
Two Implementations of Shared Virtual Space EnvironmentsTerrence L. Disz, Robert Olson, Michael E. Papka, Rick Stevens and Matthew SzymanskiMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439fdisz,olson,papka,stevens,szymanskg@mcs.anl.govR. James FirbyDepartment of Computer ScienceUniversity of ChicagoChicago, IL 60637�rby@cs.uchicago.eduAbstractWhile many issues in the area of virtual reality (VR)research have been addressed in recent years, the con-stant leaps forward in technology continue to push the�eld forward. VR research no longer is focused only oncomputer graphics, but instead has become even moreinterdisciplinary, combining the �elds of networking,distributed computing, and even arti�cial intelligence.In this article we discuss some of the issues associatedwith distributed, collaborative virtual reality, as wellas lessons learned during the development of two dis-tributed virtual reality applications.1 IntroductionThe Futures Laboratory at Argonne National Lab-oratory has been exploring what is needed to supportlarge-scale shared space virtual environments (VE) forwide-area collaborations. Our research has focused onthe system architecture, software design, and featuresneeded to implement such environments. In this articlewe discuss two prototype systems under developmentat Argonne.Shared virtual spaces are complex multiuser on-line environments that use strong spatial metaphorsfor navigation, communication and interaction scop-ing, and object manipulation and may support 3D im-mersive displays. They allow a direct natural form ofcollaboration based on the real-world notion of spatialcollocation (e.g., many people interacting in a room).

We believe that shared virtual space can be used toe�ectively support wide-area collaborations. Demon-strations of limited forms of shared space collaborativeenvironments have shown both great potential and con-siderable limitations of current technologies [3].A goal of each prototype system is to produce aresearch implementation that enables the explorationof the following capabilities:� immersion� sharing of objects and virtual space� coordinated navigation and discovery� interactive control and synchronization� interactive modi�cation of the environment� scalable distribution of dataMotivation for these prototype implementations isgenerated by our interest in shared virtual environ-ments and by the prospect of using these systems tosupport wide-area scienti�c collaborations. Addition-ally, these systems represent the next logical step af-ter the work done on coupling large-scale computingto virtual environments [4]. By studying requirementsof shared virtual environment spaces, we can expandour work to support collaboratories and collaborativedesign. We are already building on technology devel-oped in these two prototype systems for the UbiWorldproject [10] (UbiWorld is a shared virtual space thatenables users to explore issues related to ubiquitouscomputing [5]).



