ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

OPTIMIZATION ENVIRONMENTS AND THE NEOS SERVER

William Gropp and Jorge J. Moré

Mathematics and Computer Science Division

Preprint MCS-P654-0397

March 1997

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Computational and Technology Research, U.S. Depart-
ment of Energy, under Contract W-31-109-Eng-38, by a grant of Northwestern University
to the Optimization Technology Center, and by the National Science Foundation, through
the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-
9120008.






OPTIMIZATION ENVIRONMENTS AND THE NEOS SERVER

William Gropp and Jorge J. Moré*

1 Introduction

In an ideal computational environment the user would formulate the optimization problem
and obtain results without worrying about computational resources. Unfortunately this
ideal environment is not possible because if sufficient care is not given to the formulation,
a reasonable problem may become untractable. Even with an appropriate formulation,
obtaining the solution of difficult optimization problems requires sophisticated optimization
software and access to large-scale computational resources. Modeling three-dimensional
physical processes by systems of differential equations gives rise to optimization problems
that require access to substantial computational resources. Discrete and global optimization
problems are also in this category.

We are interested in the development of problem-solving environments that simplify the
formulation of optimization problems, and the access to computational resources. Once
the problem has been formulated, the first step in solving an optimization problem in
a typical computational environment is to identify and obtain the appropriate piece of
optimization software. The software may be available from a mathematical software library,
or may need to be bought and installed. In some cases the software is public domain, and
available from a site on the Internet. Once the software has been installed and tested in
the local environment, the user must read the documentation and write code to define the
optimization problem in the manner required by the software. Typically, Fortran or C code
must be written to define the problem, compute function values and derivatives, and specify
sparsity patterns. Finally, the user must debug, compile, link, and execute the code.

The Network-Enabled Optimization System (NEOS) is an Internet-based service for
optimization providing information, software, and problem-solving services for optimization.
The main components of NEOS are the NEOS Guide and the NEOS Server. Additional
information on the various services provided by NEOS can be obtained from the home page

of the Optimization Technology Center

http://www.mcs.anl.gov/home/otc/

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, 1. 60439-4844.
This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38, by a grant of Northwestern University to the Optimization Technology Center, and by the
National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative
Agreement No. CCR-9120008.



The NEOS (Network-Enabled Optimization System) Server [11] is a novel environment
for the solution of optimization problems that allows users to solve optimization problems
over the Internet while requiring only that the user provide a specification of the problem.
There is no need to download an optimization solver, write code to link the optimization
solver with the optimization problem, or compute derivatives. Moreover, the NEOS Server
provides an interface that is problem oriented and independent of the computing resources
offered by NEOS. As long as there is an eflicient way to describe the problem, the NEOS
Server can provide access to a wide variety of computational services, from small clusters
of workstations to any number of participating supercomputer centers.

The current version of the NEOS Server is described in Section 2. We emphasize non-
linear optimization problems, but NEOS does handle linear and nonlinearly constrained
optimization problems, and solvers for optimization problems subject to integer variables
are being added.

Performance issues are examined in Section 3. In particular, we provide evidence that
the NEOS Server is able to solve large nonlinear optimization problems in time comparable
to software with hand-coded gradients. We do not discuss the design and implementation
of the Server because these issues are covered by Czyzyk, Mesnier, and Moré [11].

In Section 4 we begin to explore possible extensions to the NEOS Server by discussing
the addition of solvers for global optimization problems. Section 5 discusses how a remote
procedure call (RPC) interface to NEOS addresses some of the limitations of NEOS in the
areas of security and usability. The detailed implementation of such an interface raises
a number of questions, such as exactly how the RPC is implemented, what security or
authentication approaches are used, and what techniques are used to improve the efficiency
of the communication. These questions are not discussed here. Instead, we outline some of
the issues in network computing that arise from the emerging style of computing used by

NEOS.

2 The NEOS Server

The NEOS Server provides Internet access to a library of optimization solvers with user
interfaces that shield the user from the optimization software. The user needs only to
describe the optimization problem; all additional information required by the optimization
solver is determined automatically.

