software is that users encounterno bugs. The state of software science is such that our best defense against bugs isprerelease testing. Testing has (at least) two parts: assembling the tests themselves,and actually running them. In a project designed for extreme portability, both aremuch more di�cult than in a simpler project. The failure of test programs maybe highly system dependent, so that successful testing in one environment may notguarantee the success of the same test in another environment, even for parts of thecode that are supposed to be platform independent. Because tests therefore must becarried out in multiple environments, it is di�cult and time consuming to ensure thatall necessary tests are done and to examine their output. When a bug is �xed as theresult of a test failure, it is necessary to retest in all other environments to ensurethat a �x for one machine does not introduce a new bug on another. The specter ofan in�nite loop looms. In this section we describe our testing procedures.11

6.1. Assembling the Test Suite. Our test suite began with a few straight-forward programs to exercise various MPI library routines and has grown to a fairlyextensive collection that really hunts for bugs. It exercises all of the MPI library'sfunctions and tries to exercise multiple paths within the routines. For example, itdeliberately calls them erroneously and checks that they behave according to thestandard (returning the right error codes) and as we expect. When a user submits aprogram showing a bug that has escaped our testing, we add this program to the testsuite. We have also added partial test suites that some vendors have made available,which they have used for testing their own implementations.Even so, we cannot claim that the test suite has been assembled as systematicallyas those of commercial systems. Putting together a systematic \validation suite" forthe MPI Standard would be a separate and major project in its own right, which wewould hope to contribute to. (An e�ort to develop such a validation suite is underway at Intel with ARPA support.)6.2. Running Tests. During a working day, many changes may be made tomany parts of the code. One usually at least compiles a change one has just made,but only on the system on which one is working. (We have multiple systems sharinga common user �le system.) To ensure that daily changes are systematically tested,we rely on the \nightly build." A script launched by cron attempts to compile, link,and test MPICH on a large variety of systems each night. Recently the number ofsystems has become large enough that it takes about three nights to get throughthe entire cycle. We can test locally (without moving any �les) the Sun-OS, Solaris,IRIX, HPUX, AIX, DEC, and SP versions; we have recently begun using expect (atcl tool) to manage automated testing on remote machines where we must transfer�les before testing. Each morning the results of the nightly build are mailed to us,and a finderrors script quickly locates the trouble spots in the fairly voluminousoutput.Tests can also be run by hand; the runtests script can run a complete or partialset of tests in any of the test directories and compare the output with prepreparedexpected output to quickly locate discrepancies.A special type of test is done by the tstmachines script. It checks a user'sworkstation network environment to make sure that user-supplied machine names arevalid and that permissions allow the execution of the network version of MPICH.12

6.3. Testing for Performance. Since high performance is an important goalof MPICH, performance bugs must be identi�ed and repaired along with correctnessbugs. The test suite distributed with MPICH contains a relatively sophisticatedperformance test program (mpptest, described in [13]) that can be used for tuninghigh-performance device implementations and ensuring that correctness bug �xes donot (unnecessarily) impact performance.7. Managing Distribution. It is often di�cult to tell just exactly the righttime for a public release of a new version. Balancing one's natural wish to wait untilnew features are completed is the desire to release a new version that has �xed manybugs. We have automated the process as much as possible.7.1. Bundling Files. Over time, the working copy of MPICH tends to becomecluttered with temporary �les, test input and output, and occasional core dumps. Italso contains the RCS directories. Rather than periodically scrub our working �lesfrom the tree, which would have to be done quite carefully, we put together a tar�le (either for distribution or just to move to another site) by copying the \o�cial"�les out of the working directory and tarring them up separately. The script maketardoes this.7.2. Creating a Release. In the case of an o�cial distribution, building the�nal tar �le for distribution is the �nal step of a complex process with many steps.The makedist script� runs autoconf in several subsystems to update configure scripts;� checks the working source tree to make sure no large �les unexpectedly �ndtheir way into the distribution (forgotten test executables, NFS trash �les ofthe form .nfsxxx, leftovers from unreliable ars, etc.);� runs doctext to recreate the man pages from the structured comments in thesource code, in both man and html formats;� remakes the User's Guide and Installation Guide from the original LATEXsource text;� builds the �nal tar �le with maketar;� runs testdistrib to rebuild and retest on selected systems; and� runs port to write reports on the results of the �nal tests.13

Since makedist was developed the process of creating a release has become mucheasier, since all the complicated checklists are gone through automatically.After this process has completed successfully (and several tries may be needed),we run makedist -commit, which commits the release. This �nal step increments therelease number, installs the .Z and .gz �les in the publicly accessible ftp directory,makes a split version for downloading by people with unreliable connections, andinstalls the README in the ftp directory. It also creates the shadow source �les to beused with the makepatch program (see Section 7.3).7.3. Patch Management. After the release, when bugs are found and �xed, wecreate patches that can be fetched and installed by users. The patches are numberedaccording to the bug number assigned by req. A Web page maintains bug descriptionsand the corresponding patch numbers. A script makepatch creates the patch andinstalls it on the Web.8. Managing User Interactions. Currently, over 600 users have added them-selves to our MPICH announcement list. The code itself has been downloaded thou-sands of times. Some users are actually meta-users, who install MPICH at their sitefor a large group to use. With this number of users, relying on our personal e-mailbacklogs for handling user problems does not work. We needed a system that wouldallow multiple developers to share responsibility for bug reports, that would allow usto keep track of the dialog with a problem reporter and maintain status of the bug�x in progress, and that would be easy for users to use. After considering a numberof alternatives, we chose req [4]. This system works entirely by observing, modifying,and responding to the Subject: line in ordinary e-mail. Users usually are not evenaware that they are interacting with a problem-tracking system. The req system hasa companion GUI version based on Tcl/Tk; we �nd both versions useful. Althoughwe cannot claim zero-length backlog on responding to problems, no reports are everlost and the e-mail dialog on a particular problem is always available in a single �le.The mailing list to which req is attached, mpi-bugs@mcs.anl.gov, is managed bymajordomo, which makes it easy for us to allow others to observe bug-report trackingif they wish.A number of problems that do not represent bugs but, rather, failure to read theUser's Guide occur frequently enough that we have found it useful to provide a toolfor issuing a standard response (other than \RTFM") without having to reconstruct14

