
A High-Performance MPI Implementation on aShared-Memory Vector Supercomputer�William Gropp and Ewing LuskMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439AbstractIn this article we recount the sequence of steps by which MPICH, a high-performance,portable implementation of the Message-Passing Interface (MPI) standard, was portedto the NEC SX-4, a high-performance parallel supercomputer. Each step in the sequenceraised issues that are important for shared-memory programming in general and shedlight on both MPICH and the SX-4. The result is a low-latency, very high bandwidthimplementation of MPI for the NEC SX-4. In the process, MPICH was also improvedin several general ways.1 IntroductionMPI [3, 6] is a portable message-passing library speci�cation. MPICH [4] is a portable MPIimplementation in the sense that it can be adapted relatively easily to a new machine, anda high-performance implementation in the sense that MPICH enables such an adaptationto take full advantage of high-performance hardware. The NEC SX-4 [7] is a parallel vectorsupercomputer with shared memory. The presence of shared memory means that messagetransfer will be done by memcpy, and the vector units enable memcpy to be very fast. Sincethe SX-4 supports System V shared memory, MPICH could be ported immediately to theSX-4 because it has already been ported to the System V shared-memory environment inother contexts. However, realizing the potential peak performance of the SX-4 requiredstudying and eliminating several performance bottlenecks. Some of these were speci�c tothe SX-4, and some apply to other machines as well. This paper describes the process ofachieving high performance of MPICH on the SX-4 and the issues this process raised. Inparticular, in the presence of high bandwidth, the cost of locking for shared memory accessbecomes critical; but reducing the cost of locking introduces other concerns, such as theprecise behavior of the memory system, caching strategies, and instruction ordering in amultiprocessor system.This paper is organized around the sequence of versions of MPICH that we built forthe SX-4. For each one, we describe the issues raised, both for MPICH and for the SX-4,�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38. 1

and how they were resolved. For each version, we report latency and bandwidth results onthe SX-4.1 We note that we used a very newly-installed version of the system hardwareand software. Our performance results are valid for the DLR machine as con�gured in May1996. Upgrades to both the hardware and software are expected. We hope that it is easyto see from the results we present here how such upgrades will a�ect MPICH performanceon the SX-4.2 Shared Memory, Semaphores, and LocksEach Unix process has its own separate address space. The programming model targetedby the MPI standard requires separate address spaces for the application's MPI processes.However, many Unix-based systems provide mechanisms by which some memory can beshared among processes, and this memory can be used by the MPI implementation library,even if it is not seen by the user application program. One of the most widely availablemechanisms is System V shared memory (identi�ed by the presence of the shmat systemcall). Others include the use of mmap to produce a shared-memory area, available on awide variety of Unix-based systems, and vendor-speci�c mechanisms such as SGI's sharedarenas. The SX-4 uses System V shared memory for sharing memory among Unix processes,although its primary parallel programming model is pthreads (see Section 9.2 for more onthis model).In order to coordinate access to shared memory, a locking mechanism is required. SystemV environments provide such a mechanism through System V semaphores, identi�ed by thepresence of semop. Most modern CPUs also have hardware instructions from which locks canbe synthesized, such as a test-and-set instruction or conditional load and store instructions.Locks can even be synthesized entirely in software [5]. Various vendors provide proprietarylocks of various kinds in their libraries. The SX-4 software environment provides System Vsemaphores. The machine has a test-and-set instruction, but access to it is only throughassembler language.3 MPICH Message-handling ProtocolsTo understand our results, one must have some familiarity with the structure of MPICH andthe message protocols it uses to obtain robust, high performance. Details of the MPICHarchitecture can be found in [4]. The fundamental concept is that of the abstract deviceinterface. Almost all of MPICH is completely portable, with the crucial set of environment-and vendor-dependent functions captured in a collection of implementations of the abstractdevice interface routines. The basic abstract device implements point-to-point messagepassing; collective operations can also be implemented by the abstract device. At thesimplest level, the abstract device provides routines to send information from one processorto another. This information may be a complete MPI message, or information used by theMPICH implementation to send a message.1We gratefully acknowledge NEC for allowing us to use the SX systems at Houston and at the GermanAerospace Research Establishment (DLR) at G�ottingen, where our experiments were carried out. We alsoacknowledge Rolf Hempel of the NEC Computation and Communication Research Laboratories at Bonn,Germany. 2