The NEOS approach offers considerable advantages over a conventional environment for
solving optimization problems. Consider, for example, how NEOS solves an optimization
problem of the form

min {f(z):2 € R"},



where f:R"™ — R is partially separable, that is, f can be written as

f(2) szz'@%

where each element function f; only depends on a few components of z, and ny is the number
of element functions. Algorithms and software that take advantage of partial separability
have been developed for various problems (for example, [23, 24, 25, 26, 9]), but this software
requires that the user provide the gradient of f and the partial separability structure (a list
of the dependent variables for each element function f;).

The NEOS solvers for partially separable problems require that the user specify the
number of variables n, a subroutine initpt(n,x) that defines the starting point, and a
subroutine fen(n,x,nf,fvec) that evaluates the element functions. Since there is no need
to provide the gradient or the partial separability structure, the user can concentrate on
the specification of the problem. Changes to the fcn subroutine can be made and tested
immediately; the advantages in terms of ease of use are considerable.

The NEOS solvers for the bound constrained problem

min{f(z) 12 <z < a,}
and the nonlinearly constrained optimization problem
min{f(z) :a; < <y, g <c(z) <eyt

also make use of partial separability. The bound constrained problem is specified by a
subroutine that specifies the bounds z; and z,,, while for the nonlinearly constrained problem
we also need to specify a subroutine that specifies the constraint bounds ¢; and ¢, and the
nonlinear function ¢ : R™ — R™. Specifying this information is done with additional
subroutines. The bounds z; and z, are specified with the subroutine xbound(n,x1,xu),
the constraint bounds ¢; and ¢, are specified with the subroutine cbound(m,cl,cu), and
the nonlinear function ¢ : R™ — IR™ is specified by cfcn(m,x,c).

We have mentioned nonlinear optimization solvers, but NEOS contains solvers in other

areas. At present we have solvers in the following areas:

Unconstrained optimization

Bound constrained optimization
Nonlinearly constrained optimization
Complementarity problems

Linear network optimization

Linear programming

Stochastic linear programming



The addition of solvers in other areas is not difficult; indeed, NEOS was designed so that
solvers in a wide variety of optimization areas could be added easily.

We provide Internet users the choice of three interfaces for submitting problems: e-mail,
the NEOS Submission tool, and the NEOS Server Web interface. The interfaces are designed
so that problem submission is intuitive and requires the minimal amount of information.
The interfaces differ only in the way that information is specified and passed to the NEOS
Server.

The e-mail interface is relatively primitive, but useful because most users have easy
access to e-mail. Information on the available services and on the format used to submit

problems via e-mail can be obtained by sending the mail message help to
neos@mcs.anl.gov
Users interested in the Web interface should visit the URL
http://www.mcs.anl.gov/home/otc/Server/

This URL has links to all the solvers in the library, as well as pointers to other NEOS
information, in particular, the NEOS Guide. In the remainder of this section we examine
the NEOS Submission tool.

The NEOS Submission tool provides a high-speed link to the NEOS Server via sockets.
Once this tool is installed, the user has access to all the services provided by the NEOS

Server. Users may download the Submission tool from the URL
http://www.mcs.anl.gov/otc/Server/submission_tool.html/

Installation of the Submission tool is immediate provided that Perl [28] has been installed
properly. If the installation fails, the usual remedy is to run the Perl h2ph script that
changes C header files into Perl header files. Running the h2ph script is simple but must
be done by the installer of Perl, which is usually the system administrator.

Submission of problems via the NEOS Submission tool is simple. The user must first
choose the type of optimization problem. Once an area is selected, the user must choose
a solver. This selection process is done via drop-down menus typical of well-designed user
interfaces.

The optimization problem is specified via a submission form. For example, Figure 2.1
shows the NEOS Submission form for the vmlm solver of unconstrained optimization prob-
lems. Solvers in each area have a submission form that is appropriate for that area.

