
Performance Modeling of Interactive, Immersive VirtualEnvironments for Finite Element SimulationsValerie E. TaylorEECS DepartmentNorthwestern UniversityMilana HuangElectronic Visualization LaboratoryUniversity of Illinois at ChicagoThomas Can�eld Rick StevensMathematics and Computer Science DivisionArgonne National LaboratoryDaniel Reed Stephen LammComputer Science DepartmentUniversity of Illinois at Urbana-Champaign
To Appear in the International Journalon Supercomputer Applications andHigh Performance Computing

1

Performance of Virtual Environments
Contact: Valerie E. TaylorAssistant ProfessorEECS DepartmentNorthwestern University2145 Sheridan RoadEvanston, IL 60208-3118voice: (847) 467-1168FAX: (847) 467-4144taylor@eecs.nwu.edu

2

AbstractInteractive, immersive virtual environments allow observers to move freely aboutcomputer generated 3D objects and to explore new environments. The e�ectivenessof these environments is dependent upon the graphics used to model reality and theend-to-end lag time (i.e., the delay between a user's action and the display of the resultof that action). In this paper we focus on the latter issue, which has been found tobe equally important as frame rate for interactive displays. In particular, we analyzethe components of lag time resulting from executing a �nite element simulation on amultiprocessor system located in Argonne, Illinois connected via ATM to the interactivevisualization display located in San Diego, California. The primary application involvesthe analysis of a disk brake system that was demonstrated at the Supercomputing 1995conference as part of the Information Wide Area Year (IWAY) project, which entailedthe interconnection of various supercomputing centers via a high-bandwidth, limited-access ATM network. The results of the study indicate that the major componentsof the end-to-end lag are simulation, synchronization, and rendering times; the use ofthe ATM network resulted in the network time comprising only a small fraction of theend-to-end lag time.

3

1 IntroductionInteractive, immersive visualization allows observers to move freely about computer-generatedthree-dimensional objects and to explore new environments. This technology can be used toextend our perception and understanding of the real world by enabling observation of eventsthat take place in spaces that are remote, protracted or dilated in time, hazardous, or toosmall or large to view intricate details. The resulting three-dimensional virtual environmentcan be a distortion of reality projected onto a physical framework that enables the display ofnon-visual, physical information, such as temperature, velocity, electric and magnetic �elds,and stresses and strains.Virtual reality strives to be a more natural user interface to complex data, allowing thescientist to focus on the analysis of the data rather than manipulation of the analysis environ-ment [Bishop et al., 1992]. The human senses are more accustomed to the three-dimensionalworld; the ability to process three-dimensional spatial information has been honed over manyyears of evolution [Kalawsky, 1993]. In engineering, this technology may be incorporated intothe product design cycle, allowing virtual prototyping and testing of products prior to theirphysical construction. Hence, interactive, immersive three-dimensional visualization is animportant medium for scienti�c applications.Interactive, immersive visualization of scienti�c simulations involves four major subsys-tems: graphics, display, simulation, and communications. The descriptions of these subsys-tems particular to our system are as follows. The graphics subsystem performs the calcu-lations needed to render the objects used in the display. The display subsystem consists ofthe projection screen, projectors, interactive devices, and tracking sensors needed to phys-ically realize the virtual environment; the user interacts with the virtual objects via suchdisplay subsystem devices as a head tracker or hand-held wand (similar to a mouse). Thesimulation subsystem performs the calculations for the interactive analysis of the scienti�cphenomenon. Because phenomena of interest often require complex models to capture dy-namic interactions, parallel computation usually is needed to reduce the execution time.The last subsystem consists of the connections used to communicate information betweenthe user (via the display) and the graphics system and between the graphics and simulationsystems.A critical issue facing interactive virtual environments is the end-to-end lag time (i.e.,4

