
The Argonne Voyager Multimedia Server

Terrence Disz, Ivan Judson, Robert Olson, and Rick Stevens
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439fdisz,judson,olson,stevensg@mcs.anl.gov

Abstract

With the growing presence of multimedia-enabled sys-
tems, we will see an integration of collaborative comput-
ing concepts into future scientific and technical workplaces.
Desktop teleconferencing is common today,while more com-
plex teleconferencing technology that relies on the availabil-
ity of multipoint-enabled tools is starting to become avail-
able on PCs. A critical problem when using these collab-
orative tools is archiving multistream, multipoint meetings
and making the content available to others. Ideally, one
would like the ability to capture, record, play back, index,
annotate, and distribute multimedia stream data as easily
as we currently handle text or still-image data. The Ar-
gonne Voyager project is exploring and developing media
server technology needed to provide such a flexible, virtual
multipoint recording/playback capability. In this article we
describe the motivating requirements, architecture, imple-
mentation, operation, performance, and related work.

1 Introduction

As multimedia-enabled systems become ubiquitous, we
will see an integration of collaborative computing concepts
(the use of multimedia to enable human communication and
collaboration) into the everyday environments of scientific
and technical workplaces. Today, collaborative computing
technologies in the form of point-to-point desktop telecon-
ferencing are almost routine. More complex teleconfer-
encing technology relying on the availability of multipoint-
enabled tools have been available on workstations for some
time and are starting to become available on PCs.

A critical problem when using desktop collaborative tools
is archiving multipoint meetings and making the content
available to others for playback or for historical reference.
As we make the transition from analog video and audio
technology, where it is trivial to make recordings using com-
monly available gear, to desktop environments with digital
audio and video, virtual recording and playback capability

becomes important. Ideally, we would like the ability to
capture, record, play back, index, annotate, and distribute
multimedia stream data as easily as we currently handle text
or still-image data.

The Argonne Voyager project is exploring and develop-
ing media server technology needed to provide a flexible
virtual multipoint recording/playback capability. In this ar-
ticle we describe the motivating requirements, architecture,
implementation, operation, and performance of the Voyager
multimedia server, as well as work related to the Voyager
project.

2 Motivation

A primary motivation for the development of Voyager
is the need to provide a scalable multistream record and
playback engine for archiving and retrieving collaborative
interactions.

Ideally, such a system would be fully symmetric (i.e., sup-
port client-driven, real-time recording and playback), would
be scalable to hundreds of streams, and would provide the
ability simultaneously to record multiple associated streams
generated in a single logical “session" and to support play-
back of multiple streams while maintaining original timing
relationships.

When we initiated the Voyager project, existing media
servers fell far short of these requirements. Some were op-
timized for playback (requiring nonreal-time encoding pro-
cessing); others were not symmetric (not supporting client
recording), single stream (or at most supporting only one
stream each of audio and video), not based on IETF stan-
dards like RTP, or not scalable (based on workstations or
regular filesystems).

We also wanted to develop a system that would inte-
grate with the emerging suite of freely available desktop
media tools developed by the Network Research Group at
Lawrence Berkeley National Laboratory [13]. Voyager is
designed to be used with vic and vat and to be managed and

operated via the Web. Voyager also provides simple record-
ing/playback capability to anyone able to participate in a
vic/vat session (of course, without the video/audio source
capability, one is limited to the playback functions of Voy-
ager), thereby greatly extending the flexibility of these pop-
ular desktop tools. One need not be running a local copy
of Voyager; it can provide recording a playback services via
the Internet.

Desktop teleconferencing often involves many partici-
pants. A typical MBone session may involve four to six
participants each multicasting video and audio to a desk-
top. Archiving such a session is difficult. Depending on the
hardware available, a user may be able to create an analog
video signal from a video capture/decode card and record
that source to a VCR. However, that strategy does nothing
for the other streams that are most likely being decoded in
software and displayed on the screen. Audio, which is be-
ing mixed from all the streams, is simpler to record, but
playback may be problematic. Voyager in part is motivated
by the desire to record a multiparty desktop meeting and be
able to play it back again.

Since Voyager development started, it has become clear
that a generally available server for multistream real-time
data could also be used to record and play back tracking and
interaction data in virtual reality (VR) environments such
as the CAVE [6]. While the current version of Voyager
does not support recording and playback of entire virtual
experiences, it does provide a much needed starting point
for VR server research.