Multiuser shared environments have been a topic ofresearch for many years now, from text-based spacesto desktop graphics spaces to immersive virtual reality[2, 8]. Other groups have focused on what is neededfor distributed collaborative environments [6, 9].2 Experimental EnvironmentIn this section we introduce and discuss the imple-mentation of the Interactive Agent Environment andManyWorlds. The discussions will include an outlineof the architecture, implementation, and discoveries.Both implementations use the CAVE family of dis-play devices. The CAVE provides a wide variety ofdisplay options, ranging from the desktop to the fullyimmersive four-wall CAVE environment [1].
2.1 Interactive Agent EnvironmentThe Interactive Agent Environment (IAE) systemtouches on each of the capabilities outlined in the in-troduction. In addition, this prototype implementa-tion of IAE provides the architecture for testing andevaluating the separation of representation from be-havior and computation. It allows for intelligent ob-jects to be designed without concern for how they willbe represented. It also adds a dynamic nature to thevirtual world. While not designed as a collaborativespace, IAE supports collaboration by the fact that itis a shared environment. The IAE system allows foran arbitrary number of display devices to connect tothe world server and participate in the shared virtualspace. An arbitrary number of computational entitiesare also allowed to connect to the world server, provid-ing dynamic behavior within the virtual world.Additionally, the IAE prototype environment allowsfor exploring the use of arti�cial agents within the vir-tual world. These agents could be used to annotate thevirtual world and act as helpers to users. The arti�cialagent can act as a tour guide or help �lter/navigatedata.2.1.1 ArchitectureFigure 1 shows a high-level overview of the architectureof the IAE system. The IAE system has three majorcomponents: a world server, display devices, and ac-tive objects. Each of the three components can be runon di�erent machines, and multiple instances of thedisplay devices and active objects can be invoked.The world server acts as the central connection pointwithin IAE. The world server supports the loadingof VRML representations of objects into the virtual
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Figure 1. Architecture Overview of the Inter-
active Agent Environmentworld, communication, management of the environ-ment, and sensing for active objects. An importantnotion within IAE is that of active and inactive ob-jects. Active objects are objects associated with dis-tributed computational processes and will be discussedin more detail below. Inactive objects are all other ob-jects within the virtual world that add to the realism.The display devices provide the users a view intothe virtual world. Currently there are two supporteddisplay devices: the CAVE family of VE displays anda simple two-dimensional viewer. The CAVE viewersenable the user to experience the world in its full three-dimensional representation. The two-dimensional ver-sion is a top-down view on the world.A unique feature of IAE is the use of computationalentities to control the active objects. Active objectsare processes running on the same system as the worldserver or on a remote system. Active objects imple-ment behaviors associated with the graphical represen-tations of objects in the world. This separation allowsactive objects to be associated at runtime with a vari-ety of di�erent graphical shapes.Example: if the active object is a follower (an agentthat follows some given object), it will|based on thesize and shape of its graphical representation|be ableto navigate in the appropriate manner (i.e., small ob-ject �ts through narrow opening; large object goesaround).Active objects in IAE are currently written in Lisp,but other languages can be supported as long as theyimplement the world server connection model.2
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Figure 2. World Server Diagram2.1.2 ImplementationThe world server is constructed from a variety of dif-ferent object-oriented patterns implemented in C++.These patterns represent various components withinthe world server. The world server handles the manage-ment of display and computation connections (see Fig-ure 2). Additionally, the world server manages physicalproperties of the world and the sensing for active ob-jects.The distributed nature of the IAE system reliesheavily on communication and on the ability to al-low connections from a variety of sources at varyingtimes. At the center is the ACE library: a toolkit thatimplements fundamental design patterns for communi-cation software and, in particular, the reactor object[11]. The reactor object is a design pattern that sup-ports the demultiplexing and dispatching of multipleevent handlers [12]. It is an event-driven object capa-ble of handling multiple connection requests by invok-ing the appropriate event handler at connection time.As each connection occurs, an individual communica-tion channel is established between the server and theconnecting client, be it a display device or a computa-tional process.The communication channel between the graphicaldisplay devices and the world server is principally oneway, with the world server streaming the list of objectsneeding to be rendered each update. If the user wantsto move from the role of passive observer to that of anactive one, the display device must also stream infor-mation on position and orientation of the user back to

the world server.The communication channel between the computa-tional processes (active objects) and the world serveris a two-way channel, with information about the po-sition and objects that an individual process can sensebeing sent out by the world server. The world serverthen receives back information for all the active ob-jects' physical parameters. Currently these values arerotation and translation speeds, but in the future couldinclude joint angles and speeds, etc.The ACE reactor plays a role in the computationprocess of the world server. By using the event-handling capabilities of the reactor object, timer eventsare registered with the reactor at startup. These timerevents, which happen at regularly scheduled intervals,update the graphics devices and the world simulation,as well as send the appropriate information to the ac-tive objects.The active objects are driven by remote processescurrently written in Lisp and running on a remote ma-chine (see Figure 3). The world server reports to eachactive object, via its own private communication chan-nel, the various objects (both active and inactive) itcan see, as well as that active objects' location withinthe world. Based on this information and on its owngoals, the active object process then decides what itsnext course of action should be. Currently, the activeobjects only try to avoid other objects while movingtoward some prede�ned location. In general, the ac-tive objects could be any computational source thatfollowed the speci�ed format for connections and out-put. It should be noted that the information sent from3