For the vmlm solver the user needs to specify the language used to submit the problem
(Fortran or C), the number of variables n, the number of partially separable functions ny,
and the files for the initial point and function evaluation subroutines. Browse buttons are

available to ease the specification of the various files. An advantage of this interface is that,



= romel-Jebszszsr 0 [«[]

File Help
c
Language ~
4 Fortran
Humber of Variables [eso0

Humber of Element Functions |SSUD

Initial Point Subroutine |fhnmefmurefpapersfmjdfesh’lmlplf browse >>

4 Function in Partially Separable Form

Function Type
~ Function and Gradient

Function Subroutine [fnomermorespapersimjdfastiicn f browse >»

Absolute Error [1.0d-10
Relative Error J1.0d-10
Minimum Function Value |-1.0030

Optimal design problem
2500 wariables and 5300

element functions.

Uniform mesh with

Comments nx = ny = 50

- ‘ submit | close |

Figure 2.1: The NEOS submission form for vmlm

unlike the Web interface, the subroutines can be in files that reside in the user’s local file
space.

The general philosophy of the NEOS solvers is that problem submission should be in-
tuitive and require only essential information. Parameters that affect the progress of the
algorithm are not required but can be specified, for example, by a specification file. The
vmlm solver allows the user a choice of tolerances, but for most problems the defaults pro-
vided are adequate. The form also has room for comments, which can be used to identify
the problem submission.

Once the problem is specified, the problem is submitted via the submission button at
the bottom of the form (see Figure 2.1). A variety of computers, even a massively parallel
processor, could be used to solve the problem; the only restriction is that the computer
must run UNIX with support for TCP/IP. At present these computers are workstations
that reside at Argonne National Laboratory, Northwestern University, and the University
of Wisconsin.

For a typical submission, the user receives information on the progress of the submis-
sion, and the solution. Figure 2.2 shows part of the output received when the problem
in Figure 2.1 is submitted to NEOS. This output shows that NEOS contacts an available
workstation and transfers all of the user’s data to the workstation. The solver (in this case
vmlm) checks the data and compiles the user’s code. If any errors are found at this stage,
the compiler error messages are returned to the user, and execution terminates.

If the user’s code compiles correctly, automatic differentiation tools (ADIFOR [4, 3] for

Fortran code) are used to generate the gradient. Once the gradient is obtained, the user’s



Hie |

Contacting remote workstation. .. :E

Ferforming file transfer...
Launching driwver:
VMLM driver
Copying VMLM data
Compiling initpt
Compiling fcn
Bunning security check
Generating gradient with ADIFOR.
Linking vour code to software library
Executing algerithm...

]|

—

Figure 2.2: Output from the NEOS Submission tool

code is linked with the software library, and execution begins. Results are returned in the
window generated by the NEOS Submission tool.

Interesting issues arise during the processing of the job submission that are pertinent to
the development of optimization software and problem-solving environments. For example,
high-quality software should check the input data, but in this case the data are the Fortran
programs initpt and fen. In general, it is not possible to check that this data is correct. At
present we check only that the user function does not create any system exceptions during
the evaluation of the function at the starting point. Although simple, this test catches many
errors on the part of the user.

Submitting a problem to the NEOS Server does not guarantee success, but NEOS users
are able to solve difficult optimization problems without worrying about many of the details
that are typical in a computing environment. Even if the user has suitable optimization
software, the user would need to read the documentation, write code to interface his problem
with the optimization software, and then debug this code. The user would also have to write

code for the gradient, and debug that code—a nontrivial undertaking in most cases.

3 Performance

The NEOS solvers for partially separable problems are able to solve large-scale nonlinear
optimization problems while requiring only that the user provide code for the function
evaluation. This ability was considered unrealistic until recently. The major obstacle was
the computation of the gradient. For small-scale problems we can approximate the gradient
by differences of function values, for example,

[z + hies) = f(2)

V()i = o




where h; is the difference parameter and e; is the ¢th unit vector, but this approximation
is prohibitive for large-scale problems because it requires n function evaluations for each
gradient. Approximating a gradient by differences is not only expensive but also increases
the unreliability of the optimization code, since a poor choice for h; may cause premature
termination of the optimization algorithm far away from the solution.

The NEOS solvers for nonlinear optimization problems use automatic differentiation
tools to compute the gradients, Jacobians, and sparsity patterns required by the solvers.
At present, we rely on ADIFOR [4, 3] to process Fortran code and on ADOL-C [15] to
process C code.