3 Previous Work

Commercial requirements are driving the development of
large-scale video-on-demand playback systems. Companies
such as Oracle, IBM, and Sun are producing systems capable
of delivering hundreds or thousands of channels of playback.
These systems are optimized for playback and require that
material be encoded off-line. A typical system, the IBM
Interactive TV [10], has been used in interactive TV trials for
several years. It is designed to be scalable in its delivery of
prerecorded MPEG streams. The IBM system uses the IBM
multimedia filesystem and can run on IBM workstations
or on the IBM SP2, where it could support thousands of
viewers. However, these systems do not use the Internet for
delivery and do not use the freely available MBone tools and
standards.

Internet standards-based systems meet the criteria of us-
ing Internet standard protocols for delivery and typically
use the MBone tools as clients for recording and playback.
They range from simple command-line tools for manipu-
lating RTP streams to VCR-like systems for recording and
playing back MBone streams.

RTP-record and RTP-play are two simple command-line

tools distributed as part of the RTP toolkit by Henning
Schulzrine. These tools allow the user to record and play
RTP streams.

In [12], Holfelder describes the MBone VCR, a system
for recording and playing back video conferencing sessions
from the MBone. The MBone VCR uses the classic MBone
tools as clients and uses information in the RTP stream to
synchronize recording and playback. However, the MBone
VCR is a locally controlled system and does not show an
infrastructure designed for large-scale service.

The Internet Multimedia Jukebox by Almeroth and Am-
mar at Georgia Tech is the result of several years of research
on multicasting video on demand [2, 3]. The IMJ runs pri-
marily on campus and distributes video on a schedule over
three channels. Playback is initiated from a Web page; but
once a session is started, it cannot be controlled from the
Web page. Content is recorded off-line using the RTPdump
utility and vic and vat. The system runs on a SPARCstation
but does not show a scalable infrastructure.

Another video-on-demand system is mMod: the mul-
ticast media-on-demand system from the Lulea University
of Technology, Sweden. This system provides a VCR-like
interface and delivers multicast or unicast streams. The
mMOD system also records and plays streams other than
the usual audio and video, notably, shared Web, whiteboard,
and text editor sessions. The system runs on Sun worksta-
tions and Windows NT/95 systems. However, there is no
demonstrated infrastructure to support scalability.

4 Technologies

As much as possible in the Voyager system, we have
attempted to leverage existing technology, both to reduce
the development efforts and to increase the portability of the
system.

4.1 The IBM Tiger Shark File System

Central to the performance of the Voyager server is the
filesystem into which the media streams are stored. Nor-
mal Unix filesystems are not designed for continuous-time
data; under load, a conventional file system such as NFS
or AFS may provide lower throughput and higher response
times, thereby causing the server to drop incoming data
when recording or miss playout deadlines on playback. A
multimedia filesystem, on the other hand, is designed to
support the demands of real-time storage and playback of
continuous-time data streams.

In the Voyager system we use the Tiger Shark filesys-
tem technology from IBM Research [9]. Tiger Shark is
an IBM multimedia file system for AIX systems designed
specifically to meet the needs of media servers, including� prevention of resource overloading by the use of ad-

mission control and disk scheduling,� scalability through file striping,� global abstraction for disk devices.

The last of the three cited needs, global disk abstrac-
tion, deserves further discussion since we later discuss its
contribution to the performance of the system as a whole.

The Virtual Shared Disk (VSD) [1] facility allows the
particpating disk drives to be accessed at the device driver
level from any node in the parallel computer. If a VSD disk
is accessed on the node where its disk resides, the request
goes directly to the kernel on that node. If the disk resides
on a remote node, the request is passed over the SP2 switch
fabric to be handled by the kernel on the remote node.

The global disk abstraction allows one to design a mul-
timedia fileserver to match the scalability requirements for
the application. A server designed to support a large num-
ber of low-bandwidth streams may have many filesystem
nodes and relatively few disk nodes, whereas a server that
supports high-bandwidth streams will require disk nodes to
take advantage of the parallelism of the network between
the filesystem and disk nodes.

4.2 Multimedia Client Tools

The Voyager project is exploiting a number of client tools
from Lawrence Berkeley National Laboratory (LBNL). We
chose to use the LBNL tools in the Voyager project be-
cause of their high quality and robust design, free availabil-
ity, support of network transport standards, and support for
multiple computers and operating systems, including per-
sonal computers running Microsoft Windows. In particular,
we mention the vat audio tool and the vic video tool, both
of which use an object-oriented application framework that
overcomes the limitations of earlier systems by offering a
conference coordination model, diverse video compression
algorithms, and the Intra-H.261 compression scheme [13].