An MPI message consists of two parts: the data that makes up the messages that userwishes to transmit and the envelope that contains information about the message, such asits source, length, and tag.MPICH has three di�erent protocols for transferring messages. These are currentlyselected based on the length of the message,2 but they can be modi�ed when MPICH iscon�gured for a given system.short The message is short enough to be included with the envelope (default is less than1 Kbyte)eager The message is short enough to be sent immediately (without waiting for a postedreceive), with the assumption that it can be bu�ered on the receiving side. Theupper limit of the lengths that use this protocol is very system-dependent. Thedefault is 128K bytes; this is chosen to optimize performance over economy of memoryutilization.rendezvous The message is long and will not be transferred until the receive is posted, inorder to eliminate the necessity of bu�ering.In the MPICH abstract device, the envelope and a small amount of data are combinedin a control packet. Additional control packets are used to coordinate the transmittal ofdata, for example, in the case where data is not delivered until requested. For example, inone implementation of the rendezvous protocol, a control packet is used by the sender toannounce the availability of a message; the destination process sends another control packetwhen it is ready to receive the message. The data is actually transferred in an additionalstep (without a control packet).Each of these protocols is implemented in a di�erent way by the various devices. Forthe shared-memory device (ch shmem) on which our SX-4 implementation is based, eachprocess maintains a separate queue for receiving control packets from any process (thusthere are p separate queues if the size of MPI COMM WORLD is p). These queues are kept inshared memory and are guarded by locks. Each queue has multiple writers (any processsending to the process that owns the queue) but only a single reader (the owner of thequeue). Sending a control packet involves allocating shared memory for the packet, �llingin the information, and appending it to the end of the destination process's queue. In thegeneral case, appending the control packet to the end of a shared queue requires a lockto guarantee that only one process changes the queue at a time. The data for eager andrendezvous messages are transferred by copying them into and out of the shared memory.4 The Instantaneous Port of MPICH to the SX-4Since MPICH had already been ported to the System V environment, and the building ofMPICH uses configure to identify the capabilities of the environment it is running in andconstruct Makefiles accordingly, only two commands should have been needed for the �rstport.2The length may be taken relative to the amount of space being used to hold unreceived eager messages.3

configuremakeIn practice, this strategy almost succeeded. A few small problems (with NEC's include �les,the default implementation of MPI Address, and the need always to link with the Fortranlinker) were easily resolved. The resulting version, which used System V shared memoryand semaphores, passed the extensive test suite for a complete MPI implementation. Wetested its performance using mpptest, a sophisticated benchmarking tool provided in theMPICH distribution. The results for the simple \ping-pong" test are shown in Figure 1.
Figure 1: Performance of MPICH with System V shared memory and semaphoresIf we consider the latency graph on the left side of Figure 1, two features stand out:� The latency is high, starting with 750 microseconds and changing to over a millisecond.� The transition from the short message protocol (message included in packet) to theeager protocol (message short enough to be sent immediately but will not �t in asingle packet) at 1024 bytes is quite noticeable, since two locks are required insteadof one.This experiment tells us that the cost of using System V semaphores on the SX-4 is toohigh to permit low latency. On the other hand, bandwidth is quite promising in the sensethat it is still increasing at messages with lengths of 4 megabytes. The SX-4 has specialvector move instructions and provides access to the memory bandwidth to users throughthe standard library version of memcpy. The latency cost of the locks is so high, however,that it restricts the bandwidth even for large messages. Therefore we decided to focus onalternative strategies for the use of locks. 4

