
Communications of the ACM (to appear 1997)
Also Preprint ANL/MCS-P655-0397

Programs That Offer Fast, Flawless, Logical Reasoning*

M

Larry Wos

athematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439-4801
v

S

e-mail: wos@mcs.anl.go

herlock Holmes and Mr. Spock of Star Trek could reason logically and flawlessly, always.

p
Some people you know have that ability, sometimes. Unfortunately, without perfect reasoning, diverse
roblems arise:

g Bugs in computer programs. If a sort program places Sun before Intel, more than disappointment

g

is experienced.

Flaws in chip design. One Pentium chip became famous because of a flaw.

eg Errors in mathematical proofs. Papers having a title of the form ‘‘On an Error by MacLane’’ ar
well remembered, but not with pleasure (at least by MacLane).

-
s

How can the likelihood of the various cited disasters be reduced? One answer is automated rea
oning. (For further information on automated reasoning at Argonne National Laboratory, see

a
v
http://www.mcs.anl.gov/home/mccune/ar/, which will give you all of the needed pointers for obtaining
ersatile automated reasoning program, for new results, for various neat proofs, and for puzzles.)

1. Automated Reasoning and the Eureka Experience

The focus of automated reasoning is the design and implementation of computer programs that
,

p
flawlessly apply logical reasoning to reach the objective, whether the area of interest is circuit design
rogram verification, theorem proving, puzzle solving, or more. Featured in this article is a versatile

o
automated reasoning program—McCune’s OTTER [3]—that you can use for attacking problems in each
f these areas and, so important, for sharply reducing the likelihood of disaster.

y
r

Fortunately, you can easily obtain your own personal copy of OTTER. For example, a relativel
ecent version is included on diskette in a book that gives you an introduction to automated reasoning,

,
y
details various applications, and assumes no background in computing or in logic [9]. Alternatively
ou may wish to read about the process by which significant discoveries are made using an automated

n
o
reasoning program; a new book [11] presents just such an approach and includes a very recent versio
f OTTER on diskette. You can also obtain a copy of the OTTER source from the Internet; see the

,
y
Web page cited earlier. Finally, for those of you who wish a small taste of using OTTER immediately
ou can try your hand using the Son of BirdBrain (hot-linked on the cited Web page).

r
l

Before you decide whether access to an automated reasoning program will sharply increase you
ikelihood of success, you might naturally wonder how its reasoning possibly differs from yours and

s
f
from that of others you know. You might also be curious about how its strategic attack possibly differ
rom that a person typically takes. I believe—although some of my colleagues do not entirely share my

a
d
views—that precious little is known about how people consciously reason, especially when attacking
eep problem.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office
of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.



2

Of course, the eureka experience is well documented: Poincaŕe, after failing to solve a problem
-

i
on which he had worked for months, suddenly knew its solution. I have had a similar experience, wak
ng at three in the morning, instantly aware of what was needed to solve a problem in abstract algebra.

n
The subconscious mind is a marvel! A computer program (of the type under discussion), of course, has
o subconscious mind, nor intuition, nor, for that matter, experience on which to draw.

-
d

Also in sharp contrast to people is an automated reasoning program’s use of specific and well
efined inference rules for drawing conclusions. People, I have discovered, seldom use specific rules

-
s
for drawing conclusions, even when the subject is mathematics. In addition, people often wish to rea
on from pairs of statements, whereas a reasoning program such as OTTER offers various means to

draw conclusions from statements taken three at a time, or more.

Compared with reasoning, even less is known about how a person selects appropriate data from a
-

i
huge amount of information—specifically, which techniques (strategies) are used to restrict the reason
ng and which are used to direct it. Indeed, how does the disciplined mind escape drowning in useless

t
conclusions, and how does such a mind avoid getting lost? If you question researchers, you will find
hat explicit strategy is seldom if ever used, in contrast to playing chess or playing poker. If a reason-

l
d
ing program is to serve well as an assistant, however, the use of explicit strategies (and I use the plura
eliberately) is an absolute necessity.

