
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
OPTIMIZATION ENVIRONMENTS AND THE NEOS SERVERWilliam Gropp and Jorge J. Mor�eMathematics and Computer Science DivisionPreprint MCS-P654-0397March 1997

This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38, by a grant of Northwestern Universityto the Optimization Technology Center, and by the National Science Foundation, throughthe Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.

OPTIMIZATION ENVIRONMENTS AND THE NEOS SERVERWilliam Gropp and Jorge J. Mor�e�1 IntroductionIn an ideal computational environment the user would formulate the optimization problemand obtain results without worrying about computational resources. Unfortunately thisideal environment is not possible because if su�cient care is not given to the formulation,a reasonable problem may become untractable. Even with an appropriate formulation,obtaining the solution of di�cult optimization problems requires sophisticated optimizationsoftware and access to large-scale computational resources. Modeling three-dimensionalphysical processes by systems of di�erential equations gives rise to optimization problemsthat require access to substantial computational resources. Discrete and global optimizationproblems are also in this category.We are interested in the development of problem-solving environments that simplify theformulation of optimization problems, and the access to computational resources. Oncethe problem has been formulated, the �rst step in solving an optimization problem ina typical computational environment is to identify and obtain the appropriate piece ofoptimization software. The software may be available from a mathematical software library,or may need to be bought and installed. In some cases the software is public domain, andavailable from a site on the Internet. Once the software has been installed and tested inthe local environment, the user must read the documentation and write code to de�ne theoptimization problem in the manner required by the software. Typically, Fortran or C codemust be written to de�ne the problem, compute function values and derivatives, and specifysparsity patterns. Finally, the user must debug, compile, link, and execute the code.The Network-Enabled Optimization System (NEOS) is an Internet-based service foroptimization providing information, software, and problem-solving services for optimization.The main components of NEOS are the NEOS Guide and the NEOS Server. Additionalinformation on the various services provided by NEOS can be obtained from the home pageof the Optimization Technology Centerhttp://www.mcs.anl.gov/home/otc/�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844.This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-gram of the O�ce of Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38, by a grant of Northwestern University to the Optimization Technology Center, and by theNational Science Foundation, through the Center for Research on Parallel Computation, under CooperativeAgreement No. CCR-9120008. 1

The NEOS (Network-Enabled Optimization System) Server [11] is a novel environmentfor the solution of optimization problems that allows users to solve optimization problemsover the Internet while requiring only that the user provide a speci�cation of the problem.There is no need to download an optimization solver, write code to link the optimizationsolver with the optimization problem, or compute derivatives. Moreover, the NEOS Serverprovides an interface that is problem oriented and independent of the computing resourceso�ered by NEOS. As long as there is an e�cient way to describe the problem, the NEOSServer can provide access to a wide variety of computational services, from small clustersof workstations to any number of participating supercomputer centers.The current version of the NEOS Server is described in Section 2. We emphasize non-linear optimization problems, but NEOS does handle linear and nonlinearly constrainedoptimization problems, and solvers for optimization problems subject to integer variablesare being added.Performance issues are examined in Section 3. In particular, we provide evidence thatthe NEOS Server is able to solve large nonlinear optimization problems in time comparableto software with hand-coded gradients. We do not discuss the design and implementationof the Server because these issues are covered by Czyzyk, Mesnier, and Mor�e [11].In Section 4 we begin to explore possible extensions to the NEOS Server by discussingthe addition of solvers for global optimization problems. Section 5 discusses how a remoteprocedure call (RPC) interface to NEOS addresses some of the limitations of NEOS in theareas of security and usability. The detailed implementation of such an interface raisesa number of questions, such as exactly how the RPC is implemented, what security orauthentication approaches are used, and what techniques are used to improve the e�ciencyof the communication. These questions are not discussed here. Instead, we outline some ofthe issues in network computing that arise from the emerging style of computing used byNEOS.2 The NEOS ServerThe NEOS Server provides Internet access to a library of optimization solvers with userinterfaces that shield the user from the optimization software. The user needs only todescribe the optimization problem; all additional information required by the optimizationsolver is determined automatically.The NEOS approach o�ers considerable advantages over a conventional environment forsolving optimization problems. Consider, for example, how NEOS solves an optimizationproblem of the form min ff(x) : x 2 IRng ;2