4.3 Standard Protocols

The development of vic coincided with and provided
experience and feedback for the evolution of the Real-time
Transport Protocol (RTP) described below. Members of the
Audio Video Transport Working Group of the IETF created
RTP payload formats for H.261 [18], motion JPEG [5] and
MPEG [11].

An RTP media stream actually consists of two packet
streams: an RTP stream that contains the media data, and an
RTCP (RTP Control Protocol) stream containing informa-
tion about the quality of service of the RTP stream, as well
as information about the participants in the RTP session.

The Voyager system uses RTP as the transport protocol
for its media streams. RTP has several characteristics that
make it appropriate for the Voyager server.� The RTP stream will allow Voyager to determine which

sets of media originated from the same transmitter.� Each RTP packet contains the information necessary to
compute its place in time in the media stream.� Clients can use this timing information to overcome
any network-induced jitter, in order to resynchronize
the media streams.� RTP allows Voyager to adapt itself to less-than-perfect
networks.

4.4 Format Translation

We are experimenting with technologies for real-time
translation of media data formats in Voyager. The current
implementation uses the vgw video transcoding engine [4]
to perform real-time translation of video streams stored in
motion JPEG format to H.261 format. Hence, Voyager users
can use the server over low-bandwidth links (for example,
wide-area networks or ISDN connections).

4.5 Perl

Perl (Practical Extraction and Report Language) is an
interpreted language incorporating the best features of C,
sed, awk, and sh and hence making it quickly accessible to
a broad audience [19, 17].

Perl is widely used for system administration and man-
agement tasks, but we also wish to use Perl for programs
that coordinate the execution of multiple processors or that
implement or access servers that execute elsewhere in the
Internet. Perl’s socket interface provides some support for
these applications, but the socket code tends to be low level,
messy, and nonportable. We therefore turned to the Nexus
runtime system.

4.6 The Nexus Multithreaded Runtime System

Nexus [7] has been a joint development project between
Argonne National Laboratory and the USC Information Sci-
ences Institute. The Aerospace Corporation is also a partner
in Nexus development.

Nexus provides the management and control mechanisms
required by the Voyager system in implementing a dis-
tributed media server. Its interface provides multiple threads
of control, dynamic processor acquisition, dynamic address
space creation, a global memory model via interprocessor
references, and asynchronous events. Its implementation
supports multiple communication protocols and resource
characterization mechanisms that allow automatic selection
of optimal protocols.

Unfortunately, Nexus is not designed to be used at the
application level, but rather as a target for compilers and
libraries. A method of encapsulating the Nexus features
into the Perl framework was needed. As part of the Voyager
project, Nexus and Perl were combined into a module called
nPerl.

4.7 nPerl

nPerl is Perl 5 plus the multiprocessing and communica-
tion facilities of Nexus. The Nexus module of nPerl uses
portable process management and communication functions
provided by the Nexus library. nPerl is intended for pro-
grams that coordinate the execution of multiple processors,
or that implement or access servers that execute elsewhere
in the Internet. For example, it allows one to use the Perl
language to� create and manage multiple processes,� attach to other active nPerl computations,� establish remote references between processes, and� make remote procedure calls to procedures and meth-

ods defined in other processes.

Security and simple fault tolerance mechanisms for nPerl
are provided by the Nexus library.

4.8 Database Technologies

An important component of the Voyager system is the
relational database used for configuration and coordination
of the system as a whole. To enhance the portability of
the system, we use the freely available (to noncommercial
users) mSQL database server developed by David J. Hughes
at Bond University, Australia. The programmatic interface
to the database, however, has been developed by using the
portable DBI API developed in the Perl community. This
allows the system to be ported to another database server
with little difficulty.

4.9 ACE

The lowest level of the Voyager system is a set of daemons
that shuttle data between the node network interfaces and the
Tiger Shark filesystem. We use the ACE [15, 16] C++ class
library in the implementation of these daemons to provide a
measure of portability and simplicity.

We use the ACE network socket abstractions to hide
the required details of low-level socket code. The Reactor
abstraction is used to efficiently implement an event-driven
model of execution in the daemons. The model is applied
naturally to this application, since the daemons are event
driven: packets arrive from possibly multiple sources on the
network, requiring demultiplexing; the implementation of
synchronized multistream playback requires accurate timer-
based handler invocation.