We demonstrate the ability of NEOS to solve large-scale nonlinear optimization problems
with an optimal design problem formulated by Goodman, Kohn, and Reyna [14]. This
optimal design problem requires determining the placement of two elastic materials in the
cross section of a rod with maximal torsional rigidity. The mathematical formulation is to

minimize a functional of the form
) = [ {eUve@l+ o} da,

over a domain D in R?, where ¢y : R — R is a piecewise quadratic. The formulation
of the optimal design problem with finite elements leads naturally to a partially separable
optimization problem in n = n,n, variables, where n, and n, are the number of interior grid
points in the coordinate directions, respectively. We use the formulation in the MINPACK-2
test problem collection [1]. Additional details on the problem formulation are not important
to our discussion. We need to know only that in our numerical results we consider the
problem of minimizing f) for a fixed value of A; in this case A = 0.008.

From a computational viewpoint, the most interesting feature of the code to evaluate f)
is that the number of floating-point operations required to evaluate f) grows linearly with
n. Ideally, we would like to solve the problem in time proportional to n.

We solve the optimal design problem by developing code to evaluate fy. In our formu-
lation the vector x contains the values of the piecewise linear finite element approximation,

and the subroutine
dodc(nx,ny,x,nf,fvec,lambda)

evaluates the components of the partially separable function f) as a function of the number
of grid point and A. The components of the partially separable function are stored in the
array fvec of length nf. In this formulation nf is the number of elements in the finite
element triangulation.

Ths subroutine dodc does not have the desired form for submission to NEOS, but it is
quite easy to write a wrapper. For example, the results in this section were obtained with

a subroutine of the form



fen(n,x,nf,fvec)

that sets nx and ny to n!/2 and X to 0.008. With this formulation we can quickly submit a
series of problems to NEOS for various values of n.

Submission of the optimal design problem with the NEOS Submission tool is quite easy.
Figure 2.1 shows the form that was used to submit the optimal design problem. In Figure 2.1
we were using n = 2500, but the form can be used for other values of n by changing the
number of variables and the number of elements functions.

Table 3.1 shows the timings (in seconds) and the number of function evaluations needed
to solve an optimal design problem with the vmlm solver. We provide information for the
case when the user only provides the function in partially separable form and for the case
when the user provides the function and gradient. These results were obtained on a Sparc 10
with 96 MB of memory.

Table 3.1: Performance of the NEOS solver vmlm

Function Function and Gradient

n niters mnfgev time | niters nfgev time
2,500 230 237 139 232 239 22
10,000 427 436 1042 427 433 165
40,000 865 871 8399 877 885 1461

There are two important points to notice in the results in Table 3.1. The main point
is that these results show that the time per function evaluation increases linearly with n.
This is to be expected for this problem when the user provides both the function and the
gradient, but it is remarkable that this also holds for the case when the user only provides
the function. The techniques [2] used to achieve these results make essential use of the
partial separability of the function.

Another important point about the results in Table 3.1 is that there is a factor of
six penalty in the timings when only providing the function. If we had used a standard
difference approximation to the gradient, there would have been a performance penalty of
about n, which is prohibitive for these problems. We also note that for these results, vmlm
used ADIFOR with the sparse option. This strategy is far from optimal; with the hybrid
strategy of Bouaricha and Moré [7] the performance penalty is reduced to a factor of two.

Finally, we note that the number of function evaluations needed to solve the problem
grows as a function of n!/2. However, this is all that can be expected from a limited-memory
variable metric method.

The main point that should be drawn from the results in Table 3.1 is that the NEOS
Server combines an intuitive user interface, automatic differentiation tools, and optimization
algorithms into a powerful problem-solving tool. We want to improve the NEOS Server by
extending the range of problems that can be solved, but we also want to improve the

interface. These issues will be examined in the next two sections.



4 Global Optimization Problems

We want to extend the NEOS Server capabilities to global optimization problems. In
general, these problems are attacked by algorithms that require a large number of loosely
coupled processors. We are interested, in particular, in problems that arise in connection
with the determination of protein structures. As a specific instance of the type of problem
under consideration, we consider distance geometry problems.