where f : IRn ! IR is partially separable, that is, f can be written asf(x) = nfXi=1 fi(x);where each element function fi only depends on a few components of x, and nf is the numberof element functions. Algorithms and software that take advantage of partial separabilityhave been developed for various problems (for example, [23, 24, 25, 26, 9]), but this softwarerequires that the user provide the gradient of f and the partial separability structure (a listof the dependent variables for each element function fi).The NEOS solvers for partially separable problems require that the user specify thenumber of variables n, a subroutine initpt(n,x) that de�nes the starting point, and asubroutine fcn(n,x,nf,fvec) that evaluates the element functions. Since there is no needto provide the gradient or the partial separability structure, the user can concentrate onthe speci�cation of the problem. Changes to the fcn subroutine can be made and testedimmediately; the advantages in terms of ease of use are considerable.The NEOS solvers for the bound constrained problemmin ff(x) : xl � x � xugand the nonlinearly constrained optimization problemmin ff(x) : xl � x � xu; cl � c(x) � cugalso make use of partial separability. The bound constrained problem is speci�ed by asubroutine that speci�es the bounds xl and xu, while for the nonlinearly constrained problemwe also need to specify a subroutine that speci�es the constraint bounds cl and cu, and thenonlinear function c : IRn 7! IRm. Specifying this information is done with additionalsubroutines. The bounds xl and xu are speci�ed with the subroutine xbound(n,xl,xu),the constraint bounds cl and cu are speci�ed with the subroutine cbound(m,cl,cu), andthe nonlinear function c : IRn 7! IRm is speci�ed by cfcn(m,x,c).We have mentioned nonlinear optimization solvers, but NEOS contains solvers in otherareas. At present we have solvers in the following areas:Unconstrained optimizationBound constrained optimizationNonlinearly constrained optimizationComplementarity problemsLinear network optimizationLinear programmingStochastic linear programming 3

The addition of solvers in other areas is not di�cult; indeed, NEOS was designed so thatsolvers in a wide variety of optimization areas could be added easily.We provide Internet users the choice of three interfaces for submitting problems: e-mail,the NEOS Submission tool, and the NEOS Server Web interface. The interfaces are designedso that problem submission is intuitive and requires the minimal amount of information.The interfaces di�er only in the way that information is speci�ed and passed to the NEOSServer.The e-mail interface is relatively primitive, but useful because most users have easyaccess to e-mail. Information on the available services and on the format used to submitproblems via e-mail can be obtained by sending the mail message help toneos@mcs.anl.govUsers interested in the Web interface should visit the URLhttp://www.mcs.anl.gov/home/otc/Server/This URL has links to all the solvers in the library, as well as pointers to other NEOSinformation, in particular, the NEOS Guide. In the remainder of this section we examinethe NEOS Submission tool.The NEOS Submission tool provides a high-speed link to the NEOS Server via sockets.Once this tool is installed, the user has access to all the services provided by the NEOSServer. Users may download the Submission tool from the URLhttp://www.mcs.anl.gov/otc/Server/submission tool.html/Installation of the Submission tool is immediate provided that Perl [28] has been installedproperly. If the installation fails, the usual remedy is to run the Perl h2ph script thatchanges C header �les into Perl header �les. Running the h2ph script is simple but mustbe done by the installer of Perl, which is usually the system administrator.Submission of problems via the NEOS Submission tool is simple. The user must �rstchoose the type of optimization problem. Once an area is selected, the user must choosea solver. This selection process is done via drop-down menus typical of well-designed userinterfaces.The optimization problem is speci�ed via a submission form. For example, Figure 2.1shows the NEOS Submission form for the vmlm solver of unconstrained optimization prob-lems. Solvers in each area have a submission form that is appropriate for that area.For the vmlm solver the user needs to specify the language used to submit the problem(Fortran or C), the number of variables n, the number of partially separable functions nf ,and the �les for the initial point and function evaluation subroutines. Browse buttons areavailable to ease the speci�cation of the various �les. An advantage of this interface is that,4