5 Goals and Design

A major goal for the Voyager project is to enable research
in distributed media systems. Voyager should support the
following kinds of experiments:� recording and playback of multiple video/audio con-

ference streams,� recording narration audio/video and scan converted
video for tutorials,� recording VR tracking data for analysis or playback,� supporting video e-mail by enabling transmission of
playback URLS.

Accordingly, we established the following design re-
quirements for the Voyager system: the server must be
scalable, it must allow symmetry of recording and play-
back, and any data recorded must be immediately available.
To this end, the Voyager system has four major components:� User interface, which users interact with to browse,

create, and view media sessions� Computational backend to the user interface� Set of distributed server daemons� Relational database, which ties the parts of the system
together, providing a common repository for Voyager
data.

Voyager uses the IBM Tiger Shark multimedia filesystem,
described earlier.

5.1 User Interface

The user interface for the Voyager system is a forms-
based Web page from which users select functions and
sessions, launch clients, start sessions, etc. We use cus-
tom MIME types [8] (application/x-voyager, application/x-
voyager-capture) with helper applications to invoke media
clients. Media clients can be any RTP media client; how-
ever, we use vic/vat and have used the Precept tools [14].

5.2 Backend

The interface between the forms-based Web interface and
the rest of the Voyager system is a set of CGI scripts. These
scripts parse the forms output, perform allocation of the
distributed server resources, and distribute the requests to
the core of the server.

The process of allocating server resources uses the per-
formance data we have collected from benchmarking the
components of the Voyager system to define admission poli-
cies for the system as a whole. The performance parameters
of the hardware are stored in the Voyager database, as is
information about the load being placed on the system at
that time. When a request for the server arrives, the backend
is able to determine with a database query if and where the
request can be serviced. The information returned from the
query is used to request the server core to create a playback
or recording session.

5.3 Server Core

The core of the server is a set of processes distributed
across the filesystem nodes of the parallel computer serv-
ing Voyager. A process known as the metadaemon runs at
all times on every filesystem node. The metadaemon is re-
sponsible for handling requests for session startup from the
interface backend. Each metadaemon registers itself with
the Voyager database, inserting into the database the infor-
mation that backend processes need to connect to it. The
metadaemons periodically update a heartbeat data item in
the database as well, so that the rest of the system can detect
the failure of a metadaemon and refrain from attempts to
schedule sessions with the failed metadaemon. This strat-
egy also allows a recovery process to attempt to restart the
failed metadaemons.

Upon receipt of session recording and playback requests,
the metadaemon creates recording and playback daemons
and monitors their status. These daemons handle the stream-
ing of data between the network and the multimedia filesys-
tem on which the data is stored. Like the metadaemon, they
insert into the database the informationneeded for a backend
process to connect directly to them.

The Voyager recording daemon listens on a set of net-
work ports for incoming multimedia data. The incoming
packets are demultiplexed based on their RTP synchroniza-
tion source identifier (an integer that uniquely distinguishes
the streams generated by RTP clients). The recorder writes
the packets in the stream to disk exactly as they appeared
in the stream. Packet headers providing framing informa-
tion are also written, since the RTP packet header does not
specify the packet length (this responsibility was delegated
to the protocol providing RTP transport). Since the media
timestamp is included in the RTP packet headers, the me-
dia file contains the information necessary to reproduce the
original timing of the stream. When the session is finished,
a metadata file is written for each stream with information
about the length, start time, and the initial mapping of media
timestamp to recording wallclock time. This information is
also entered into the Voyager database.

The Voyager playback daemon has the more difficult
problem of reproducing both the original packet playout
timing for each stream and the time relationships that hold
between streams. The playback daemon, as it reads the
stream from disk, computes for each packet of each stream
the wallclock time at which the packet should be transmitted
over the network. The computation of this playout time
requires the following parameters:� F , media timestamp frequency� Nsynch, the wallclock value for the synchronization

instant� Rsynch, the RTP timestamp corresponding to Nsynch� Nnow, current wallclock time� Nplaystart, wallclock time at which playback began

We first compute the wallclock starting time of the
stream: Nstart = Nsynch � Rsynch � RstartF :

Then, given an RTP timestamp Ri, we compute its loca-
tion in the stream in absolute wallclock time Ni:Ni = Ri �RsynchF +Nsynch:

The offset of the packet in the stream in wallclock timeNo is then No = Ni � Nstart:
We now compute the delay D needed before playing the

packet: D = Nplaystart +No � Nnow:

Both the playback and recording daemons are written in
C++ using the ACE Reactor abstraction to provide event
handling. In the recorder, incoming packets trigger packet
handlers that write the data to disk. In the player, each data
stream has an associated playout timer that clocks the play-
out. The daemons are also Nexus applications, allowing
their manipulation via the Web user interface, via the server
cgi scripts. In this way the user can stop and start the play-
back and can signal the beginning and ending of a recording
session.