the world server to the active object described above isparticular to that instance of an active object. Otheractive objects may need to know only if a user is withina certain range or if someone is holding an active ob-ject.
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Figure 3. Active Object DiagramThe graphics capability of the IAE system is 
ex-ible, depending on the user's needs and capabilities.The di�erent display devices that connect to the worldserver can be thought of as browsers. A user can con-nect to the IAE server via a two-dimensional browserthat gives a top-down projection of the world. The two-dimensional browser is useful in debugging the systembut also allows users with low-end hardware capabil-ities a way to observe the world and the interactionswithin it. A virtual reality browser is built on top of theCAVE library. The VR browser displays the objects inthe world based on VRML �les associated with eachobject. The server currently streams VRML �les atregular intervals to each of the attached browsers. Thisprocess is extremely ine�cient, particularly for the in-active objects, which remain �xed within the environ-ment. A caching scheme is being developed to allow theserver to update only those objects that have changedwithin the environment. In general, users maintain apassive representation within the virtual environment.This means the users are passive observers, not repre-sented by avatars and not seen by other users connectedto the virtual world. Users can be represented in theworld by sending back their world coordinates and ori-entations to the world server, which then manages theuser as a active object within the world.

2.1.3 Next StepIAE depends on VRML for the three-dimensional rep-resentation of the objects and is currently using theVRML 1.0 specs. With a move to VRML 2.0, inac-tive objects could have simple yet interesting behav-iors embedded in them by using the new 2.0 scriptingfeatures. Since the two-dimensional browser alreadygenerates its views based on the VRML �les, a Java-based version can be built without much e�ort to allowconnections from Java-enabled Web pages. Finally, inthe the area of display devices, hooks could be addedto allow for true Web-based VRML browsers to attachto the world server.The most exciting future work will come in the areaof active objects and their associated computationalentities. Using the prototype system, one can start tobuild arti�cial agents that enhance the environment.One example would be a virtual librarian that is ableto help users navigate a large database, leading theusers to areas of interest. A second example wouldbe a virtual cameraman, whose task is to record andarchive the users' experiences within the environment.Beyond the use of the active objects to model arti�-cial agents, the active objects could be supercomputingsimulations of various events that attach to the worldserver. Not only does this add to the richness of thevirtual world, but it provides substance for the arti�cialagents to work on and explore.
2.2 ManyWorldsThe ManyWorlds system is a prototype implementa-tion of an architecture for managing multiuser sharedvirtual reality experiences. The intent of the Many-Worlds architecture is to allow arbitrary applicationsto contribute content to a ManyWorlds session, to al-low multiple users to connect to a ManyWorlds ses-sion using clients with a wide variety of capabilities,and to do so in a scalable manner. A long-term goalof ManyWorlds is to provide a scalable tele-immersionenvironment to support collaborative work.2.2.1 ArchitectureThe basis for a shared space in ManyWorlds is an ab-straction we call the stage. All visualization and inter-action in ManyWorlds take place in a stage; a Many-Worlds session may have multiple stages, and usersmay switch from stage to stage at will. The entitiesvisualized in the stage take the form of VRML objects,as in the Interactive Agents Environment. We will re-fer to these VRML objects as the content present onthe stage.4



A stage is viewed by a ManyWorlds browser. Whena browser is directed to a stage, it will begin receiv-ing updates of the content of the stage. Currently, twobrowsers are implemented in the ManyWorlds proto-type. One is a CAVE browser, implemented by usingOpen Inventor and the CAVE library. It allows theuser to navigate through the space managed by thestage, visualizing the objects in the stage in three di-mensions. The other browser is a Web gateway, whichallows connections from traditional Web-based VRMLbrowsers.Figure 4 provides an overview of a typical Many-Worlds session. At the center of the session is the stage.The stage mediates the transfer of data between con-tent sources and sinks. Sources of data shown hereinclude simulation, CAVE clients, static scenery, andan archival playback session. Sinks of data include theCAVE clients, a Web gateway, and an archival record-ing session.
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Figure 4. A Typical ManyWorlds SessionClients connecting to a stage may contribute contentto a stage, monitor the contents of a stage, or both.Examples of clients contributing content include scien-ti�c applications modi�ed to generate their output asVRML data sets and applications that provide sets ofstatic or slowly changing VRML objects as backgroundscenery for a stage. Clients that monitor the content ofa stage include the various browsers that users use tovisualize a stage and world recorders that archive theinteractions in a stage for later review.2.2.2 ImplementationThe current ManyWorlds prototype is implementedlargely in Perl, making heavy use of the object-orientedprogrammingmechanisms in the Perl language. Hence,