5 Lock-free Packet QueuesWe followed two approaches: reducing the number of times that we had to perform a lockoperation, and replacing the System V locks with less expensive ones. In this section wediscuss our experiences with the �rst approach. In Section 6 we discuss experiences withthe second one. Finally, in Section 7 we describe the combination of these two strategies,which yields the best implementation.We introduced into MPICH a lock-free mechanism for delivering control packets andshort messages (short enough to be included in the packet itself). The idea is borrowedfrom MPICH's T3D abstract device implementation [2], and generalizes to any system withone-sided get/put operations, as well as to other shared-memory machines. The central ideais to de�ne in shared memory (System V shared memory on the SX-4) an array of packetslots, one slot for each pair of processes that we expect to communicate. For example, ona 32-processor SX-4, one might make this an array of length 32 � 32. Optimizations toreduce the size of this array can be made, because in a scalable computation it is unlikelythat each process will communicate with each other process; however, we have not madesuch optimizations yet.When process i wishes to send a packet to process j, it looks at the packet slot dedicatedto messages from i to j. The slot contains a bit indicating whether it is occupied or not.If the slot is unoccupied, process i puts the packet (header, perhaps plus part or all of amessage) there and sets the bit. If the slot is occupied, process i chooses one of a number ofback-o� strategies, and tries again later (perhaps only a microsecond later, or even sooner).Meanwhile, process j can check for an incoming packet by checking the bit. When the bitis set, process j copies the packet out of the slot and clears the bit.One way to view this is that we have switched from p multiple-writer/single readerqueues to p(p� 1) single-writer/single-reader slots. By using single writer queues, we avoidthe need for a lock. The cost is the need for each process to check p � 1 slots instead of asingle queue. This introduces a scalability issue that we discuss in Section 9.1, along withsome variations of this approach.This algorithm depends on a model of memory and instruction execution (see [1] for anexcellent tutorial) that cannot be relied on in today's high-performance machines, whichdepend heavily on the use of cache and the ability to modify the order of instructionexecution (including, perhaps especially, memory reads and writes) for greater performance.Two separate issues are involved:� Some parallel machines, including the SX-4, are not cache coherent. That is, datawritten to a memory location by one process does not necessarily invalidate the cacheof another processor that may have cached that location. For example, a process maybe spinning on a memory location, have it cached, and not see a change made in thevalue of that location by another process. This is the cache coherence problem.� Many machines, including the SX-4, reorder the order of instruction execution whenthere is a perceived bene�t without a change in semantics. In particular, the orderof writes to separate locations might be altered from the order speci�ed in the sourcecode. Thus the assumption that one can write data to one location and then set abit in another location to indicate that the data is ready to be read is invalid. The5

CPU may be allowed to write the bit before writing the data, even if the compilerhas been instructed not to reorder instructions at compile time. This is the sequentialconsistency problem.Both problems can be overcome with assembler-language instructions that force theappropriate type of synchronization. NEC supplied us with C-callable functions to do this.Note that these routines are not coded in assembler language for speed but in order to ensurecorrectness. There is no mechanism in C for dealing with either the cache coherence or thesequential consistency problem; the register declaration of C addresses the issue of registerconsistency. We solve the cache coherency problem by using vector move instructions onthe SX-4, which bypass the cache. We solve the sequential consistency problem by using theNEC routines for the critical operations of setting and testing the bit indicating whether apacket slot is full (ready to be read) or not.The use of these instructions is straightforward. In Figures 2 and 3 we list an abbrevi-ated version of the critical code for manipulating the lock-free queues. Assume that slotsis the two-dimensional array of packet slots, one for each ordered pair of processes.int ReadControl(pkt, size, from, is_blocking)MPID_PKT_T **pkt;int size, *from;int is_blocking;{ while (1) {for (i=0; i<num_processes; i++) {if (PKT_READY_IS_SET(slots[i][myid].ready)) {*from = i;*pkt = &slots[i][myid];return 0;}}if (!is_blocking)return 1;else/* execute backoff strategy */}return 0;} Figure 2: Code for reading a control packetMacros are used to encapsulate the instructions needed for the critical memory oper-ations. In Figure 2, the PKT READY IS SET macro is used to make sure that this routinereads the value of the bit as set by another process, not its own copy in cache.In Figure 3, the MPID PKT READY IS SETmacro is used again to avoid looking at a (stale)6