The playback and recording daemons use the Tiger Shark
admission control mechanisms to guarantee the bandwidth
required for the session. If the required bandwidth for the
session is not available from the filesystem, the playback or
record request will fail. Part of the process of configuring
the Voyager system is determining the aggregate bandwidths
required from the filesystem and arranging the disk and node
striping accordingly.

5.4 Database

A critical component of the Voyager system is the re-
lational database used throughout the system. All system-
wide configuration information is contained in the database,
as well as records for each session stored on the database.
Each active playback and recording session has a record
during the duration of the session.

The system configuration records store informationabout
all multimedia filesystems configured on the server, includ-
ing their maximum and currently available capacity. The
mapping of filesystems to filesystem nodes is also stored
and allows the Voyager system to determine the nodes on
which a particular session is available.

The session record stores descriptive data about the ses-
sion, such as a title and description, as well as ownership
information and detailed information on the location of the
session on the fileserver and the per-stream metadata. The
ownership informationallows the owner of a session to mod-
ify the session via the Web, editing or deleting the title and
description, if desired.

We use the database to provide the information for a
browsing interface to the Voyager server. Since all infor-
mation about the current state of the system is available, we
can use it to provide a catalog that ensures that, for example,
the only sessions displayed for use are filesystems that are
currently available.

5.5 Voyager Operation

Figure 1 illustrates the operation of the Voyager server
by following the server through the creation of a recording
session. We assume that the user has browsed the Voyager
Web pages to find a recording setup form, which he has filled

out with information about the session to be recorded—title,
description, media streams required, perhaps approximate
bandwidth and recording time. The invocation of the form
results in the following events:

1. The Web browser sends the form data to the Voyager
Web server, invoking the backend record setup script.

2. The record setup script parses the form data and queries
the database for an appropriate node on which to place
this record session. This query is structured to in-
corporate the information the database contains about
current filesystem space availability, server loading,
network connectivity, and any other factors affecting
the placement of a recording session.

3. The database returns the Nexus attachment information
for an appropriate metadaemon.

4. The setup script attaches to the metadaemon, requesting
it create a recording daemon for this session.

5. The core daemon requests information, such as antici-
pated duration and bandwidth requirements, about the
record session from the database.

6. The database returns the information.

7. The core daemon returns the Nexus URL to the record
setup script.

8. The record setup script returns a Web page with a link
to a voyager document. This document contains the
information that an RTP media client needs to send
data to the Voyager recording daemon.

9. The Web client, with the assistance of a Voyager helper
application running on the client machine, invokes the
media clients, passing them the appropriate informa-
tion for contacting the Voyager server.

10. The media clients begin capture, sending their data
directly to the recording daemon on the Voyager server.

11. The recording daemon writes the media data to the
multimedia filesystem.

5.6 Implementation Notes

The Voyager server is implemented as a set of commu-
nicating processes, using the Nexus runtime library as the
communications substrate. The majority of the programs
involved are written in Perl 5 using a binding of Nexus to
Perl. This Nexus binding allows a form of remote method
invocation, allowing the fairly complex communications to
be implemented with relative ease. The low-level daemons
that handle the transport of data between the network and the

User Interface

Backend

Distributed
Server

Daemons

Database

Media Clients
Create

 Record
 Session

Host/Port
Info

1

8

Get DSD
 Info

URL For
DSD

2

3

Create
Deamon
Request

Deamon
 Info

Get Session
Info

4

Session Info

Fork

Stream Data
Over Network

DFS

Data
to Disk

5

6

7

11

10

9

Figure 1. The Sequence of Control Flows Within the Voyager System.

filesystem are implemented in C++ using the ACE object-
oriented toolkit to encapsulate the network socket code and
to provide a reactive programming model for the stream
handling.

Database service is provide by the freely available (to
noncommercial sites) mSQL server. All access to the
database is through the Perl database API, DBI.