the delay between a user action and the display of the result of that action.) Like any closedloop adaptive system, if the lag is too great, users �nd it di�cult to maintain �ne controlover system behavior and complain that the system is unresponsive. Indeed, Liu et. al.[Liu et al., 1993] found lag time to be as important as the frame rate for e�ective use ofimmersive displays.Lag has been studied in the context of teleoperated machines, head-mounted displays,and telepresence systems [Liu et al., 1993, Wloka, 1995]. Liu et al. [Liu et al., 1993] con-ducted experiments on a telemanipulation system and found the allowable lag time to be100 ms (0.1s) and 1000 ms (1s) for inexperienced and experienced users, respectively. In[Taylor et al., 1995], the work on lag models was extended to include scienti�c simulationswith interactive, immersive environments. That work, however, focused on simulations ex-ecuted on one processor; multiple processors for the simulations were not used or analyzedin the lag model. Further, all of the computer components were located at one site, inter-connected via a local area network. The goal of this paper is to analyze the components oflag resulting from simulations executed on multiprocessors connected to the virtual environ-ment via wide area networks. With the emergence of high-speed networks and distributedcomputing resources, the frequency of remote access and distributed collaboration is risingrapidly.We have conducted an extensive case study of a visualization system to display theresults of a �nite element simulation of a contact-impact problem, in particular a disk brakesystem. This application was demonstrated at the Supercomputing 1995 conference as partof the Global Information Infrastructure Testbed for the IWAY (Information Wide AreaYear) project. The display system consisted of an ImmersaDeskTM | a single wall of aCAVETM (Cave Automatic Virtual Environment) [Cruz-Neira et al., 1993]. The simulationwas executed on the IBM SP located at Argonne National Laboratory; the display systemwas located at the San Diego Convention Center. The IBM SP was connected to the displaysystem via an ATM OC-3c network as part of the IWAY project. Although our analysis isspeci�c to this context, the concepts presented in this paper can be extended easily to otherscienti�c applications.To understand the contributors to lag, we instrumented all major processes in the systemand constructed a performance model of the contributors to end-to-end lag: rendering,tracking, local network connections to the parallel system, parallel simulation, and various5

types of synchronization lags. Our lag model decouples the viewpoint lag (not involving thesimulation) from the interaction lag (using the simulation results). Our analysis indicatesthat the major component of viewpoint lag is the rendering time. For interaction lag, themajority of the time is comprised of simulation and synchronization times.The remainder of the paper is organized as follows. In x2, we discuss previous work,followed by an outline of the supercomputer visualization environment in x3. The generalmodel for end-to-end lag is given in x4, followed by the case study's �ndings in x5. This isfollowed by a discussion of methods for reducing the lag in x6. Finally, we summarize ourresults in x7.2 Previous WorkIn [Wloka, 1995], Wloka presents a thorough analysis of lag time in a multiprocessor virtualreality system; the multiprocessors execute the calculations necessary to render an image.The focus is on viewpoint lag. He identi�es the various sources of lag time: input devicelag | the time required to obtain position and angle measurements for the input device,application lag | application-speci�c processing of the input device mechanism, renderinglag | the time to render and display the data, synchronization lag | the average time thesample is waiting between processing stages, and frame-rate induced lag| the time betweenchanges in the display. In Wloka's system, the application-speci�c processing is directlydependent on one user input device. In contrast, we analyze an existing system with twoinput devices: a head tracker (which a�ects the viewpoint lag) and a wand (which a�ects theviewpoint and interaction lags). Methods for reducing the lag in our system must considerthe relationship between the two lags. Further, our system includes a parallel system forsimulation and a shared-memory multiprocessor for rendering, interconnected via a widearea network. Therefore, we consider two additional sources of lag: the network lag andsimulation lag.In [Mine, 1993], Mine characterizes the relative performance of magnetic tracking tech-nologies, including two magnetic trackers from Ascension Technology and two from Polhe-mus. This characterization focused on reducing end-to-end delay in head-mounted systems,with emphasis on tracking lag; no attention is given to other sources of lag. In contrast, weconsider all the sources of lag. 6