Figure 2.1: The NEOS submission form for vmlmunlike the Web interface, the subroutines can be in �les that reside in the user's local �lespace.The general philosophy of the NEOS solvers is that problem submission should be in-tuitive and require only essential information. Parameters that a�ect the progress of thealgorithm are not required but can be speci�ed, for example, by a speci�cation �le. Thevmlm solver allows the user a choice of tolerances, but for most problems the defaults pro-vided are adequate. The form also has room for comments, which can be used to identifythe problem submission.Once the problem is speci�ed, the problem is submitted via the submission button atthe bottom of the form (see Figure 2.1). A variety of computers, even a massively parallelprocessor, could be used to solve the problem; the only restriction is that the computermust run UNIX with support for TCP/IP. At present these computers are workstationsthat reside at Argonne National Laboratory, Northwestern University, and the Universityof Wisconsin.For a typical submission, the user receives information on the progress of the submis-sion, and the solution. Figure 2.2 shows part of the output received when the problemin Figure 2.1 is submitted to NEOS. This output shows that NEOS contacts an availableworkstation and transfers all of the user's data to the workstation. The solver (in this casevmlm) checks the data and compiles the user's code. If any errors are found at this stage,the compiler error messages are returned to the user, and execution terminates.If the user's code compiles correctly, automatic di�erentiation tools (ADIFOR [4, 3] forFortran code) are used to generate the gradient. Once the gradient is obtained, the user's5

Figure 2.2: Output from the NEOS Submission toolcode is linked with the software library, and execution begins. Results are returned in thewindow generated by the NEOS Submission tool.Interesting issues arise during the processing of the job submission that are pertinent tothe development of optimization software and problem-solving environments. For example,high-quality software should check the input data, but in this case the data are the Fortranprograms initpt and fcn. In general, it is not possible to check that this data is correct. Atpresent we check only that the user function does not create any system exceptions duringthe evaluation of the function at the starting point. Although simple, this test catches manyerrors on the part of the user.Submitting a problem to the NEOS Server does not guarantee success, but NEOS usersare able to solve di�cult optimization problems without worrying about many of the detailsthat are typical in a computing environment. Even if the user has suitable optimizationsoftware, the user would need to read the documentation, write code to interface his problemwith the optimization software, and then debug this code. The user would also have to writecode for the gradient, and debug that code{a nontrivial undertaking in most cases.3 PerformanceThe NEOS solvers for partially separable problems are able to solve large-scale nonlinearoptimization problems while requiring only that the user provide code for the functionevaluation. This ability was considered unrealistic until recently. The major obstacle wasthe computation of the gradient. For small-scale problems we can approximate the gradientby di�erences of function values, for example,[rf(x)]i � f(x+ hiei)� f(x)hi ; 1 � i � n;6