Strategies for restricting and strategies for directing a program’s reasoning have intrigued me for

a
decades. The sidebar on Strategies discusses some of the more powerful strategies that my colleagues
nd I have formulated. Through such strategies, a reasoning program can avoid drowning in new con-

f
p
clusions and can avoid getting lost. Also, by using such strategies, OTTER can attack a wide variety o
roblems from diverse areas (as illustrated in Section 3). (You might find it interesting to note that I

a
believe one of my most important contributions was the introduction, in 1963, of the use of strategy by
utomated reasoning programs. I am almost equally proud of having introduced the term ‘‘automated

’
t
reasoning’’ in 1980, for it captures far better than the traditional term ‘‘automated theorem proving’
he remarkable diversity of these computer programs.) And OTTER has been remarkably successful in

r
m
such attacks, not the least of which is the answering of questions that had resisted mathematicians fo

ore than sixty years; see the sidebar on Robbins algebra. Section 4 details some of the outstanding
-

i
achievements of various automated reasoning programs. (For evidence of how well automated reason
ng is doing, see the Progress sidebar.)

But, to answer a pressing question, OTTER will never replace people (see Section 6). Rather,

2

OTTER is intended to complement the approach taken by a person, not to emulate it.

. The Program OTTER

Through the sponsorship of the Department of Energy and its predecessors, researchers at

m
Argonne National Laboratory have been designing and implementing automated reasoning programs for

ore than thirty years. William McCune worked for several years on earlier reasoning programs at
.

T
Argonne before producing—in approximately four months—the first version of OTTER in late 1987

he 1997 version of OTTER consists of more than 24,000 lines of C and can be used on a workstation,
a personal computer, and a Macintosh.

OTTER (Organized Theorem-proving Techniques for Effective Research) derives its name in part

w
from its original intended use and in part from the delight of using it—the delight one can experience

hen watching the animal of the same name. The program was designed and implemented for a
f

a
number of reasons, including giving a person access to a team member offering (1) a wide variety o
utomated means for drawing conclusions that follow inevitably from the assumptions that are supplied

3

and (2) diverse powerful strategies for controlling the program’s reasoning.

. Five Example Problems Solved with Logical Reasoning

f
w

The following five example problems, each involving logical reasoning, provide a tiny taste o
hat a reasoning program (such as OTTER) can do for you. They also suggest charming choices you

-
i
can make for (1) the inference rules the program uses to draw conclusions, (2) the strategies for restrict
ng and directing its reasoning, and (3) features such as that for rewriting information into a canonical

form. The examples also hint at the unpleasant feature of using an automated reasoning program: the



3

input language, the need to be explicit about trivial information, and the dangers of implicit information
-

p
and irrelevant information, both of which affect the program’s chances of succeeding. Perhaps as com
ensation for your labor, the program protects you in various ways. For example, a person can easily

n
a
think of the brother of Bob’s aunt as Bob’s uncle—which is not necessarily the case—where a
utomated reasoning program would not make such a possibly incorrect translation.

l
a

The five problems may enable you to find new applications for automated reasoning, professiona
nd recreational. You will discover that a program such as OTTER does not imitate the approach a

s
o
person would ordinarily take, which is why the term artificial intelligence—especially in view of AI’

riginal intent in the 1960s—is not appropriate.

Example 1: Databases. The first example is vaguely reminiscent of a simple database problem.

i
You have some knowledge and, by drawing some conclusions, hope to determine whether an assertion
s true. Here is the problem.

You are told that Joy, who is married and not male, is the managing editor of the Journal of

e
Automated Reasoning, and you are told that the only person who left the parking lot before 5:00 in the
vening was not a female. You are then told that Joy left the parking lot before 5:00 in the evening.