int SendControl(pkt, size, dest)MPID_PKT_T *pkt;int size, dest;{ if (MPID_PKT_READY_IS_SET(slots[dest][myid].ready)) {while (MPID_PKT_READY_IS_SET(slots[dest][myid].ready)) {/* execute backoff strategy */}}pkt->ready = 0;PKT_COPYIN(&slots[dest][MPID_myid], pkt, size);PKT_READY_SET(slots[dest][myid].ready);return 0;} Figure 3: Code for sending a control packetcopy of the ready bit in cache. In addition, the PKT COPYIN and PKT READY SET are usedenforce sequential consistency, i.e., to make sure that the packet data is indeed writtenbefore the bit indicating that it is ready is set.In any particular version of MPICH, the macros are de�ned to be the instructions neededto perform the operations (setting and testing the \ready" bit and copying a packet into aslot) in a correct way. On the SX-4, these call the assembler language routines given us byNEC, which use special synchronization instructions to provide sequential consistency forthe memory operations. On a PA-RISC machine, we would use a sync instruction to ushmemory writes, and might depend on cache-coherent hardware.On the SX-4 there is no instruction to ush a single cache line, only to ush the entirecache. Therefore we bypass the cache altogether with the vector move instructions forcopying a packet. This ensures that the data will be visible to all processors when theinstruction completes on one processor.The need for these routines also illustrates why locks are often so expensive. A generalpurpose lock must ensure that the memory satis�es the user's expectations of sequentialconsistency and cache coherence; this may involve a signi�cant overhead beyond the costof the lock operation itself. For example, on the SX-4, because of the cost of ushing thecache, a general lock operation will always be relatively expensive.Performance of the resulting MPICH version is shown in Figure 4. Eliminating locksfor short messages reduced the latency to around 40 microseconds. On the other hand, westill need one lock for medium-length messages, and this is still expensive (the lock is usedin the allocation of shared memory for the message data; there is a single shared pool ofshared memory in the ch shmem implementation). One can also notice the e�ect of usinga large amount of memory for the lock-free queues (32 � 32 � 1024 bytes). Since only alimited amount of System V shared memory can be de�ned on the SX-4 (between 8 and16 megabytes on the system we used), very long messages have to be transferred through7

Figure 4: Lock-free Queues plus System V Semaphoresshared memory in multiple segments. The length at which we switch from one segment totwo is indicated by the dip in bandwidth at about 3 MB.6 Replacing System V Semaphores with Fast LocksThe SX-4 instruction set includes a test-and-set instruction, from which a lock can beconstructed that does not require a system call. In addition, use of this instruction auto-matically synchronizes the processor with its memory, so that one need not worry aboutsequential consistency issues (cache consistency is still an issue, but by using vector in-structions to read and write data, we avoid the cache entirely). Therefore the simplestway to improve performance over the \instantaneous port" version is to replace the SystemV semaphores with such locks. On request, NEC provided us with C-callable assembler-language functions that implement locks using the test-and-set instruction. Replacing theSystem V semaphores with these locks was not completely straightforward, since MPICHbound together the System V locking scheme (which we wished to replace) with the SystemV shared-memory scheme (which we wished to keep). A small amount of work on MPICH'sabstract device for shared memory (ch shmem), however, made this possible, and MPICHis now the better for it. The results of replacing the System V locks with the test-and-set-based locks is shown in Figure 5. Latency for short messages is about 80 microseconds,and it jumps to about 120 microseconds when the second lock is required. The much lowerlocking cost improves the bandwidth, which is reaching 1.2 GB/second for large messages.8