it each time. The User's Guide contains a \Problems" section in question-and-answerformat. This part of the manual is actually constructed from a question-and-answerdatabase that is searchable by the script fmsg, distributed with MPICH. For example,users with malcon�gured workstation networks can receive a \permission denied"message when they run MPICH. The User's Guide contains a complete discussion ofthis problem and a number of di�erent solutions. When we receive a bug report thatwe identify as pertaining to this problem, instead of merely pointing the user to themanual, we can typefmsg permissionto obtain the full text of the discussion from the manual, which can then be pasted intoan e-mail reply. This type of response to problem reports is obviously a candidate tobecome a Web application, bypassing e-mail altogether. We have not yet implementedthis approach.9. Conclusions. In this section we summarize what worked well for us and whatwe might do di�erently on the next project.9.1. What Worked Well. The attempt to use general-purpose tools to managethe task of producing MPICH has been, in general, a success. The tools described inthis article all have had heavy use, and we could not have managed nearly as e�cientlywithout them. They fall into four categories:� The primary tool for providing portability|autoconf|was critical. We en-thusiastically recommend it.� Tools for automating the production of nontrivial amounts of both code andtext: bfort, tohtml, and doctext saved us enormous amounts of time. With-out them, the Fortran interface would have been late, and the documentationwould be sparser.� Tools for managing e-mail interaction with users: we are still happy with reqand tkreq.� Small but useful tools for automating repetitive tasks: runtests, maketar,makedist, makepatch, findlocks, makepatch, tstmachines, mpiinstall,etc., were as helpful in ensuring correctness of procedures (since they couldbe debugged and monotonically improved) as they were in saving keystrokes.15

9.2. What We Might Do Di�erently Next Time. Although we view theapproach as successful, and we would keep most of the details, the experience has leftus with a number of resolutions for the next similar project. Some of these will nodoubt eventually �nd their way into MPICH.� Organize and document the \project management" scripts and proceduresahead of time.� Use CVS instead of RCS for source code management, especially if a signi�-cant number of remote co-developers are involved.� Structure the distribution more carefully so that separate parts can be easilydistributed, yet �t into an integrated whole. Not everyone needs the wholesystem. We might even distribute prebuilt object libraries for some systems,so that users need not con�gure at all.� Use a \real" database system to manage test results, both for correctnessand performance history. The test programs could be structured with theiroutput designed for this database rather than for human consumption.� Organize even more of the documentation and user interaction software arounda Web interface.The MPICH project has been satisfying and educational. In this article we havepresented those aspects of the project that were independent of the actual content,and we have described the techniques and tools that might be common to any projectwhose goal is creating portable, parallel tools and distributing them to a user com-munity.All of the tools described here are freely available, either directly from theirdistributors (autoconf, RCS, req) or in the MPICH distribution (util subdirectory).REFERENCES[1] GNU manuals. http://www.delorie.com/gnu/docs.[2] PETSc 2.0 for MPI. http://www.mcs.anl.gov/petsc/petsc.html.[3] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel programmingsystem. Parallel Computing, 20:547{564, April 1994.[4] Remy Evard. Managing the ever-growing to do list. In USENIX Proceedings of the EighthLarge Installation Systems Administration Conference, pages 111{116, 1994.[5] The MPI Forum. MPI message passing interface standard, version 1.1.http://www.mcs.anl.gov/mpi/mpi-report-1.1/mpi-report.html.16

[6] William Gropp. Users manual for bfort: Producing Fortran interfaces to C source code.Technical Report ANL/MCS-TM-208, Argonne National Laboratory, March 1995.[7] William Gropp. Users manual for doctext: Producing documentation from C source code.Technical Report ANL/MCS-TM-206, Mathematics and Computer Science Division, Ar-gonne National Laboratory, March 1995.[8] William Gropp. Users manual for tohtml: Producing true hypertext documents from LaTeX.Technical Report ANL/MCS-TM-207, Argonne National Laboratory, March 1995.[9] William Gropp and Ewing Lusk. An abstract device de�nition to support the implementa-tion of a high-level point-to-point message-passing interface. Preprint MCS-P342-1193,Mathematics and Computer Science Division, Argonne National Laboratory, 1994.[10] William Gropp and Ewing Lusk. Installation guide for mpich, a portable implementation ofMPI. Technical Report ANL-96/5, Argonne National Laboratory, 1994.[11] William Gropp and Ewing Lusk. User's guide for mpich, a portable implementation of MPI.Technical Report ANL-96/6, Argonne National Laboratory, 1994.[12] WilliamGropp and Ewing Lusk. A high-performanceMPI implementationon a shared-memoryvector supercomputer. Parallel Computing, 1997. (to appear).[13] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,portable implementation of the MPI message-passing interface standard. Parallel Com-puting, 22:789{828, 1996.[14] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Program-ming with the Message-Passing Interface. MIT Press, 1994.[15] William D. Gropp and Barry Smith. Chameleon parallel programming tools users manual.Technical Report ANL-93/23, Argonne National Laboratory, March 1993.
17