,
y
Finally, you are asked to prove that this last assertion is false. Elementary reasoning suffices. Indeed
ou first conclude that Joy is female, and then you use that conclusion to deduce that Joy did not leave

a
the parking lot before 5:00 in the evening. Therefore, a contradiction is obtained—you have completed

proof by contradiction and, in particular, have solved the problem by showing that the assertion is

e
false. If you look closely, you see that you ignored two items of information (that Joy is a managing
ditor and that Joy is married) and at the same time used one item of information that was not given

explicitly (that people are female or male).

What would happen if the same example were given to an automated reasoning program such as

p
OTTER? So that you can briefly experience what can be less pleasant, let us give some of the possibly
ertinent information in clause form [9] (one of the language representations OTTER recognizes),

where logical not is denoted by ‘‘-’’.

Joy is not male: -MALE(Joy).
.

a
Joy is managing editor of JAR: EDITOR(Joy)
nd the like.

Without more, the program would fail to draw any conclusions. Why? First, it does not ‘‘know’’ that

c
each person is female or male; it must be told such, for example, with the following clause, where logi-
al or is denoted by ‘‘ e ’’.

.

(

FEMALE(x) e MALE(x)

Your conclusion that x is a variable is indeed correct, implicitly ranging over all people.) For that

i
matter, the program does not even ‘‘understand’’ the concept of female or of male. Indeed, without the
tem of information that every person is female or male (which you used implicitly), the program would

be helpless.

Even with that information, the automated reasoning program would require additional help. You
.

O
would have to choose some specific inference rule, a rule of reasoning with which to draw conclusions

TTER (and many other such programs) could use a rule such as UR-resolution, which works in the
f

t
following way. The program takes the clause that asserts that Joy is not male and unifies it with one o
he literals in the clause asserting that each person is female or male. In particular, all occurrences of

)
l
the variable x in the female-or-male clause are replaced with the term Joy. Then, the -MALE(Joy
iteral cancels the (just-obtained) MALE(Joy) literal (because the two literals are identical but opposite

in sign), and the useful conclusion is reached and stored in the following clause.

FEMALE(Joy).

(For those who are curious about other ways OTTER reasons, and especially about how its reasoning
sharply differs from that expected of a person, I discuss these topics in Section 5.)

Can OTTER succeed now? Perhaps, but unless you add the use of strategy, the odds are high
d

b
that the program would get lost, at least for problems of greater depth. One of the key strategies use
y OTTER to restrict its reasoning is the set of support strategy [9]. You tell the program which



s

4

tatements that present the problem are (in effect) general information. This strategy restricts the pro-

s
gram from applying an inference rule to a set of items all of which are among the general-information
tatements. The program is therefore prevented from exploring the underlying theory from which the

problem is taken, which almost always sharply increases its efficiency.

Strategy—explicit strategy—is vital to OTTER and vital to any reasoning program attacking deep
y

s
questions; for a discussion of various strategies used by OTTER, see Section 5, [9], and the Strateg
idebar. In contrast, seldom if ever does a person use explicit strategy. In no way does this fact mean

s
n
that people are not brilliant at problem solving; indeed, they are. What it does mean is that OTTER i
ot designed to emulate a person’s reasoning. Perhaps this fact explains why OTTER makes such a

valuable team member—by complementing the approach a person might take.

Example 2: Circuit Design. In language, the and of two statements is true if and only if each
s

t
is true; otherwise, the and is false. In circuit design, (in effect) the same holds: An AND gate take
wo inputs and outputs 1 if and only if each input is 1; otherwise, the AND gate outputs 0. In the

a
second example, you are asked to design a number of different circuits, but you are constrained to
voiding the use of AND gates because their cost has risen sharply. Rather than taking a complicated

-
c
approach, you decide to use OR gates and NOT gates. You rely on one single simplification or canoni
alization rule: The and of A and B = not(not(A) or not(B)). OTTER can apply such a rule, as well

,
O
as other such rules, without error, at the rate of 5000 per CPU second. (In contrast to most concepts

TTER ‘‘understands’’ equality, as seen in this and the next example.)