Figure 5: Using assembler-language locks7 Putting It All Together: Lock-free Packet Queues andFast LocksThe assembler-language locks turned out to be signi�cantly slower than we expected, sothe lock-free mechanism for packet delivery is preferred. In Figure 6 we see the result ofcombining the System V shared memory, lock-free queues, and assembler-language lockswhere locks are required. Latency is now a respectable 40 microseconds (dipping to 37microseconds for 0-length messages, and jumps to only 90 microseconds for messages oflength 1 kilobyte. Bandwidth is still 1.2 GB/sec., limited only by the speed of memcpy (seeSection 8) and the amount of shared memory available. This is now the current version ofMPICH for the SX-4. It passed all of the acceptance tests that we ran, which included allof the extensive MPICH tests except the collective tests, because they assume the existenceof a greater number of processors than we had available.8 Can We Do Better?All of the above modi�cations to MPICH were made during a �ve-day period while wewere visiting the NEC Computation and Communication Research Laboratories at Bonn,Germany. MPICH was proved to be easy to port to this new environment and easy totune for high performance. An interesting question is, how much of the potential message-passing performance of the SX-4 did we achieve in this short time? If much more e�ortwere to be invested in an MPI implementation for the SX-4, could latency and bandwidthbe improved?Our answer is, Maybe, but not much. First, let us consider the bandwidth. Using9

Figure 6: Lock-free queues plus assembler-language locksseparate Unix processes and shared memory, a message must be transferred by two memcpyoperations, �rst into and then out of the shared memory. We measured the performanceof memcpy on the SX-4 using copytest, a program distributed with MPICH that we use tomeasure memory bandwidth as delivered by memcpy. In this case it is just copying memorywithin a single process.As we measured it on the machine we were using (at DLR), memcpy delivers about2.5 GB/second for large moves. Since message passing between processes requires twocopies, our 1.2 GB/second bandwidths are quite close to peak. Note that other machinecon�gurations might produce greater bandwidths; we report here just on the experimentswe did on the DLR machine. The point is that MPICH does not have much measurableoverhead (beyond the cost of memcpy). Future hardware upgrades to this machine can beexpected to improve the bandwidth of memcpy and therefore of MPICH.Studying latencies caused us to look at the assembler code generated by the compiler forthe critical routines that implement the lock-free queues. We did make some changes to theC code that saved a few microseconds, and these optimizations are reected in the resultswe have given. It would also be possible to remove a few more microseconds by removingall debugging capabilities. No doubt careful study would reveal a few more corners to betrimmed, and of course the entire calling sequence down from MPI Send could be recodedin assembler, but our examination of the generated code leads us to believe that evenmajor changes, seriously impacting portability, would not take the latency much below 30microseconds. The issues of cache coherency and sequential consistency in this section ofthe code (either with or without locks) ensure that in this case the cycle time of the machineis not a good guide to the time needed to execute this code.10