6 Demos

We installed a large Voyager server at the Supercomput-
ing ’95 conference in San Diego in December 1995. This
system consisted of a 28-node IBM SP2, configured as 8
diskful nodes with 500 GB of SSA disk, and 20 filesystem
nodes. Scattered throughout the convention center were 18
capture workstations connected to the Voyager server via an
OC3 ATM network. The goal of the Voyager installation at
the conference was to record all of the technical sessions that
were presented, as well as presentations at the virtual reality
technology demonstrations and ad hoc recordings from the
show floor.

Among other things, we learned that it is very hard to or-
chestrate such an event. We used a staff of volunteers to man
the video cameras and start and stop the recording processes
for each event. We had to train the volunteers, distribute the

cameras and workstations in the morning, and retrieve and
secure all the equipment each night. We recorded a smaller
number of sessions than we wanted to, but did successfully
capture the keynote speech, many CAVE demonstrations,
and some technical sessions.

We have also demonstrated very small Voyager server
installations at two other conferences. At the DOE2000 Re-
search and Development Integration workshop in February
1996, we demonstrated the multistream recording capabil-
ity of a Voyager server running on an IBM RS/6000 590
workstation. An IBM RS/6000 42T with an ATM adapter
and pair of IBM Ultimedia Video capture cards served as
the capture and playback client. In the same exhibit as the
Voyager server was an ImmersaDesk. The NTSC video
output from the SGI Onyx Reality engine that drove the Im-
mersaDesk was attached to one capture card; to the other
was a handheld video camera. We recorded several hours of
the two video streams plus an audio stream captured from
the camera microphone. With such a configuration we were
able to record the interactions of the participants of the Im-
mersaDesk demo as well as unimpeded video of the display
they were watching.

A similar setup was installed at the Supercomputing ’96
conference in Pittsburgh in December 1996. This installa-
tion used a four-processor IBM RS/6000 G30 workstation

as a Voyager server, and an RS/6000 41T configured with an
ATM network adapter and two Ultimedia Video adapters.

Our experience in both workshops indicates that, al-
though not an optimal configuration, the Tiger Shark filesys-
tem performs adequately sharing a disk partition with the
operating system on a workstation disk drive. Hence, a fast
workstation with a large disk and an ATM adapter can per-
form quite well as a Voyager server for a small number of
streams.

7 Performance

We have defined a number of Voyager system bench-
marks in order to quantify the performance characteristics
and degree of scaling possible with the hardware we have in
place. This information will be used to tune the hardware
and software configurations and to define the admission poli-
cies used in the server.

7.1 Test Environment

The current Voyager hardware consists of a 12-node IBM
SP2. Eight nodes are SP1 thin nodes each with a TB2 switch
adapter card and a IBM Turboways 155Mb/s OC3 ATM
adapter. Four nodes are SP2 wide nodes, each with two
fast/wide SCSI adapters and TB2 switch adapter card. Dis-
tributed across the eight SCSI adapters are 36 two-gigabyte
SCSI disks.

Client hardware used in the tests consists of three IBM
RS/6000 41T workstations, two with IBM Turboways
155Mb/s OC3 ATM adapters, one with a Fore Systems
MCA-200 155Mb/s OC3 ATM adapter.

The eight thin nodes are connected to a Newbridge
VIVID Workgroup ATM switch. The client workstations
are connected to a Fore Systems ASX-200 ATM switch.
The two switches are linked via a direct OC3 connection.
When performing benchmarks directing large numbers of
streams to a single node, we used the three workstations and
the rest of the ATM-equipped nodes as data sources, running
multiple streams on each source.

7.2 Experiments

The benchmarks we have designed attempt to quantify
the bandwidth limits in the system and to constrain the total
number of media streams that the system can support. The
interfaces we are testing include the raw disk bandwidth
available to a node, the available bandwidth from filesystem
nodes to disk nodes through the multimedia filesystem and
VSD subsystem, the available bandwidth into and out of the
node through the ATM adapter, and the bandwidth available
when performing simultaneous I/O on the ATM adapter and
multimedia filesystem on a filesystem node.

Table 1. Raw disk performance
Number and Aggregate Per-disk

Type of Disks Bandwidth Bandwidth
1 local 3.58 3.58
2 local 7.04 3.52
3 local 10.42 3.47
4 local 13.14 3.28
1 VSD 2.80 2.80
2 VSD 4.43 2.22
3 VSD 4.81 1.60
4 VSD 5.56 1.39

The first set of benchmarks are intended to determine
roughly the raw disk bandwidth available. The Unix pro-
gram dd was used to write a stream of zero bytes to the raw
disk device. We varied the block size in powers of two from
1 KB blocks to 4096 KB blocks (Figure 2). The asymptotic
bandwidth for a single disk is roughly 3.6 MB/s. Since we
write to multiple disks on the same node, the bandwidth to
each disk remains roughly the same, degrading slightly.