t
p

Perhaps you are puzzled; after all, applying such a simplification rule is hardly difficult and no
articularly prone to error. But now imagine being presented with 17,000 simplification rules (called

y
a
demodulators [9] in automated reasoning) and an expression that was rewritten into its final form onl
fter 1766 demodulators had been applied. For an additional measure of the chore that simplification

g
p
and canonicalization can present, I note that in one of the greatest successes with a reasonin
rogram—the answering of an open question concerning Robbins algebra [5]—more than 500,000

,
e
CPU-seconds were spent on demodulation, approximately 75% of the total run time; also see [2], and
specially for a statement of the Robbins problem that had resisted mathematicians for sixty years, see

,
s
the Robbins algebra sidebar. So you see how what might seem innocent on the surface, namely
implification, can in fact be a nightmare if attacked by hand rather than by computer.

-
p

Example 3: Arithmetic and Mathematics. You are given the following two well-known pro
erties of arithmetic (and of group theory)

y
x + −x = 0

+ (−y + z) = z

and are asked to deduce a third well-known, useful, and powerful property:

O

y = −(−y).

TTER offers an inference rule, paramodulation [9], that does almost all of the work needed to draw
y

s
this conclusion immediately. (Paramodulation, illustrated in Section 5, is more general than equalit
ubstitution.) With paramodulation, the program deduces

w

y + 0 = −(−y),

hich, assuming that (as is usually the case) the following simplification rule is applied, is rewritten to
the desired result.

w + 0 = w

With paramodulation, the automated reasoning program finds conclusions of (in a sense) max-
-

e
imum generality. A person, on the other hand, typically seeks a conclusion that mirrors earlier experi
nce and intuition, and that conclusion may lack the needed generality in turn preventing one from

d
s
finding the desired information, for example, completing the sought-after proof. Unification indee
aves the day, by finding the most general replacement for variables that, when applied to the two

t
f
expressions of concern, yields two identical expressions. When the needed most general replacemen
or variables is overlooked—which would be easy if done by hand—chaos can result. For but one

r
example, a specific conclusion might be drawn rather than a needed general conclusion. An automated
easoning program is not subject to such misfortune.



E

5

xample 4: A Hard Puzzle. Like Lewis Carroll and Raymond Smullyan, many people are fas-

o
cinated by puzzles. You might find the following billiard ball puzzle stimulating and useful, by
ffering it to colleagues, friends, loved ones, and strangers.

g
b
There are twelve billiard balls, eleven of which are identical in weight. The remainin
all—the odd one—has a different weight. You are not told whether it is heavier or lighter.

t
You have a balance scale for weighing the balls. Can you find which ball is the odd ball in
hree weighings, and can you also find out whether it is lighter or heavier than the others?

e
y

Of course, the heart of the problem concerns the constraint of the three weighings. (I shall giv
ou a hint about solving the puzzle just after mentioning the number of solutions that were found; stop

e
t
reading there if you wish to solve the puzzle by yourself.) Without such a constraint, you could choos
wo billiard balls and weigh one against the other with the scale. If they balanced, you would mark

n
b
each as standard, as one of the eleven with identical weight. If they did not balance, which is eve
etter, you would learn something crucial, putting them aside with a marking of undecided. You would

n
w
then know that the remaining ten were of identical weight, and it would be a trivial matter to ascertai

hich was the odd ball and whether it was lighter or heavier. But life and the billiard ball puzzle are
t

s
not that easy, and you may be surprised to learn that OTTER found more than 40 nontrivially distinc
olutions [9] for the billiard ball puzzle—while various people were still working on 1. Hint: Begin by

weighing four balls against four balls.

Example 5: Circuit Design and the Two-Inverter Problem. The following problem was
:

(
included on various exams given to Ph.D. candidates. The challenge to the circuit designer is twofold
1) to meet all the restrictions and (2) to ensure that the circuit behaves as desired. A person might fol-

n
low one unrewarding line of reasoning after another, getting lost in the myriad of paths that lead
owhere. An automated reasoning program such as OTTER succeeds easily [9]. Can you solve the

problem?