where hi is the di�erence parameter and ei is the ith unit vector, but this approximationis prohibitive for large-scale problems because it requires n function evaluations for eachgradient. Approximating a gradient by di�erences is not only expensive but also increasesthe unreliability of the optimization code, since a poor choice for hi may cause prematuretermination of the optimization algorithm far away from the solution.The NEOS solvers for nonlinear optimization problems use automatic di�erentiationtools to compute the gradients, Jacobians, and sparsity patterns required by the solvers.At present, we rely on ADIFOR [4, 3] to process Fortran code and on ADOL-C [15] toprocess C code.We demonstrate the ability of NEOS to solve large-scale nonlinear optimization problemswith an optimal design problem formulated by Goodman, Kohn, and Reyna [14]. Thisoptimal design problem requires determining the placement of two elastic materials in thecross section of a rod with maximal torsional rigidity. The mathematical formulation is tominimize a functional of the formf�(v) = ZDn � (krv(x)k) + v(x)odx;over a domain D in IR2, where � : IR 7! IR is a piecewise quadratic. The formulationof the optimal design problem with �nite elements leads naturally to a partially separableoptimization problem in n = nxny variables, where nx and ny are the number of interior gridpoints in the coordinate directions, respectively. We use the formulation in the MINPACK-2test problem collection [1]. Additional details on the problem formulation are not importantto our discussion. We need to know only that in our numerical results we consider theproblem of minimizing f� for a �xed value of �; in this case � = 0:008.From a computational viewpoint, the most interesting feature of the code to evaluate f�is that the number of
oating-point operations required to evaluate f� grows linearly withn. Ideally, we would like to solve the problem in time proportional to n.We solve the optimal design problem by developing code to evaluate f�. In our formu-lation the vector x contains the values of the piecewise linear �nite element approximation,and the subroutine dodc(nx,ny,x,nf,fvec,lambda)evaluates the components of the partially separable function f� as a function of the numberof grid point and �. The components of the partially separable function are stored in thearray fvec of length nf. In this formulation nf is the number of elements in the �niteelement triangulation.Ths subroutine dodc does not have the desired form for submission to NEOS, but it isquite easy to write a wrapper. For example, the results in this section were obtained witha subroutine of the form 7

fcn(n,x,nf,fvec)that sets nx and ny to n1=2 and � to 0:008. With this formulation we can quickly submit aseries of problems to NEOS for various values of n.Submission of the optimal design problem with the NEOS Submission tool is quite easy.Figure 2.1 shows the form that was used to submit the optimal design problem. In Figure 2.1we were using n = 2500, but the form can be used for other values of n by changing thenumber of variables and the number of elements functions.Table 3.1 shows the timings (in seconds) and the number of function evaluations neededto solve an optimal design problem with the vmlm solver. We provide information for thecase when the user only provides the function in partially separable form and for the casewhen the user provides the function and gradient. These results were obtained on a Sparc 10with 96MB of memory.Table 3.1: Performance of the NEOS solver vmlmFunction Function and Gradientn niters nfgev time niters nfgev time2,500 230 237 139 232 239 2210,000 427 436 1042 427 433 16540,000 865 871 8399 877 885 1461There are two important points to notice in the results in Table 3.1. The main pointis that these results show that the time per function evaluation increases linearly with n.This is to be expected for this problem when the user provides both the function and thegradient, but it is remarkable that this also holds for the case when the user only providesthe function. The techniques [2] used to achieve these results make essential use of thepartial separability of the function.Another important point about the results in Table 3.1 is that there is a factor ofsix penalty in the timings when only providing the function. If we had used a standarddi�erence approximation to the gradient, there would have been a performance penalty ofabout n, which is prohibitive for these problems. We also note that for these results, vmlmused ADIFOR with the sparse option. This strategy is far from optimal; with the hybridstrategy of Bouaricha and Mor�e [7] the performance penalty is reduced to a factor of two.Finally, we note that the number of function evaluations needed to solve the problemgrows as a function of n1=2. However, this is all that can be expected from a limited-memoryvariable metric method.The main point that should be drawn from the results in Table 3.1 is that the NEOSServer combines an intuitive user interface, automatic di�erentiation tools, and optimizationalgorithms into a powerful problem-solving tool. We want to improve the NEOS Server byextending the range of problems that can be solved, but we also want to improve theinterface. These issues will be examined in the next two sections.8