Methods for reducing lag are an active area of research. Such methods include pre-diction [Deering, 1992, Friedmann et al., 1992, Liang et al., 1991], time-critical computing[Funkhouser et al., 1993, Holloway, 1991, Wloka, 1993], and use of parallelism. Predictionmethods use extrapolation to reduce tracker lag by predicting future input data based uponpast data. These methods assume the other components of lag have constant times. Thisis generally not the case, especially for systems that include scienti�c simulations on su-percomputers. Time-critical computing trades computation time for computation accuracy,which is not advisable for directly reducing lag. Parallelism reduces the lag by increasingthe computing resources used for the computation. Our system uses exploits the parallelismin the simulation and rendering calculation.3 Visualization and Simulation EnvironmentAny study of virtual environment overheads presumes some basis for experimentation. Ourenvironment for interactive, immersive visualization and simulation consisted of a 128-nodeIBM SP system located at Argonne National Laboratory and a ImmersaDeskTM located atthe San Diego Convention Center. Figure 1 shows the interconnection of the hardware andsoftware components, which are described in detail below.3.1 Display ComponentThe ImmersaDeskTM , the display component, creates a wide �eld of view by rear-projectingstereo images on a 4x5 foot translucent panel tilted at a 45 degree angle; see Figure 2. Thisdisplay system is a lower cost, more portable, and smaller alternative to the CAVETM , aroom composed of rear-projection screens [Cruz-Neira et al., 1993]. The ImmersaDeskTMprovides the illusion of data immersion via visual cues, including wide �eld of view, stereodisplay, and viewer-centered perspective. A Silicon Graphics (SGI) Power Onyx computesthe stereo display, with a resolution of 1024�768 for each image. The Onyx alternatelydraws left and right eye images at 96 Hz, resulting in a rate of 48 frames per second pereye. These images are sent to an Electrohome video projector for display. Infrared emittersare coupled with the projectors to provide a stereo synchronization signal for a CrystalEyesLCD glasses worn by each user. These glasses have a sampling rate of 96 Hz that is matched7

to the projection system; the eyes and brain fuse the alternate left and right eye images toprovide stereo views.Tracking is provided by an Ascension SpacePad unit with two inputs. One sensor trackshead movements; the other tracks a hand-held wand. These sensors capture position andorientation information on head and wand movements at rate of 10 to 144 measurementsper second [SpacePad, 1995]. The existing system is con�gured to operate in the range of100 measurements per second. The buttons on the wand are sampled at a rate of 100 Hz.The location and orientation of the head sensor are used by the SGI Onyx to renderimages based on the viewer's location in the virtual world. Hence, subtle head movementsresult in slightly di�erent views of the virtual objects, consistent with what occurs in reality.The wand has three buttons and a joystick that are connected to the Onyx via an IBM PC,which provides A/D conversion, debounce, and calibration. Other observers can passivelyshare the virtual reality experience by wearing LCD glasses that are not tracked.3.2 Graphics ComponentThe SGI Onyx is a shared-memory multiprocessor with a high-performance graphics subsys-tem. The system used in our experiments had 128 MB of memory, 10 GB of disk, four R4400processors and three RealityEngine2 graphics pipelines. Each RealityEngine2 has a geom-etry engine consisting of Intel i860 microprocessors, a display generator, and 4 MB rastermemory [SGI]. The Onyx is used to drive the virtual environment interface as discussedabove. The ImmersaDesk(TM), however, uses only one RealityEngine2 graphics pipelineconnected to a Electrohome Marque 8000 high-resolution project to project images onto theone translucent screen.The visualization code executed on the SGI Onyx consists of three processes, main, ren-dering, and tracking, that manage, respectively, communication with the parallel simulation,calculations for surface graphics, and management of interactive commands. The code is ex-plained further in x4.
8