Using as many AND and OR gates as you like, but using only two NOT gates, can you
d

i
design a circuit according to the following specification? There are three inputs, i1, i2, an
3, and three outputs, o1, o2, and o3. The outputs are related to the inputs in the following

simple way:

o1 = not(i1) o2 = not(i2) o3 = not(i3).

Remember, you can use only two NOT gates!

(Once you have tried your hand, you might enjoy glancing at the pictorial result translated from

4

OTTER’s success, given as a sidebar.)

. A Grand Return on the Investment

You now see how complex reasoning often is, for a person and for a computer program. You
g

a
also have some feeling for the value of using an automated reasoning program, especially for attackin

hard problem. How comforting it is to know that none of the reasoning that occurs contains an error,

i
that the program does not tire, and that it explores paths of reasoning that would simply be too exhaust-
ng for a person! Further, some of the problems whose solution is now known would still be in the

dark were it not for the role played by a program such as OTTER.

Of course, the five example problems present no problem for OTTER. (Otherwise, ‘‘better’’

a
examples would have been chosen.) But OTTER, as well as other automated reasoning programs, has
nswered numerous and far more challenging questions, some of which had defied experts for many

years [4, 5, 11].

Nevertheless, a miracle is not at hand. OTTER’s principal successes have been mainly in
,

l
mathematics and in logic, for example, finding answers to open questions concerning combinatory logic
attice theory, and algebraic geometry. The reason rests in large part with the fact that these areas offer

,
f
a concise description of the underlying theory. Access to such a concise description (a set of axioms
or example) is what is so often missing when one contemplates a new application of automated reason-

ing.



6

Consider what would happen if you decided to try to determine whether certain properties held in
,

y
field theory (a branch of physics), relying on the assistance of an automated reasoning assistant. First
ou would have to formulate the precise concepts that are needed. Then, you would have to find a

-
g
means to map the salient concepts into the language acceptable to whatever automated reasoning pro
ram you intended to use. For a second example, if you were studying astronomy, the concepts of

planet, star, galaxy, universe, and the like might be tough nuts to crack.

For a problem taken directly from industry (a problem on which I and a colleague worked), ima-
-

i
gine that an assembly line is producing cars—some painted blue, some green, some with air condition
ng, some with power windows, and the like—and you know that the efficiency is severely reduced if

,
b
the cars are sequenced randomly. For example, flushing the painter to accept alternately blue, green
lue, green is not ordinarily efficient; similarly, since installing air conditioning can be time consuming,

g
a sequence of cars all requiring this feature might not be the best. Use of an automated reasoning pro-
ram might indeed aid you in finding a good car-sequencing algorithm, but you would need to convey

.
(
the crucial information; for a discussion of the approach taken to this job scheduling problem, see [6]
The car-sequencing problem is representative of a class of optimization problems typically studied in

the field of operations research.)

Both tasks—that of axiomatization and that of representation in the program’s language—can be
trying, even formidable.

Nevertheless, once all is in place, the return on such an investment can be astounding.

,
f

Automated reasoning programs (such as OTTER and the program of Boyer and Moore [1]) have
or example, been used in research [4, 11] and in applications [10] to

e1. produce a fully automated proof of the correctness of a division circuit that implements th
floating-point IEEE standard;

;

3

2. produce correctness proofs of security systems

. verify commercial-size adder and multiplier circuits;

n4. achieve new mathematics, for example, new results in quasigroups and in non-Euclidea
geometry;

5. settle open questions, such as finding minimal axiom sets; and

.

R

6. confirm conjectures, for example, that of Higmann and the paradox of Gerard

easoning programs have also been used by educators, for example, in undergraduate logic courses and
d

r
in upper-level courses in interactive theorem proving. Finally, for a recreational example, automate
easoning programs have turned out to be excellent assistants in puzzle solving. (For both easy and

d
t
hard puzzles, including variations on the well-known checkerboard and dominoes puzzle, see [9] an
he earlier-cited Web address.)