4 Global Optimization ProblemsWe want to extend the NEOS Server capabilities to global optimization problems. Ingeneral, these problems are attacked by algorithms that require a large number of looselycoupled processors. We are interested, in particular, in problems that arise in connectionwith the determination of protein structures. As a speci�c instance of the type of problemunder consideration, we consider distance geometry problems.Distance geometry problems for the determination of protein structures are speci�ed bya subset S of all atom pairs and by the distances between atoms i and j for (i; j) 2 S.In practice, lower and upper bounds on the distances are given instead of precise values.The distance geometry problem with lower and upper bounds is to �nd a set of positionsx1; : : : ; xm in IR3 such thatli;j � kxi � xjk � ui;j ; (i; j) 2 S; (4.1)where li;j and ui;j are lower and upper bounds on the distances, respectively. Recent reviewsof the application of distance geometry problems to protein structure determination can befound in Havel [17, 18], Torda and van Gunsteren [27], Kuntz, Thomason, and Oshiro [19],Br�unger and Nilges [8], and Blaney and Dixon [5].A standard formulation of the distance geometry problem (4.1), suggested by Crippenand Havel [10], is to �nd the global minimum of the functionf(x) = Xi;j2S pi;j(xi � xj);where the pairwise function pi;j : IRn 7! IR is de�ned bypi;j(x) = min2(kxk2 � l2i;jl2i;j ; 0)+ max2(kxk2 � u2i;ju2i;j ; 0) :Clearly, x = fx1; : : : ; xmg solves the distance geometry problem if and only if x is a globalminimizer of f and f(x) = 0.Distance geometry problems can be speci�ed by a small amount of data. A reasonablespeci�cation is to provide the number of atoms m, the size of the set S, and the vectors(i; j; li;j; ui;j); (i; j) 2 S: (4.2)In a practical setting this data would be accompanied by additional information (for exam-ple, the type of atoms), but for our purposes we would need only (4.2).Finding a global minimizer of f for the distance geometry problem is NP-hard even inthe special case where li;j = ui;j . Finding approximate minimizers is also NP-hard; thatis, the decision problem of �nding x 2 IRn such that f(x) � � for given � > 0 is NP-hard. At a more practical level, we note that the function f has a large number of distinct9

Figure 4.3: The NEOS submission form for dgsolminima, which seem to grow exponentially with the number of atoms m. Moreover, in ourexperience, even problems with a small number of atoms can be quite di�cult. See Mor�eand Wu [21, 22] for additional information.Several general approaches to the solution of global optimization problems could beused to solve distance geometry problems: multi start techniques, simulated annealing, andgenetic algorithms. There are also speci�c techniques for distance geometry problems, inparticular, the embed algorithm (see Crippen and Havel [10], and Havel [17, 18]), and thedgsol algorithm of Mor�e and Wu [22].We have designed the NEOS Server so that additional solvers can be installed easily,with little intervention by the Server administrators. Given a solver, the user is given aninterface that is intuitive and simple. For distance geometry problems we could use, forexample, the submission form in Figure 4.3 that requires the distance geometry data (4.2).Registering a new solver with the NEOS Server automatically updates the library. Sub-mission forms, in particular, are created from con�guration �les speci�ed by the softwareadministrator. Each line of the con�guration �le speci�es an entry in the submission form.The form in Figure 4.3, for example, requires only a three-line con�guration �le. For addi-tional details on the registration process, see Czyzyk, Mesnier, and Mor�e [11].The main di�culty that must be faced in extending the NEOS Server to global opti-mization problems is the scheduling of jobs. With the current design, jobs are allocatedsequentially to the �rst available machine, but we could use Condor [20], a distributed re-source management system developed at the University of Wisconsin, to schedule jobs onheterogeneous clusters of workstations. NEOS is already using Condor to solve nonlinearcomplementarity problems (see Ferris, Mesnier and Mor�e [12]), so the transition to globaloptimization problems is feasible. Other research projects that are addressing the use oflarge-scale computing resources include Globus [13] and Legion [16].The approach to solving global optimization problems with NEOS o�ers considerable10