Distance geometry problems for the determination of protein structures are specified by
a subset § of all atom pairs and by the distances between atoms ¢ and j for (7,j) € S.
In practice, lower and upper bounds on the distances are given instead of precise values.
The distance geometry problem with lower and upper bounds is to find a set of positions

T1,...,Zy, in R? such that
lij < le - ij < Ui, (27«7) €S, (4'1)

where [; ; and u; ; are lower and upper bounds on the distances, respectively. Recent reviews
of the application of distance geometry problems to protein structure determination can be
found in Havel [17, 18], Torda and van Gunsteren [27], Kuntz, Thomason, and Oshiro [19],
Briinger and Nilges [8], and Blaney and Dixon [5].

A standard formulation of the distance geometry problem (4.1), suggested by Crippen
and Havel [10], is to find the global minimum of the function

f)y =Y pijlei— ),
i,jeS

where the pairwise function p; ; : R" — IR is defined by

z||? =12 z||? — u? -
pi7j(x):min2{7u le Z’],O}—I—maxz{i" | 5 Z’],O}.

0 Ui
Clearly, * = {x1,...,2,,} solves the distance geometry problem if and only if z is a global
minimizer of f and f(z) = 0.
Distance geometry problems can be specified by a small amount of data. A reasonable

specification is to provide the number of atoms m, the size of the set §, and the vectors
(6,4, ligyuig),  (6,7) €. (4.2)

In a practical setting this data would be accompanied by additional information (for exam-
ple, the type of atoms), but for our purposes we would need only (4.2).

Finding a global minimizer of f for the distance geometry problem is NP-hard even in
the special case where [; ; = u; ;. Finding approximate minimizers is also NP-hard; that
is, the decision problem of finding € R"™ such that f(z) < € for given ¢ > 0 is NP-

hard. At a more practical level, we note that the function f has a large number of distinct



File Help

# PDB format
Input format o DG-11 fommat

+r DGEOM fonmat

Input data | browse »»

Specification file | browse »>

- | submit close

i

Figure 4.3: The NEOS submission form for dgsol

minima, which seem to grow exponentially with the number of atoms m. Moreover, in our
experience, even problems with a small number of atoms can be quite difficult. See Moré
and Wu [21, 22] for additional information.

Several general approaches to the solution of global optimization problems could be
used to solve distance geometry problems: multi start techniques, simulated annealing, and
genetic algorithms. There are also specific techniques for distance geometry problems, in
particular, the embed algorithm (see Crippen and Havel [10], and Havel [17, 18]), and the
dgsol algorithm of Moré and Wu [22].

We have designed the NEOS Server so that additional solvers can be installed easily,
with little intervention by the Server administrators. Given a solver, the user is given an
interface that is intuitive and simple. For distance geometry problems we could use, for
example, the submission form in Figure 4.3 that requires the distance geometry data (4.2).

Registering a new solver with the NEOS Server automatically updates the library. Sub-
mission forms, in particular, are created from configuration files specified by the software
administrator. Each line of the configuration file specifies an entry in the submission form.
The form in Figure 4.3, for example, requires only a three-line configuration file. For addi-
tional details on the registration process, see Czyzyk, Mesnier, and Moré [11].

The main difficulty that must be faced in extending the NEOS Server to global opti-
mization problems is the scheduling of jobs. With the current design, jobs are allocated
sequentially to the first available machine, but we could use Condor [20], a distributed re-
source management system developed at the University of Wisconsin, to schedule jobs on
heterogeneous clusters of workstations. NEOS is already using Condor to solve nonlinear
complementarity problems (see Ferris, Mesnier and Moré [12]), so the transition to global
optimization problems is feasible. Other research projects that are addressing the use of
large-scale computing resources include Globus [13] and Legion [16].