5. Computer-oriented Reasoning versus Person-oriented Reasoning

,
f

Does automated reasoning mirror the classical approach to artificial intelligence? Does OTTER
or example, reason somewhat the way a person does? As the following shows, the answer to both

questions is a resounding ‘‘No!’’, if one adheres to the strictest definitions.

Unification, as you probably surmised, is at the heart of automated reasoning. You have probably
-

i
already conjectured, correctly, that unifying expressions is not typical of what a person does. Reason
ng focusing on equality offers another fine example of what OTTER does well and, at the same time,

what a person sometimes finds arduous.

For evidence, with the following three equations, let us return to Example 3 and the use of
t

t
paramodulation. Specifically, by a well-chosen replacement of terms for variables in each of the firs
wo equations, followed by an equals-for-equals substitution from the lefthand argument of the modified

u
o
first equation into a proper subterm of the lefthand argument of the modified second equation, yo
btain the third equation.

y
x + −x = 0

+ (−y + z) = z



7

I

y + 0 = −(−y)

ndeed, if all occurrences of x in the first equation are replaced by −y and all occurrences of z in the
-

t
second by −(−y), then you are ready to apply the final equality-substitution step to obtain the third equa
ion. Paramodulation combines the variable-replacement step and the equality-substitution step; it finds

s
t
the most general replacement that yields identical subexpressions (through unification); and it produce
he conclusion without an intermediate so-to-speak subconclusion—and in one step. I suspect that you

t
a
do not need a more complicated illustration of paramodulation to be persuaded that a person might no
lways find the appropriate variable replacement and might, therefore, miss drawing a key conclusion.

n
a

On the other hand, if you wish an example of what a person does well and OTTER does not eve
ttempt, you need only turn to what is called instantiation. Although perhaps not with the formal name

r
e
of instantiation, you at some point have witnessed its use by some lecturer or author when a formula o
quation is presented with, say, variables x, y, and z, and a possibly mysterious conclusion is presented

,
a
next by replacing (instantiating) z by uv+vv with u and v variables, y by a(b+c) for the constants a, b
nd c, and x is replaced by the familiar and well-known number 2. The mysteriousness (if present)

t
results from the lack of explanation for this particular instantiation (choice of instances) from among
he infinite possibilities that could have been chosen. For that very reason, OTTER (and similar pro-

-
i
grams) do not offer as an inference rule instantiation; I know of no effective strategy for wisely choos
ng from among the infinite set of instances that are usually available.

u
m

In that an automated reasoning program does not rely on instantiation to draw conclusions, yo
ight wonder what inference rules it does use, in addition to UR-resolution (used in Example 1) and

s
t
paramodulation (used in Example 3). You are correct if you conjectured that UR-resolution require
he conclusion to be nonempty and free of logical or. OTTER also offers an inference rule, hyperreso-

f
s
lution, that yields conclusions free of logical not. Both inference rules are frequently applied to a set o
tatements containing more than two items, which is not the way a person usually reasons. The pro-

w
gram also offers you the use of binary resolution, a rule that always focuses on pairs of statements

ithout any constraint on the conclusion that is drawn, which is reminiscent of a person’s reasoning.

-
t

Even with such diverse rules for drawing conclusions, all would still be lost were it not for stra
egy, for the program’s reasoning must be restricted and must also be directed; see, for example, Sec-

tion 3 and the Strategy sidebar.

Further, to be most effective, some means is needed for the program to benefit from what you
-

t
know and what you do well. Indeed, ideally, you might wish to combine a person’s experience, intui
ion, and reasoning with the reasoning power of a program such as OTTER. In a sense, OTTER lets

g

you do just that—through the use of strategy.