We also ran this test on the raw VSD devices on a filesys-
tem node. Because the Tiger Shark filesystem writes to the
disk device with 256 KB blocks, we ran all tests with a
blocksize of 256 KB.

Table 1 summarizes the disk bandwidth for the raw disk
tests.

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
is

k
ba

nd
w

id
th

 (
M

B
ps

)

Block size (K)

1 disk
2 disks
3 disks
4 disks

Figure 2. Raw disk bandwidth

We turn now to the performance of the ATM network
on the SP node. The first benchmarks are targeted at deter-
mining the number of streams the node can sustain if it is
performing no disk I/O. For each experiment, we fixed the
bandwidth per stream and block size, varying the number
of streams being fed into or out of the node. We measured
the CPU use on the node and the packet loss rate. Figure
3 is a representative plot of such a run. Note that the sum

Table 2. Node network performance
Block %CPU per Max.

Operation Bandwidth Size Stream Streams
Receive 5 Mb/s 4096 10.5 9
Receive 5 Mb/s 8192 6.6 14
Receive 128 Kb/s 512 2.0 50
Send 5 Mb/s 4096 12.6 8
Send 5 Mb/s 8192 8.2 12
Send 128 Kb/s 512 2.7 37
Send 128 Kb/s 1024 1.5 66

of user and system CPU use is roughly linear with respect
to the number of streams, up to full use. Hence, we can
compute a best-fit line for the CPU use and determine a
value for the percentage of CPU use per stream. Note also
that the packet loss rate begins to rise when full CPU use is
reached. The point at which the packet loss begins to rise
defines the maximum number of streams a node can sustain.
We summarize these results in Table 2.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
ra

ct
io

n

streams

Idle CPU
User CPU

Kernel CPU
Wait CPU

User+Kernel CPU
Packet Loss

Figure 3. Node network-only performance

The final benchmarks measure the machine loading and
packet loss when both the network and the Tiger Shark
filesystem are being driven simultaneously. This is a close
approximation to the actual operation of the Voyager server.
These experiments were performed with a number of dif-
ferent filesystem configurations. A representative plot of
these benchmarks can be seen in Figure 4. The results are
summarized in Table 3.

7.3 Conclusions about Voyager Performance

From the studies described above, we can draw sev-
eral conclusions about the performance characteristics of
the Voyager hardware as currently installed. The most im-
portant limiting factor in the scalability of the system is the

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

F
ra

ct
io

n

streams

Idle CPU
user CPU

kernel CPU
wait CPU

User+Kernel CPU
Packet Loss

Figure 4. Node network/disk performance

Table 3. Node network/filesystem perfor-
mance

Number of Block %CPU per Max.
Disk Nodes Bandwidth Size Stream Streams
1 5Mb/s 4096 18.6 5
1 5Mb/s 8192 13.3 7
1 128Kb/s 512 7.5 37
2 5Mb/s 4096 18.3 5
2 5Mb/s 8192 11.8 8
2 128Kb/s 512 2.7 37
3 5Mb/s 4096 18.2 5
3 5Mb/s 8192 11.2 8

relatively high CPU loading induced by ATM network traf-
fic. The theoretical maximum number of 5 Mb/s streams
that a single 155 Mb/s OC3 ATM connection could serve
is 31. The overhead incurred by the operating system in
the best case holds us to less than half that number, while
bringing the CPU to full use.

The bandwidth from filesystem node to the disk nodes
is limited by the maximum bandwidth of the TB2 switch
adapter, roughly 320 Mb/s. While this is larger than the
incoming ATM bandwidth, the VSD subsystem is not able to
use all the switch bandwidth, again because of the overhead
of the IP protocol processing. The raw VSD bandwidths in
Figure 1 show very poor scaling. This may be due to these
bandwidth limits. We can see from the bandwidths available
to the raw disk drives that scalability at this level does not
appear to be a problem.

We emphasize that the system we are observing has a
large number of configuration parameters. The AIX op-
erating system allows the tuning of the network protocol
processing parameters; the TB2 hardware, Tiger Shark, and
the VSD subsystem all have configuration mechanisms that

interact in subtle ways. We view this performance data as a
way to begin the process of determining the optimal tuning
of the system as a whole.