advantages. Solving global optimization problems in a large-scale computing center wouldforce the user to learn scheduling policies, job submission methods, and installation-speci�csoftware libraries. To some extent, such requirements are unavoidable; each center repre-sents a signi�cant investment and often must serve a particular user community. Even forusers who must use these centers, the signi�cant e�ort involved in learning the idiosyn-crasies of each facility often limit the ability to switch between centers. In contrast, theNEOS Submission tool provides an interface that is problem oriented and independent ofthe computing resources that are o�ered by the NEOS Server.5 Distributed ComputingThe NEOS Server is �rst and foremost a network resource for optimization services. Thecurrent system provides convenient access to the facilities of NEOS, and, as describedin Section 4, additional capabilities can be added easily. The current version has somelimitations, however, in the area of of security and usability for computing in a distributedenvironment. Because the potential solutions to these problems are related, we discuss themtogether.In any networked or distributed computing system, two important questions must beanswered: How does the system protect itself from malicious or careless users (and theseusers from each other), and how does it present itself to the users? The �rst issue is oneof security; the second is one of ease of use. NEOS currently has only rudimentary securityfeatures, and the interfaces do not allow access from a user program. A more traditionalbut more
exible and powerful method for accessing numerical capabilities is the procedural(subroutine) interface. The network analogue to this interface, the remote procedure call(RPC) [6], is useful for some parts of the security question as well. To better understandthe security issues, we �rst outline the problem.To make the discussion concrete, we consider the case of determining a minimizer of afunction f : IRn 7! IR. The most precise description of this problem is often the code thatimplements f . This code most likely contains loops and array accesses, and possibly func-tion calls. If the NEOS Server simply accepts arbitrary code to describe the optimizationproblem, the systems running NEOS are subject to some security risks.The most common security risk occurs if the user is not trusted. Lack of trust doesnot mean that the user is malicious, just that the work they send cannot be trusted not tocause problems. In this case we identify two issues: rogue programs and denial-of-serviceattacks.Rogue programs are a security issue because the description of the optimization problemmay crash the Server or even compromise the system. For problems (for example, linearprogramming or distance geometry) that are described by relatively simple data, it is easyto check that the data is valid. For programs, such checking is much harder. Our current11

system applies a number of techniques to reduce the chance for harm to the system. Forexample, the NEOS Server runs as a separate user with no special privileges. However,since the user can submit Fortran or C programs, it is possible that a programming erroror a deliberate subterfuge could harm NEOS or, through some unplugged security problem,compromise the entire system. Solutions to this problem range from provably safe problemdescriptions (either a specialized modeling language or strongly typed languages such asJava) to provably safe interfaces, with user code and NEOS code running on di�erentsystems.Another security issue arises, even with well-meaning users, when programs use largeamounts of computing|more than their fair share. When this is done maliciously, it iscalled a denial-of-service attack. The amount of time used by a single request is relativelyeasily controlled, and most scheduling systems provide this service. Harder to contain are
oods of requests, each generating a separate request. The NEOS Server may need tomaintain records of use as well as interacting with the scheduling system to ensure that theServer does not make excessive demands on the system.A security risk also occurs if the user is trusted but the connection is not, becausethere may be eavesdroppers. This requires merely that some secure transaction service beused. Such services are becoming commonplace on the Web (for example, for credit cardtransactions), though usually for small amounts of data.Providing both a more secure execution environment for NEOS and a more
exibleinterface makes use of the same technique: the remote procedure call. Conventionally,programmers of scienti�c applications call library routines from their Fortran or C programto perform some service, such as minimizing a function. For example, the user may call aprocedure of the form call uco(fcn, x, ...)to �nd a minimizer of f . A remote procedure call looks just like a regular procedure call tothe user; the implementation, however, makes contact with a remote server (NEOS in ourcase) and passes to the server the arguments of the call. The implementation may look likecall neos uco('fcn.f', x, ...)where 'fcn.f' is the name of the �le containing the code that de�nes the function f .A remote procedure call interface would be a signi�cant improvement over the interfaceprovided by the NEOS Submission tool because such an interface would make it possible toincorporate NEOS capabilities into existing code. The remote procedure call interface is arelatively simple addition to the existing NEOS services that is secure and easy to use forthose optimization problems that are completely described by simple data, such as linearprogramming problems. The data can be checked for validity by the server; encryption can12