You have some experience that suggests one subexpression merits preference over another, such
o

g
as that involving sum over that involving product. You can use the weighting strategy [9] t

uide the program accordingly. For another example, you might wish to design circuits with
o

f
minimal, but perhaps some, use of OR gates. With weighting, you can instruct the program t
ollow your preference.

g Your intuition—or perhaps a wild guess—tells you that the steps of a proof you have in hand
r

y
could be profitably used to find a proof only distantly related. Two strategies can be used fo
our intent, that of hints [7], and that of resonance [11].

eg You conjecture that certain statements in the problem description, as parents, merit immediat
visiting and even immediate revisiting when conclusions are to be drawn. You can have your

U

way by employing the hot list strategy [12].

sing these and other strategies, and guided by your own reasoning, experience, and intuition,

6

OTTER can assist you in solving a wide variety of problems.

. A Replacement for People?

Especially in this era of downsizing, you might still wonder whether OTTER will replace people.

o
Rest assured: OTTER is not a replacement for a person. As noted earlier, it cannot draw on intuition

r experience, nor can it formulate new concepts. Such a program does not learn, nor is it self-
analytical in the following sense. When you choose an approach to attacking a problem, you often



8

monitor (in some fashion) your progress and, based on that monitoring, modify the approach as you go
y

(
along. Some day, but not now, an automated reasoning program will have that self-analytical capacit
see [8]). An automated reasoning program lacks common sense, cannot judge the accuracy of your

statements, and cannot test for omissions in the problem description: It trusts you.

In many other ways, however, a program such as OTTER provides excellent incentives for rely-

d
ing on it instead of relying exclusively on a person. First, OTTER is remarkably powerful, able to
raw thousands of conclusions per second. And it does not tire—it continues to draw conclusions at

virtually the same rate even after millions of conclusions have been drawn.

Second, OTTER does not leave huge gaps in its reasoning, forcing you to guess the ‘‘not-
f

e
always-obvious’’ omitted steps. It explicitly presents its work in an output file, including the history o
ach conclusion it draws. If your initial attack on a problem fails, you can examine what OTTER has

p
done and modify your approach or correct the input. For but one example, you might find that the
roblem description is inconsistent.

Third, the program can have multiple personalities (without the attendant psychological prob-
,

h
lems). In particular, if you have access to a number of computers, you can apply a multifaceted attack
aving the program try different approaches on different computers. Such a multifaceted attack might

e
enable you to explore radically different approaches that might ordinarily be rejected because of the
ffort involved.

OTTER was not designed to replace people, or even to imitate people. Will it, or any other
,

a
automated reasoning program, replace scientists and engineers and the like? Never. Unquestionably
utomated reasoning has made great strides in the past few years; see the graph. But at most, I envi-

r
p
sion that automated reasoning programs will enable people to devote their energy and time to bigge
ictures, having reasoning progras attack smaller problems quickly and flawlessly and, occasionally,

T

without any assistance answer a deep question.

empting?

If any of the preceding tempts you to experiment or simply dabble with the use of an automated
,

p
reasoning program, I recommend that you obtain your own copy of OTTER, whether for a workstation
ersonal computer, or Macintosh. Two paths to this end are via the earlier cited books, [9] and [11].

h
Finally, you might also wish to read the OTTER Web page:
ttp://www.mcs.anl.gov/home/mccune/ar/otter/.

I conjecture that once you have used OTTER, you will more than like it. OTTER makes a mar-

R

velous automated reasoning assistant.

eferences

1. Boyer, R. S., and Moore, J S. A Computational Logic Handbook. New York: Academic Press,

2

1988 (also Web information http://www.cli.com/software/nqthm/obtaining.html).

. Kolata, G., ‘‘With Major Math Proof, Brute Computers Show Flash of Reasoning Power’’, New

3

York Times, Science Times, 10 December 1996, B5ff.

. McCune, W., OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6, Argonne

4

National Laboratory, Argonne, Illinois, 1994.

. McCune, W., and Padmanabhan, R., Automated Deduction in Equational Logic and Cubic Curves,

h
Lecture Notes in Computer Science, Vol. 1095, Springer-Verlag: Heidelberg, 1996. See
ttp://www.mcs.anl.gov/home/mccune/ar/monograph/ for additional information.

-
t
5. McCune, W., ‘‘Solution of the Robbins Problem’’, J. Automated Reasoning, accepted for publica
ion, 1997.