3.3 Simulation ComponentThe simulation component consists of a 128-processor IBM SP with a high-performanceinput/output system. Each SP node has 128 MB of memory and a 1 GB local disk and wasconnected to other SP nodes via a high-speed network. Some of the nodes were equippedwith ATM and Ethernet interfaces. Collectively, the SP system is also connected to 220 GBof high-speed disk arrays and an Ampex DST-800 automated tape library.13.4 InterconnectionsThe interconnections used in the system consists of the devices used by a scientist to interactwith the display system and the interconnection of the simulation and graphics components.The scientist controls the �eld of view by changing his or her head position or manipulatingthe wand buttons and joystick; the simulation is also modi�ed via the wand. The simulationand graphics components are interconnected via the ATM OC-3c (peak bandwidth of 155Mbps) used with the IWAY project.4 Performance ModelThe performance model presented in this section is consistent with that given in [Taylor et al., 1995].It is presented here for completeness. Given two input devices, there are two classi�cationsof interactions:� movement of the head tracker: this type of interaction causes a change to the �eld ofview; the data sent to the simulation process is not modi�ed | this lag is de�ned asQview� movement and clicking of wand buttons: this type of interaction can change the �eld ofview or the simulation process, dictated by the code-de�ned wand buttons and joystick| this lag is de�ned as Qinteract. In this paper, the focus is on wand modi�cation tothe simulation process to distinguish the two lags.1This input/output system eventually will be used for recording and playback of visualizations. However,that work is beyond the scope of this paper. 9

The operations that are executed based upon a user interaction are the following:1. The sensors generate the position and rotation of the header tracker and wand; thepersonal computer records the position of the wand buttons (Ttrack) [input device lag]2. The wand information is read by simulation side (Tread) [network lag]3. The scienti�c application is simulated on the multiprocessor system (Tsim) [simulationlag]4. The update from the simulation is sent to the graphics process (Twrite) [network lag]5. The graphics process uses the data from the simulation process and the tracker processto render a new image (Trender) [rendering lag]In addition to the above lags there is also synchronization lag as described previously. Weconsider four sources of synchronization lag: (1) Tsync(TR): the time from when the trackermeasurement is available until the data is read by the rendering process, (2) Tsync(RS): thetime from when the rendering process has read the updated wand values until the valuesused by the simulation process, (3) Tsync(SR): the time from when the data is available fromthe simulation process until written to the rendering process, and (4) Tsync(F) the time fromwhen the data is available in the frame bu�er and the image is available on the screen.Given the above sequence of operations, the following equations represent the lag timefor the head tracker (Qview) and the wand (Qinteract):Qview = Ttrack + Tsync(TR) + Trender + Tsync(F) (1)Qinteract = Ttrack + Tsync(TR) + Tsync(RS) + Tread + Tsim + Twrite +Tsync(SR) + Trender + Tsync(F) (2)The derivation of these equations is discussed in the following section.4.1 Lag SourcesThe components of Qview (or Viewpoint Lag) and Qinteract (or Wand/Simulation Interactionlag) are depicted pictorially in Figure 3. All of the processes run asynchronously. Recallfrom x3 that the graphics components consists of three processes: main, rendering and10

tracking; the simulation consists of one process. The main process runs on the Onyx andis responsible for forking the rendering and tracking processes (this is done only once) andcommunicating with the simulation process. Hence this process has three states: writingdata via the network to the simulation process, reading data from the simulation process,and copying the new data to the SGI shared memory to be used by the rendering process.The one rendering process, Render0, reads the tracking data from the tracking process usesthis data to render the left and right eye images.The tracker process is responsible for continuously reading the tracking information fromthe serial SGI ports, scaling the data, and writing the data into a region of memory forreference by Render0. The tracker process is also responsible for initialization of the trackerand wand controls. Like the other processes, the tracker process operates asynchronously,reading tracker data as fast as the tracking system can produce it.For the case of the CAVE(TM) display system, images can be displayed on four screens |the three surrounding walls and the oor. For this case, there will be four rendering processesforked by the main process and only rendering process Render0 will obtain the tracking data.This is done to insure that all four rendering processes are performing calculations in responseto the same tracker data. All four rendering processes synchronize at the beginning of eachframe.The scienti�c simulation executed on the IBM SP system consists of three states: exe-cuting the simulation, sending data to the main process, and receiving data from the mainprocess. Hence the simulation processes are interrelated to the graphics processes. Thee�ects of these processors on the view and interaction lags are given below.4.2 Lag EquationsThe diagram in Figure 3 illustrates all the sources of lag that are used in the performancemodel. Assuming a wand and tracker event occurs as indicated in the diagram, we can tracethe lag times that result in a scene update due to a head event (indicated in the diagram)and a scene update due to a wand event (indicated in the diagram). Head tracker eventsare distinguished from wand events in the header segment of the data sent to the trackerprocess.When a head tracker event occurs, the tracker process reads the values from the SpacePad11