The approach to solving global optimization problems with NEOS offers considerable

10



advantages. Solving global optimization problems in a large-scale computing center would
force the user to learn scheduling policies, job submission methods, and installation-specific
software libraries. To some extent, such requirements are unavoidable; each center repre-
sents a significant investment and often must serve a particular user community. Even for
users who must use these centers, the significant effort involved in learning the idiosyn-
crasies of each facility often limit the ability to switch between centers. In contrast, the
NEOS Submission tool provides an interface that is problem oriented and independent of

the computing resources that are offered by the NEOS Server.

5 Distributed Computing

The NEOS Server is first and foremost a network resource for optimization services. The
current system provides convenient access to the facilities of NEOS, and, as described
in Section 4, additional capabilities can be added easily. The current version has some
limitations, however, in the area of of security and usability for computing in a distributed
environment. Because the potential solutions to these problems are related, we discuss them
together.

In any networked or distributed computing system, two important questions must be
answered: How does the system protect itself from malicious or careless users (and these
users from each other), and how does it present itself to the users? The first issue is one
of security; the second is one of ease of use. NEOS currently has only rudimentary security
features, and the interfaces do not allow access from a user program. A more traditional
but more flexible and powerful method for accessing numerical capabilities is the procedural
(subroutine) interface. The network analogue to this interface, the remote procedure call
(RPC) [6], is useful for some parts of the security question as well. To better understand
the security issues, we first outline the problem.

To make the discussion concrete, we consider the case of determining a minimizer of a
function f :IR"™ — R. The most precise description of this problem is often the code that
implements f. This code most likely contains loops and array accesses, and possibly func-
tion calls. If the NEOS Server simply accepts arbitrary code to describe the optimization
problem, the systems running NEOS are subject to some security risks.

The most common security risk occurs if the user is not trusted. Lack of trust does
not mean that the user is malicious, just that the work they send cannot be trusted not to
cause problems. In this case we identify two issues: rogue programs and denial-of-service
attacks.

Rogue programs are a security issue because the description of the optimization problem
may crash the Server or even compromise the system. For problems (for example, linear
programming or distance geometry) that are described by relatively simple data, it is easy

to check that the data is valid. For programs, such checking is much harder. Our current

11



system applies a number of techniques to reduce the chance for harm to the system. For
example, the NEOS Server runs as a separate user with no special privileges. However,
since the user can submit Fortran or C programs, it is possible that a programming error
or a deliberate subterfuge could harm NEOS or, through some unplugged security problem,
compromise the entire system. Solutions to this problem range from provably safe problem
descriptions (either a specialized modeling language or strongly typed languages such as
Java) to provably safe interfaces, with user code and NEOS code running on different
systems.

Another security issue arises, even with well-meaning users, when programs use large
amounts of computing—more than their fair share. When this is done maliciously, it is
called a denial-of-service attack. The amount of time used by a single request is relatively
easily controlled, and most scheduling systems provide this service. Harder to contain are
floods of requests, each generating a separate request. The NEOS Server may need to
maintain records of use as well as interacting with the scheduling system to ensure that the
Server does not make excessive demands on the system.

A security risk also occurs if the user is trusted but the connection is not, because
there may be eavesdroppers. This requires merely that some secure transaction service be
used. Such services are becoming commonplace on the Web (for example, for credit card
transactions), though usually for small amounts of data.

Providing both a more secure execution environment for NEOS and a more flexible
interface makes use of the same technique: the remote procedure call. Conventionally,
programmers of scientific applications call library routines from their Fortran or C program
to perform some service, such as minimizing a function. For example, the user may call a

procedure of the form
call uco( fcn, x, ... )

to find a minimizer of f. A remote procedure call looks just like a regular procedure call to
the user; the implementation, however, makes contact with a remote server (NEOS in our

case) and passes to the server the arguments of the call. The implementation may look like
call neos_uco( ’fen.f’, x, ... )

where *fcn. £ is the name of the file containing the code that defines the function f.

A remote procedure call interface would be a significant improvement over the interface
provided by the NEOS Submission tool because such an interface would make it possible to
incorporate NEOS capabilities into existing code. The remote procedure call interface is a
relatively simple addition to the existing NEOS services that is secure and easy to use for
those optimization problems that are completely described by simple data, such as linear

programming problems. The data can be checked for validity by the server; encryption can

12



be used if necessary to keep the data safe from eavesdroppers. If the data is Fortran or C
code, however, checking for validity is far more difficult. If the user is not trusted, we can
use a reverse communication approach or a provably safe form of code.