be used if necessary to keep the data safe from eavesdroppers. If the data is Fortran or Ccode, however, checking for validity is far more di�cult. If the user is not trusted, we canuse a reverse communication approach or a provably safe form of code.In the reverse communication approach, the user's function is executed on the user'smachine. The RPC mechanism is used to request information from the user and to returninformation to the Server. For example, the user could be requested to evaluate the functionf at the current iterate x and return f(x) to the Server. This maintains the security againstrogue code by executing the user's code on the user's machine and the optimization codeon the NEOS-provided machine.A drawback of this approach is that the cost of each of these remote procedure callscan be large. Just the delay from speed-of-light propagation can amount to milliseconds ina widely distributed network. In view of this limitation, this approach would be suitableonly for problems in which the function evaluations requires considerable computing powerso that the cost of the remote procedure call is insigni�cant.The option to use a provably safe form of the code has attracted attention because ofJava, a language related to C++ that contains a number of features and restrictions toallow programs written in Java to be executed without fearing that the system runningthem could be compromised. Many of the restrictions are irrelevant to most numericalcode; for example, Java has no function pointers and restricts the kinds of routines (otherthan those provided by the user) that can be called.In the most obvious approach, the user writes their code in Java instead of Fortranor C, and the Java code is uploaded into the NEOS Server by the remote procedure call.There is another option; the optimization code provided by NEOS could be downloadeddirectly into the user's running application (as long as that application is running in a Javaenvironment). The interface would be the same; only the source of the cycles used to runthe optimization code would be di�erent. In this model, the procedure interface is a sort ofautomatic download-and-install operation that would be suitable only for small problems,and would not provide access to large-scale computing resources.Java is not the only choice; a suitable subset of Fortran could be constructed by re-stricting some features of the language and performing strict compile and runtime checking.Such a network-safe version of Fortran could provide easy and reliable access to distributedservices to existing programs.AcknowledgmentsThe ideas discussed in this paper have evolved during the development of the NEOS Server.Many have contributed to this e�ort, but Michael Mesnier deserves special credit. Otherresearchers that have contributed to these ideas are Joe Czyzyk, Michael Ferris, JorgeNocedal, and Steve Wright. 13

References[1] B. M. Averick, R. G. Carter, J. J. Mor�e, and G.-L. Xue, The MINPACK-2test problem collection, Preprint MCS-P153-0694, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1992.[2] C. Bischof, A. Bouaricha, P. Khademi, and J. J. Mor�e, Computing gradientsin large-scale optimization using automatic di�erentiation, Preprint MCS-P488-0195,Argonne National Laboratory, Argonne, Illinois, 1995. To appear in INFORMS Journalon Computing.[3] C. Bischof, A. Carle, and P. Khademi, Fortran 77 interface speci�cation to theSparsLinC library, Technical Report ANL/MCS-TM-196, Argonne National Labora-tory, Argonne, Illinois, 1994.[4] C. Bischof, A. Carle, P. Khademi, and A. Mauer, The ADIFOR 2.0 system forthe automatic di�erentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-gonne National Laboratory, Argonne, Illinois, 1994. Also available as CRPC-TR94491,Center for Research on Parallel Computation, Rice University.[5] J. M. Blaney and J. S. Dixon, Distance geometry in molecular modeling, in Reviewsin Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, eds., vol. 5, VCHPublishers, 1994, pp. 299{335.[6] J. Bloomer, Power Programming with RPC, O'Reilly & Associates, Inc., 1992.[7] A. Bouaricha and J. J. Mor�e, Impact of partial separability on large-scale opti-mization, Preprint MCS-P487-0195, Argonne National Laboratory, Argonne, Illinois,1995. Accepted for publication in Computational Optimization and Applications.[8] A. T. Br�unger and M. Nilges, Computational challenges for macromolecular struc-ture determination by X-ray crystallography and solution NMR-spectroscopy, Q. Rev.Biophys., 26 (1993), pp. 49{125.[9] A. R. Conn, N. I. M. Gould, and P. L. Toint, LANCELOT, Springer Series inComputational Mathematics, Springer-Verlag, 1992.[10] G. M. Crippen and T. F. Havel, Distance Geometry and Molecular Conformation,John Wiley & Sons, 1988.[11] J. Czyzyk, M. P. Mesnier, and J. J. Mor�e, The Network-Enabled OptimizationSystem (NEOS) Server, Preprint MCS-P615-0996, Argonne National Laboratory, Ar-gonne, Illinois, 1996. 14