9 Further WorkAlthough the existing implementation of MPICH is complete and e�cient as it stands,further work could be done in a number of areas. In this section we describe some directionsthat the MPI implementation on the SX-4 might take.9.1 Re�ning the Lock-Free QueuesThe major addition to MPICH that this work created was the lock-free queue mechanism.While what we have done so far is adequate for the benchmarks we ran and demonstratedthe utility of the concept, we can envision two related re�nements useful for applicationprograms.In the current data structures, each ordered pair of processes has only one packet slot.If a process is sending multiple messages in rapid succession to another process, it may needto back o� repeatedly if the receiving process is not keeping up by posting the appropriatereceives. A longer queue for each ordered pair of processes can be created by having anarray of packet slots that are used cyclically. Then a sending process need back o� only ifall the slots for the pair are in use.Lengthening the queues uses up shared memory, however, which could be a limited re-source when the potential number of processes as large, and we have seen (in Figures 4and 6) that this has a (small) negative e�ect on the bandwidth. In addition, latency isadversely a�ected when the number of queues is large, since a receiving process must checkall of its queues for incoming messages (the for loop in Figure 2). In a truly scalablecomputation, it will not be the case that every process will communicate with every otherprocess. Therefore, it will have little impact on performance to limit the lock-free queuedata structures so that each process has only a relatively small number of queues for in-coming messages from the processes that it communicates the most, while messages fromother processes are handled by a single queue (per receiving process, as in the ch shmemimplementation) guarded by a lock. The processes that \deserve" lock-free queues can beidenti�ed dynamically as the communication pattern of the application is recognized.9.2 Replacing Processes by ThreadsThe NEC SX-4 system software included a subset of the POSIX pthreads library. Theprimary (far from the only) di�erence between expressing parallelism with multiple threadsin a single process rather than multiple processes is the di�erence in the memory model. Ina thread model all static variables are implicitly shared, although it is possible to allocatethread-local memory and access it through special calls in the pthreads library. This isin contrast to the Unix process model, in which address spaces are implicitly separate,although mechanisms (such as mmap or shmat) often exist for allocating memory visible tomultiple processes. This di�erence in the memory model typically makes it di�cult to portan application program from one model to the other. Hence in this work so far we haveconsidered only the process model as a foundation for MPI implementation.On the SX-4 it is possible to declare at compile time that static variables are to be11

kept in thread-local memory, although accessed in the normal way (by load and storeinstructions. It is also possible to declare some variables to be shared among threads, usingthe pthread shared begin| pthread shared end compiler pragma. These two featuresmake it possible to replace processes by threads on the SX-4.Using threads o�ers two advantages. First, since the process is the unit of schedulingin the operating system, all application threads will be swapped in at the same time. Thisaccomplishes a form of \gang scheduling," which is not supported for groups of processeson the SX-4. Second, since threads can directly access the address space of other processes,the message delivery mechanism we have used with processes, in which messages are copiedinto shared memory by the sending process and out of it by the receiving process, can bereplaced by a single-copy mechanism. The use of a single memcpy from one thread-localaddress to another to complete a receive operation would double the bandwidth of the MPIimplementation.We emphasize that parallel threads (instead of parallel processes) are not visible tothe application program, only to the MPI implementation. Therefore message-passing pro-grams, which typically assume that static variables are not shared, should be portable to thisscheme. Even so, this is not necessarily a desirable strategy. The bandwidth increase is un-likely to bene�t most applications, since the 1.2 GB/second bandwidth of the process modelis already so high. It is unlikely that the latency will be a�ected, since pthread locks can-not be much more e�cient than the combination of lock-free queues and test-and-set locksthat we are already using (and in fact may be slower if they force cache ushes). Finally,since the interaction between threads and system calls has not been POSIX-standardized asmuch as the pthreads interface itself, user programs may not prove as portable as one mighthope. (For example, if one thread reads a �le, it might block all other threads becausethe process is blocked, whereas this situation would not occur with separate processes.)Whether these potential drawbacks are outweighed by the bene�ts of maximum-bandwidthand gang scheduling remains to be determined by implementations of, and experience with,applications.9.3 Using Lock-Free Queues on Other ArchitecturesThe lock-free queues described in Section 7 were invented to facilitate lock avoidance, notonly on shared-memory machines, but also on machines like the Cray T3D and the NECCenju-3. These machines, while not supporting true shared memory, do provide the one-sided remote memory access functions put and get. Using these functions, one process candirectly access the address space of another. Therefore, the lock-free queue data structurescan be distributed among the private address spaces of the processes. For example, thepacket slot (or array of slots) by which process i sends messages to process j can be storedin the address space of process j and accessed via a put operation by process i. The onecase in which process i would want to do a get would be to read the bit that indicatesthat a slot is empty. For e�ciency reasons, this bit should be kept in the address spaceof process i, which can read it locally, and it should be cleared by process j with a putoperation when the slot is emptied. One additional change is to keep separate locations for\slot is full" and \slot is empty" to allow purely local memory reads (as opposed to remotememory reads) to detect when a slot contains a message (when checked by a receiver) orwhen a slot is free to accept a new message (when checked by a sender).12