In the reverse communication approach, the user’s function is executed on the user’s
machine. The RPC mechanism is used to request information from the user and to return
information to the Server. For example, the user could be requested to evaluate the function
f at the current iterate # and return f(z) to the Server. This maintains the security against
rogue code by executing the user’s code on the user’s machine and the optimization code
on the NEOS-provided machine.

A drawback of this approach is that the cost of each of these remote procedure calls
can be large. Just the delay from speed-of-light propagation can amount to milliseconds in
a widely distributed network. In view of this limitation, this approach would be suitable
only for problems in which the function evaluations requires considerable computing power
so that the cost of the remote procedure call is insignificant.

The option to use a provably safe form of the code has attracted attention because of
Java, a language related to C4++ that contains a number of features and restrictions to
allow programs written in Java to be executed without fearing that the system running
them could be compromised. Many of the restrictions are irrelevant to most numerical
code; for example, Java has no function pointers and restricts the kinds of routines (other
than those provided by the user) that can be called.

In the most obvious approach, the user writes their code in Java instead of Fortran
or C, and the Java code is uploaded into the NEOS Server by the remote procedure call.
There is another option; the optimization code provided by NEOS could be downloaded
directly into the user’s running application (as long as that application is running in a Java
environment). The interface would be the same; only the source of the cycles used to run
the optimization code would be different. In this model, the procedure interface is a sort of
automatic download-and-install operation that would be suitable only for small problems,
and would not provide access to large-scale computing resources.

Java is not the only choice; a suitable subset of Fortran could be constructed by re-
stricting some features of the language and performing strict compile and runtime checking.
Such a network-safe version of Fortran could provide easy and reliable access to distributed

services to existing programs.

Acknowledgments

The ideas discussed in this paper have evolved during the development of the NEOS Server.
Many have contributed to this effort, but Michael Mesnier deserves special credit. Other
researchers that have contributed to these ideas are Joe Czyzyk, Michael Ferris, Jorge
Nocedal, and Steve Wright.

13



References

[1]

B. M. AvERrICK, R. G. CARTER, J. J. MoRE, aAND G.-L. XUE, The MINPACK-2
test problem collection, Preprint MCS-P153-0694, Mathematics and Computer Science
Division, Argonne National Laboratory, 1992.

C. Biscuor, A. BouaRicHA, P. KHADEMI, AND J. J. MoRE, Computing gradients
in large-scale optimization using automatic differentiation, Preprint MCS-P488-0195,
Argonne National Laboratory, Argonne, Illinois, 1995. To appear in INFORMS Journal

on Computing.

C. BiscHoF, A. CARLE, AND P. KHADEMI, Fortran 77 interface specification to the
SparsLinC library, Technical Report ANL/MCS-TM-196, Argonne National Labora-
tory, Argonne, Illinois, 1994.

C. Biscuor, A. CARLE, P. KHADEMI, AND A. MAUER, The ADIFOR 2.0 system for
the automatic differentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-
gonne National Laboratory, Argonne, Illinois, 1994. Also available as CRPC-TR94491,

Center for Research on Parallel Computation, Rice University.

J. M. BLANEY AND J. S. DixXoN, Distance geometry in molecular modeling, in Reviews
in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, eds., vol. 5, VCH
Publishers, 1994, pp. 299-335.

J. BLoOMER, Power Programming with RPC, O’Reilly & Associates, Inc., 1992.

A. BouaRIcHA AND J. J. MoRE, Impact of partial separability on large-scale opti-
mization, Preprint MCS-P487-0195, Argonne National Laboratory, Argonne, Illinois,
1995. Accepted for publication in Computational Optimization and Applications.

A. T. BRUNGER AND M. NILGES, Computational challenges for macromolecular struc-
ture determination by X-ray crystallography and solution NMR-spectroscopy, Q. Rev.
Biophys., 26 (1993), pp. 49-125.

A. R. Conn, N. I. M. GouLp, aND P. L. ToinT, LANCELQOT, Springer Series in
Computational Mathematics, Springer-Verlag, 1992.