[12] M. C. Ferris, M. P. Mesnier, and J. J. Mor�e, The NEOS Server for complemen-tarity problems: PATH, Technical Report 96-08, University of Wisconsin, Madison,Wisconsin, 1996. Also available as MCS-P616-1096, Mathematics and Computer Sci-ence Division, Argonne National Laboratory.[13] I. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit, In-ternational Journal of Supercomputer Applications, (1997). To appear.[14] J. Goodman, R. Kohn, and L. Reyna, Numerical study of a relaxed varia-tional problem from optimal design, Comput. Methods Appl. Mech. Engrg., 57 (1986),pp. 107{127.[15] A. Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic dif-ferentiation of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996),pp. 131{167.[16] A. Grinshaw and W. Wolf, Legion - A view from 50,000 feet, in Proceedings ofthe 5th IEEE Symposium on High Performance Distributed Computing, Los Alamitos,California, 1996, IEEE Computer Society Press, pp. 89{99.[17] T. F. Havel, An evaluation of computational strategies for use in the determinationof protein structure from distance geometry constraints obtained by nuclear magneticresonance, Prog. Biophys. Mol. Biol., 56 (1991), pp. 43{78.[18] , Distance geometry, in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grantand R. K. Harris, eds., John Wiley & Sons, 1995, pp. 1701{1710.[19] I. D. Kuntz, J. F. Thomason, and C. M. Oshiro, Distance geometry, in Methodsin Enzymology, N. J. Oppenheimer and T. L. James, eds., vol. 177, Academic Press,1993, pp. 159{204.[20] M. J. Litzkow, M. Livny, and M. W. Mutka, Condor - A hunter of idle work-stations, in Proceedings of the 8th International Conference on Distributed Comput-ing Systems, Washington, District of Columbia, 1988, IEEE Computer Society Press,pp. 108{111.[21] J. J. Mor�e and Z. Wu, "-optimal solutions to distance geometry problems via globalcontinuation, in Global Minimization of Nonconvex Energy Functions: Molecular Con-formation and Protein Folding, P. M. Pardalos, D. Shalloway, and G. Xue, eds., Amer-ican Mathematical Society, 1995, pp. 151{168.[22] , Distance geometry optimization for protein structures, Preprint MCS-P628-1296,Argonne National Laboratory, Argonne, Illinois, 1996.15

[23] P. L. Toint, Numerical solution of large sets of algebraic nonlinear equations, Math.Comp., 46 (1986), pp. 175{189.[24] ,On large scale nonlinear least squares calculations, SIAM J. Sci. Statist. Comput.,8 (1987), pp. 416{435.[25] P. L. Toint and D. Tuyttens, On large-scale nonlinear network optimization,Math. Programming, 48 (1990), pp. 125{159.[26] , LSNNO: A Fortran subroutine for solving large-scale nonlinear network optimi-zation problems, ACM Trans. Math. Software, 18 (1992), pp. 308{328.[27] A. E. Torda and W. F. van Gunsteren, Molecular modeling using nuclear mag-netic resonance data, in Reviews in Computational Chemistry, K. B. Lipkowitz andD. B. Boyd, eds., vol. 3, VCH Publishers, 1992, pp. 143{172.[28] L. Wall, T. Christiansen, and R. L. Schwartz, Programming Perl, O'Reilly &Associates, Inc., second ed., 1996.

16