ports, performs the calibration, and places these values in shared memory. The time toexecute these operations is given by Ttrack in Equations (1) and (2). Typically, the trackerprocess is sampling the sensors faster than the rendering process can render a new display.Only the last sample obtained prior to the start of a new rendering cycle is read by therendering process. Hence, the average \wait time" or synchronization lag is half the averagetracker update time. This time corresponds to Tsync(TR) in the equations. The tracker sampleis used by Render0 to generate a new image, corresponding to Trender in the equation. Whenthe new image data is available, it may not be displayed immediately. There is some wait timedue to the frame rate and the scan rate of the projectors. The average of this synchronizationtime is half the frame and scan times per eye for stereo; this time is given by Tsync(F) in theequations. The scene is now updated in response to the head tracker event. The summationof these four terms compose the viewpoint lag or Qview.When a wand tracker event occurs, the sensors are again sampled by the tracker processand read by Render0 process. This task corresponds to Ttracker and Tsync(TR) as describedabove. At this point, the analysis takes a di�erent path from that taken with the viewpointlag. Once the wand position has been read by Render0 process, it is used by the mainprocess to forward to the simulation process. This wand data may not be read immediatelyby the simulation process. The average time that this data \waits" to be used is equal tohalf the time of the simulation process. This synchronization time corresponds to Tsync(RS)in Equation (2). The actual communication of these values to the simulation side is givenby Tread. The simulation time is denoted by the term Tsim. The updated simulation valuesare then sent to the rendering process, denoted by the term Twrite. After the data has beensent, it may not be used immediately by the rendering processes. The average of this \wait"time is equal to half the average of the rendering time; this synchronization time is denotedas Tsync(SR). Once the values have been read by the rendering processes, a new image isrendered and displayed corresponding to Trender + Tsync(F). The summation of these nineterms compose the interaction lag or Qinteract.5 Case Study: Analysis of a Disk Brake SystemTo assess the performance of the combined supercomputer/visualization system describedin x3, we analyzed a �nite element simulation of an automotive disk brake system. Braking12

times generally are on the order of seconds or tens of seconds. Each time step, which isgenerally on the order of a few milliseconds, can require tens of minutes of execution time ona single processor. Hence, parallel systems are necessary for this application. Some criticalissues related to automotive disk brakes are the heating and stressing of the material used forthe disk and pads, the wearing on this material, and the pitch of the sound that occurs whenthe pads are applied to a rotating disk. The virtual environment interface to the analysisconsists of a disk brake in a Porsche; see Figure 4. Using the virtual environment's wand, ascientist can manipulate the virtual environment to focus on various features (for exampleareas of high stress or high temperature) of the brake system. Further, while viewing thefeatures, the scientist can use the wand to modify the simulation to test di�erent conditions.Initial transients, such as closing the brake pads, take place in a few milliseconds, whereasthe actual braking occurs over the longer time when the pads are clamped on the rotor.Stable-implicit time integration is required to model this long term braking. The disk brakesystem is modeled as a �nite element problem using the FIFEA (Fast Implicit Finite ElementAnalysis) code developed at Argonne National Laboratory. This code performs dynamicanalysis of solid structures using implicit �nite element methodology. FIFEA employs apseudo-rigid body formulation to decouple the large displacements and rotations due torigid body motion from the small relative displacements and strains associated with elasticdeformation and thermal stress. FIFEA can detect intermittent contact and calculate frictionforces and heat generated at the contacts. The complete disk brake system consists of3790 elements, 5636 nodes, and 22,544 degrees of freedom (4 degrees of freedom per node).Figure 5 is the �nite element mesh of the disk brake. Given the problem size, the �niteelement simulation was executed on 8 processors of the IBM SP. Figure 6 shows an exampleof the temperature distribution of a rotating disk as modeled by FIFEA.FIFEA makes extensive use of the PETSc (Portable, Extensible, Toolkit for Scienti�ccomputation) [Balay et al., 1995] to do linear algebra and to manipulate sparse matricesand vectors. FIFEA and PETSc use the MPI library [Gropp et al., 1994] for communicationbetween the IBM SP processors. One IBM SP processors sends and receives results to andfrom the SGI Onyx using the CAVEcomm library [Disz et al., 1995].
13