G. M. CrirPEN AND T. F. HAVEL, Distance Geometry and Molecular Conformation,
John Wiley & Sons, 1988.

J. CzyzyK, M. P. MESNIER, AND J. J. MoORE, The Network-Enabled Optimization
System (NEOS) Server, Preprint MCS-P615-0996, Argonne National Laboratory, Ar-
gonne, Illinois, 1996.

14



[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

M. C. FERRIS, M. P. MESNIER, AND J. J. MORE, The NEOS Server for complemen-
tarity problems: PATH, Technical Report 96-08, University of Wisconsin, Madison,
Wisconsin, 1996. Also available as MCS-P616-1096, Mathematics and Computer Sci-

ence Division, Argonne National Laboratory.

[. FosTER AND C. KESSELMAN, Globus: A metacomputing infrastructure toolkit, In-
ternational Journal of Supercomputer Applications, (1997). To appear.

J. GoopmaN, R. KoHN, AND L. REYNA, Numerical study of a relaxed varia-
tional problem from optimal design, Comput. Methods Appl. Mech. Engrg., 57 (1986),
pp. 107-127.

A. GRIEWANK, D. JUEDES, AND J. UTKE, ADOL-C: A package for the automatic dif-
ferentiation of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996),
pp- 131-167.

A. GRINSHAW AND W. WoLF, Legion - A view from 50,000 feet, in Proceedings of
the 5th IEEE Symposium on High Performance Distributed Computing, Los Alamitos,
California, 1996, IEEE Computer Society Press, pp. 89-99.

T. F. HAVEL, An evaluation of computational strategies for use in the determination

of protein structure from distance geometry constraints obtained by nuclear magnetic
resonance, Prog. Biophys. Mol. Biol., 56 (1991), pp. 43-78.

—, Distance geometry, in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant
and R. K. Harris, eds., John Wiley & Sons, 1995, pp. 1701-1710.

I. D. KunTz, J. F. THOMASON, AND C. M. OsHIRO, Distance geometry, in Methods
in Enzymology, N. J. Oppenheimer and T. L. James, eds., vol. 177, Academic Press,
1993, pp. 159-204.

M. J. Lirzgow, M. LivNY, AND M. W. MuTKA, Condor - A hunter of idle work-
stations, in Proceedings of the 8th International Conference on Distributed Comput-
ing Systems, Washington, District of Columbia, 1988, IEEE Computer Society Press,
pp. 108-111.

J. J. MORE AND Z. WU, e-optimal solutions to distance geometry problems via global
continuation, in Global Minimization of Nonconvex Energy Functions: Molecular Con-
formation and Protein Folding, P. M. Pardalos, D. Shalloway, and G. Xue, eds., Amer-
ican Mathematical Society, 1995, pp. 151-168.

—, Distance geometry optimization for protein structures, Preprint MCS-P628-1296,
Argonne National Laboratory, Argonne, Illinois, 1996.

15



[23] P. L. ToIiNT, Numerical solution of large sets of algebraic nonlinear equations, Math.
Comp., 46 (1986), pp. 175-189.

[24] ——, On large scale nonlinear least squares calculations, SIAM J. Sci. Statist. Comput.,
8 (1987), pp. 416-435.

[25] P. L. ToIiNT AND D. TUYTTENS, On large-scale nonlinear network optimization,
Math. Programming, 48 (1990), pp. 125-159.

[26)] ——, LSNNO: A Fortran subroutine for solving large-scale nonlinear network optimi-
zation problems, ACM Trans. Math. Software, 18 (1992), pp. 308-328.

[27] A. E. TorpA aAND W. F. vaAN GUNSTEREN, Molecular modeling using nuclear mag-
netic resonance data, in Reviews in Computational Chemistry, K. B. Lipkowitz and
D. B. Boyd, eds., vol. 3, VCH Publishers, 1992, pp. 143-172.

[28] L. WALL, T. CHRISTIANSEN, AND R. L. SCHWARTZ, Programming Perl, O’Reilly &

Associates, Inc., second ed., 1996.

16