it is natural to use the distributed object programmingparadigm in the implementation of the communicationbetween the components of the ManyWorlds system.Communications between objects residing in di�er-ent processes is achieved by the use of a Perl bindingof the Nexus runtime library. We refer to this com-bination of Perl and Nexus as nPerl. The nPerl sys-tem handles the marshalling of method call argumentson the sending system and their unmarshalling on theremote system, as well as handling the actual invoca-tion of the remote method call and the return of itsreturn value to the caller. This marshalling leveragesthe support Nexus provides for passing data among aheterogeneous collection of computers.The use of nPerl also provides a clean mechanism forsupporting the dynamic nature of the ManyWorlds sys-tem. Through the Nexus dynamic attachment mecha-nism, a new observer or data provider can connect to astage and take part in the action there. Through nPerlwe can also cleanly and robustly handle abnormal ter-mination of parts of the ManyWorlds system.The communications involved in the distributionand update of VRML objects from content providers toobservers is most naturally cast as a form of multicast.Each provider maintains a multicast group into whichit injects updates of the data it is providing. Observersthat wish to receive updates from a provider subscribeto the provider's multicast group when they join thestage. Information about the set of providers presenton a stage is propagated via a multicast group managedby the stage itself.
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Figure 5. Data Flows in ManyWorldsThe current ManyWorlds prototype uses a simple,5



replicated unicast implementation of multicast (seeFigure 5). This method has the advantage that itmakes no assumptions about the network infrastruc-ture on which the system is executing. However, itscales poorly. The architecture has been designed suchthat alternative implementations of multicast commu-nications can be added to the system with minimumdisruption. Providers also have the freedom to specifythe form of multicast implementation required for theirparticular needs. For example, the avatar provider ina CAVE viewer would likely want to have a reliablemulticast distribution of the VRML description of theavatar, but the position updates of the avatar can usean unreliable multicast service.The ManyWorlds architecture defers the actual com-putation involved in the application to the contentproviders. Content provider applications interact witha ManyWorlds session via an API that provides thefunctionality required for the application to join astage, announce its presence, and supply data to anyobservers.An example of a ManyWorlds content provider isthe \world in a directory" client. This client scans aspeci�ed directory looking for VRML data �les. Whena �le appears, it is added to the set of VRML data thatis supplied to the ManyWorlds session. Changes to the�le result in VRML data updates in the session.The directory client has been used to interface aPETSc application [7], running on a multiprocessorworkstation, to a ManyWorlds session. The PETScapplication itself knows nothing of ManyWorlds; it issimply con�gured to place its output data in VRMLformat in the directory being scanned by the directoryclient. The result, as seen by a ManyWorlds browser,is the output of the simulation as it evolves over time.We have implemented two di�erent ManyWorldsbrowsers. The �rst is a CAVE library-based applica-tion with an nPerl front end that communicates withthe rest of the ManyWorlds system, and a C++ andOpen Inventor-based backend that handles the cachingof VRML objects for rendering, as well as user inputand navigation. This client acts as both a data viewerand a content provider. The content served to the restof the system consists of a user-de�ned avatar, placedin virtual space according to the user's position in theCAVE itself, and the input of the navigation systemwithin the application.The second client is a World Wide Web gateway.The gateway acts as an HTTP server as well as a dataviewer. When a request for the VRML page represent-ing the stage arrives, the gateway composes the VRMLobjects currently in the world into a single VRML pagesuitable for viewing with a Web browser. It also inserts