9

6. Parrello, B., Kabat, W., and Wos, L., ‘‘Job-Shop Scheduling Using Automated Reasoning: A Case

7

Study of the Car-Sequencing Problem’’, J. Automated Reasoning 2, no. 1, 1-42 (1986).

. Veroff, R., ‘‘Using Hints to Increase the Effectiveness of an Automated Reasoning Program: Case

8

Studies’’, J. Automated Reasoning 16, no. 3, 223-239 (1996)

. Wos, L., Automated Reasoning: 33 Basic Research Problems, Prentice-Hall, Englewood Cliffs, New

9

Jersey (1987).

. Wos, L., Overbeek, R., Lusk, E., and Boyle, J., Automated Reasoning: Introduction and Applica-

1

tions, 2nd ed., McGraw-Hill, New York (1992).

0. Wos, L., and Pieper, G. W., eds. Special issue on automated reasoning. Computers and

1

Mathematics with Applications 29, no. 2, 133-178 (February 1995).

1. Wos, L., The Automation of Reasoning: An Experimenter’s Notebook with OTTER Tutorial,

1

Academic Press: New York, 1996.

2. Wos, L., ‘‘OTTER and the Moufang Identity Problem’’, J. Automated Reasoning 17, no. 2, 259-

L

289 (1996).

arry Wos is a senior mathematician in the Mathematics and Computer Science Division at Argonne

h
National Laboratory. He received his M.S. in Mathematics from the University of Chicago in 1954 and
is Ph.D. in mathematics from the University of Illinois-Urbana in 1957. Dr. Wos is president of the

R
Association for Automated Reasoning and a member of the editorial board of the Journal of Automated

easoning (which he founded in 1983). He is author of four books and approximately 70 refereed arti-
cles. He was the first to receive the Herbrand Award in Automated Deduction, presented in 1992.



10

y

1

Examples of Strateg

. Unit Preference (Wos): directs a program’s reasoning by preferring nonempty statements free of

2

logical or as parents for drawing conclusions

. Set of Support (Wos): restricts a program’s reasoning by preventing it from drawing conclusions

3

all of whose parents are among statements the user (in effect) designates as general information

. Weighting (Overbeek): directs a program’s reasoning by giving priority to terms the user selects,

u
and to restrict a program’s reasoning by discarding new conclusions whose complexity exceeds a
ser chosen upper bound

4. Ratio (McCune): directs a program’s reasoning by focusing on a combination of least-complex
e

u
information and first-come first-serve information, where the combination is determined by th
ser

5. Resonance (Wos): directs a program’s reasoning based on the inclusion of formulas and equa-

6

tions that the user conjectures merit high priority

. Hints (Veroff): directs a program’s reasoning based on the inclusion of formulas and equations

7

that the user conjectures merit proving

. Hot List (Wos): rearranges conclusion drawing by visiting and revisiting as parents statements

8

that the user conjectures to be especially significant

. From Variable (Wos): restricts a program’s reasoning in the context of equality-oriented reason-

9

ing (paramodulation) by preventing it from substituting from a variable

. Into Variable (Wos): restricts a program’s reasoning in the context of equality-oriented reasoning
(paramodulation) by preventing it from substituting into a variable



11

The Robbins Problem

-
t

As background for the Robbins problem, note that a Boolean algebra is the mathematical abstrac
ion of the study of logical and, or, and not. The Robbins problem asks if the following three axioms

c
completely characterize Boolean algebra, where + can be thought of as logical or, and the function n
an be thought of as logical not.

+
(
x + y = y + x. % Commutativity of
x + y) + z = x + (y + z). % Associativity of +

F

n(n(n(x) + y) + n(x + y)) = y. % Robbins axiom

rom a set-theoretic perspective, + can be thought of as union and the function n as complement.

-
m
Note: For figures (Progress in Automated Reasoning 1960-1966 and circuit diagram), contact Judy Beu

er at beumer@mcs.anl.gov and request the figures from ANL/MCS-P655-0397.