An implementation based on this design has been done for the NEC Cenju-3 by HubertRitzdorf of the NEC Computation and Communication Research Laboratories.10 SummaryWe have described the results of porting MPICH to the NEC-SX-4. The modular structureof MPICH enabled a number of distinct implementation strategies to be explored in a shorttime, particularly since NEC was able to quickly supply special SX-4-speci�c functions thatwe needed. The results are summarized in Figure 7. (On the left half of the left sideof Figure 7, the two \lock-free" curves coincide, since the code is the exactly same forthe short protocol in those two cases.) The \default" version, using standard System V
Figure 7: Superimposed Performance Graphsshared memory and semaphores, while it did provide a complete implementation of MPI onthe SX-4 with no additional work, did not have acceptable performance. The semaphoreswere such expensive system calls that they not only made the latency unacceptable butalso signi�cantly impacted the bandwidth (see the lower two curves in the right half ofFigure 7). We note that a future release of the operating system is expected to have moree�cient System V semaphores. Switching to assembler-level locks pushed the bandwidthclose to the maximum available (constrained by the use of two memcpy's). To reduce thelatency further, we developed a lock-free queuing mechanism for packets, producing thelowest curve in the left half of Figure 7. The result is a low-latency (38 microseconds),high-bandwidth (1.2 GB/second) complete implementation of MPI on the NEC SX-4.There were a number of lessons learned that apply to any parallel program. The strat-egy of replacing general locks with special lock-free data structures points out a way tosigni�cantly reduce the cost of coordinating access to shared memory. Of particular inter-est was the need for assembly language to obtain correct behavior of the memory system;13

this suggests the need for language features, much like the register and volatile of C,to express the memory access relationships.MPICH, the portable MPI implementation that served as our starting point, gainedtwo general, permanent improvements. First, the lock-free queuing mechanism was en-capsulated in a new MPICH \device" (ch lfshmem), which can be implemented on othershared-memory and pseudo-shared-memory machines. Second, the reorganization of the ex-isting ch shmem device, necessitated by our desire to use the assembler-language locks withSystem V shared memory, will allow greater exibility in con�guring for shared-memorymachines in the future.References[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: Atutorial. Technical Report 9512, Rice University ECE, September 1995. (also DECWestern Research Laboratory Research Report 95/7).[2] Ron Brightwell and Anthony Skjellum. MPICH on the T3D: A case study of highperformance message passing. (preprint), 1996.[3] Message Passing Interface Forum. Document for a standard message-passing interface.Technical Report Technical Report No. CS-93-214 (revised), University of Tennessee,April 1994. Available on netlib.[4] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,portable implementation of the MPI message-passing interface standard. Parallel Com-puting, 22:789{828, 1996.[5] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on ComputerSystems, 5(1):1{11, February 1987. Also SRC Research Report 7, November 30, 1985.[6] Message Passing Interface Forum. MPI: A message-passing interface standard. Inter-national Journal of Supercomputer Applications, 8(3/4):165{414, 1994.[7] N. Nishi, S. Habata, M. Inoue, H. Matsumoto, and T. Kondo. SX-4 architecture for scal-able parallel vector processing. In Proceedings of the International Symposium on Par-allel and Distributed Supercomputing, pages 45{50, September 1995. (Fukuoka, Japan).
14