VRML camera de�nitions corresponding to the loca-tions of any CAVE users, allowing the viewer of thestage via the Web to jump to the viewpoint of any ofthe CAVE users.2.2.3 Next StepNothing in the ManyWorlds architecture, other thanthe display engines, restricts the data being shared toVRML. We anticipate using non-VRML media to aug-ment the basic VRML structure of a shared VR session.For example, the CAVE browser could advertise audioand video streams to the world. Clients capable ofviewing these media would negotiate with the browserto receive the streams. This is an example of the powerof the abstract, application-level multicast scheme. Inthis case, the application would likely use IP multicastas the implementation of the abstract multicast, lever-aging the existing multicast toolset.An important method of visualizing scienti�c datasets is volume visualization. This is a very computa-tionally expensive procedure to use, but is possible onthe hardware used in the CAVE. Thus, we would liketo add support for volume visualization as another al-ternative ManyWorlds medium. We anticipate that ascienti�c application might provide alternative formsof its output data: volume datasets for the high-endCAVE clients, and a less-detailed VRML dataset forother clients.An important part of collaboration is the use of his-tory. We have designed the ManyWorlds architecturesuch that it would be possible to transparently archivea ManyWorlds session. A recording application couldjoin a stage as a data viewer and record all interactionsin the stage. Later, a playback application could createa stage for the playback of the session and con�gure it-self as proxy data provider for all of the original datasources. The viewers of the system would be able tonavigate through the playback, observing the previousobjects and interactions, as well as interacting with theother viewers of the playback.Another important means of collaboration is whatsome call the show-me style: a knowledgeable user of anapplication can guide others through the intricacies ofthe application to �nd the areas of interest. We planto implement a form of this capability in the CAVEbrowser as a 
exible means of navigation, where theuser can slave his viewpoint to that of another user.We will also investigate the use of active objects inthe world that can have an e�ect on the navigation ofthe users browsing near the space. A simple exampleis gravity: we may wish to de�ne a region in the vir-tual space that a�ects the navigation of users passing6



through the space as gravity does. Another examplewould be to give the users of a 
ow-�eld simulation theability to attach themselves to a particle in the 
owand follow its path through the �eld.We would like to allow a very rich interaction be-tween users of the virtual space and the objects in thespace. Because the architecture of the ManyWorldssystem is based on a 
exible distributed object system,we can de�ne arbitrarily complex behaviors betweenobjects on a stage and between the browser and objectson the stage. As a simple example, we could cause theCAVE wand's selection of an object to trigger a behav-ior de�ned by the object. We could also de�ne shareduser interface objects, such as popup menus, that havea form in the three-dimensional shared space. Supportfor the movement of objects in the space also falls intothis category.3 ConclusionsWe have begun the design and implementation oftwo shared space systems. The two systems share manyarchitectural concepts and features, and both are in-tegrated with the CAVE environment; however, theyhave di�erent goals. The Interactive Agent Environ-ment supports development and experimentation withactive objects and cooperative tasking and provides alinkage to intelligent systems technology that can beused to augment the shared environment. ManyWorldsis focused on scalability and exploring the communi-cations and VR software infrastructure to support therapid construction of spaces for collaborative data anal-ysis, design, and learning. Neither system has all thefeatures we envision for an ultimate production system.Our near-term goal is to explore a variety of imple-mentation strategies and mechanisms that can supportlarge-scale collaborative environments. A longer-termgoal is to develop a common software base for buildinga variety of shared space environments and to exploretheir use in large-scale scienti�c applications.AcknowledgmentsThis work was supported by the Mathematical, In-formation, and Computational Sciences Division sub-program of the O�ce of Computational and Technol-ogy Research, U.S. Department of Energy, under Con-tract W-31-109-Eng-38, and by Laboratory DirectorResearch and Development funding.
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