8 Concluding Remarks

In the Voyager project, we have built and deployed a
scalable multistream multimedia recorder and playback en-
gine, using standards-based RTP and MBone tools. We
use the IBM Tiger Shark filesystem to provide support for
continuous-time data and have leveraged a large number
of freely available tools to construct the system. We have
demonstrated scalability and have shown raw performance
figures.

Although Voyager is available for playback on our Web
site today1, it has not so far been available for ad hoc record-
ing by our colleagues. We will soon be providing a richer
user interface, upgrading the SP2 on which it runs, re-
evaluating performance figures, and making Voyager avail-
able on a continuing basis to the scientific community. We
also plan a number of straightforwardperformance improve-
ments and new features that will make Voyager a truly useful
tool.

Future research centers on adding new types of streams
and incorporating Voyager into a multimedia virtual world
server for archiving and replaying virtual experiences. We
expect to be able to record computational steering sessions,
including simulation checkpoints. With such a system, a
user playing back a session can diverge from the original
experiences, at which time Voyager would restart the sim-
ulation, allowing the user to explore in different directions.
Finally, we would like to provide annotation methods and
search mechanisms in the engine to facilitate discovery and
playback.

Acknowledgments

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of
the Office of Computational and Technology Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

References

[1] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M.
Dias, and M. Snir. SP2 systems architecture. IBM Systems
Journal, 34(2), 1995.

[2] K. Almeroth and M. Ammar. On the performance of a mul-
ticast delivery video-on-demand service with discontinuous
VCR actions. In International Conference on Communica-
tions (ICC 95). IEEE, June 1995.

1http://voyager.mcs.anl.gov/Voyager/

[3] K. Almeroth and M. Ammar. On the use of multicast de-
livery to provide a scalable and interactive video-on-demand
service. Journal on Selected Areas of Communication, (Au-
gust), 1996.

[4] E. Amir, S. McCanne, and H. Zhang. An application level
video gateway. In ACM Multimedia 95, November 1995.

[5] L. Berc, W. Fenner, R. Frederick, and S. McCanne. RTP
payload format for JPEG-compressed video, October 1996.
Network Working Group, RFC 2035.

[6] C. Cruz-Neira, D.J.Sandin, and T. DeFanti. Surround-screen
projection-based virtual reality: The design and implemen-
tation of the CAVE. In Computer Graphics (Proceedings of
SIGGRAPH ’93), pages 135–142. ACM SIGGRAPH, Au-
gust 1993.

[7] I. Foster, C. Kesselman, and S. Tuecke". "the Nexus approach
to integrating multithreading and communication". JPDC,
37:"70–82", 1996.

[8] N. Freed and N. Borenstsien. Multipurpose internet mail
extensions (MIME) part two: Media types, November 1996.
Network Working Group, RFC 2046.

[9] R. Haskin and F. Schmuck. The tiger shark file system. In
Proceedingsof the IEEE Computer Conference,1996. IEEE,
March 1996.

[10] R. Haskin and F. Stein. A system for the delivery of inter-
active television programming. In Proceedings of the IEEE
Computer Conference, 1995, pages 209–214. IEEE, March
1995.

[11] D. Hoffman, G. Fernando, and V. Goyal. RTP payload format
for MPEG1/MPEG2 video, October 1996. Network Working
Group, RFC 2038.

[12] W. Holfelder. MBone VCR - video conference recording on
the MBone. In ACM Multimedia 95 - Electronic Proceedings.
ACM, ACM Press, November 1995.

[13] S. McCanne and V. Jacobsen. Vic: A flexible framework
for packet video. In ACM Multimedia 95, pages 511–522,
November 1995.

[14] I. Precept Software. Precept IP/TV Viewer Users Manual.
PreceptSoftware, Inc., initial release edition, June 1996. Part
Number 201.

[15] D. C. Schmidt. The adaptive communication environment
an object-oriented network programming toolkit for devel-
oping communication software. In Proceedingsof Sun Users
Group Conference, December 1993.

[16] D. C. Schmidt. Pattern Languages of Program Design,
chapter Reactor: An object behavioral pattern for concur-
rent event demultiplexing and event handler dispatching.
Addison-Wesley, 1995.

[17] R. Schwartz. Learning Perl. O’Reilly and Associates, 1993.
[18] T. Turletti and C. Huitema. RTP payload format for H.261

video streams, October1996. Network Working Group, RFC
2032.

[19] L. Wall, T. Christiansen, and R. Schwartz. Programming
Perl. O’Reilly and Associates, 1996.