5.1 Performance InstrumentationTo understand the temporal interaction patterns among the graphics software libraries, theSGI Onyx, and the �nite element software on the IBM SP, we instrumented the graph-ics library and �nite element software using the Pablo performance analysis environment[Reed et al., 1995, Reed et al., 1996]. The Pablo environment consists of (a) an extensibleperformance data metaformat and associated library that separates the structure of perfor-mance data records from their semantics, allowing easy addition of new performance datatypes, (b) an instrumenting parser capable of generating instrumented SPMD source code,(c) extensible instrumentation libraries that can capture event traces, counts, or intervaltimes and reduce the captured performance data on the y, (d) graphical performance datadisplay and soni�cation tools, based coarse-grain graphical programming, that support rapidprototyping of performance analyses, and (e) a virtual environment for real-time display ofdynamic performance data.Using the Pablo environment, we instrumented the graphics library to capture trackerupdates, drawing of left and right eye display frames, and internal library lock and bu�ermanagement. In addition, we instrumented the �nite element code to capture communicationbetween the SP and SGI Onxy using the CAVEcomm library and entry/exit to selectedportions of the application code. Together, this instrumentation allowed us to quantifythe relative contributions of tracking, rendering, remote communication, and applicationcomputation to lag.5.2 Timing DataTable 1 is the average time for each lag source for the simulation executed on 8 IBM SPprocessors with IWAY interconnection between Argonne and the San Diego ConventionCenter. The network values in parentheses correspond to the values collected using theInternet connection between the IBM SP at Argonne and the SGI Onyx at University ofIllinois at Chicago. The mean lags and their standard deviations are based on 30 minutesof elapsed time. The values with no corresponding standard deviations correspond to thesources of synchronization lag, which are derived from other values. The Tsync(F) value isbased on a frame rate of 48 frames per second per eye and an average scan rate of 120 Hzfor the Electrohome projectors. The average of this synchronization lag is equal to one half14

of the frame-induced time.The total network time, the summation of Tread and Twrite, corresponds to the time tosend the temperature data from the IBM SP to the SGI Onxy, modify the data structureson the SGI Onyx, and send the wand data back to the IBM SP. In particular, the time tosend the simulation data from the IBM SP to the bu�ers is equal to Twrite and the time toreceive the simulation data on the SGI Onxy, process it, send the wand data, and receive thewand data on the IBM SP side is equal to Tread. For the IWAY, the total time is 822.26 ms;for the Internet the total time is 1360.57. This reduction is signi�cant given that the datausing IWAY went from Illinois to California and through the myriad connections in the SanDiego Convention center as compared to going between two sites in the same state with theInternet.Recall from x1 that Liu et al. [Liu et al., 1993] conducted experiments on a telema-nipulation system and found the allowable lag time was 100 ms and 1000 ms for inexpe-rienced and experienced users, respectively. The total lag times for the 8 processor caseare Qview = 129:58 ms and Qinteract = 57370:05 ms. The view lag is within the allowabletolerance, but the interaction lag is over one order of magnitude beyond the tolerance forexperienced users and two orders of magnitude for the inexperienced users. As expected,81 percent of the view lag is due to the rendering component. For the interaction lag, thesimulation and synchronization times compose over 95Methods for reducing these times arediscussed in the following section. The methods used to reduce the simulation time will alsoresult in a reduction of the synchronization time, due speci�cally to a reduction to Tsync(RS)(recall that Tsync(RS) is approximated as half Tsim). Hence methods to reduce the simulationtime will have a signi�cant impact on reducing the interaction lag.6 Lag-Reducing MethodsIn this section we consider methods for reducing the end-to-end lag and highlight areasof future research. We focus on the rendering, simulation and synchronization lags, whichcan be major factors a�ecting the end-to-end lag as discussed in the previous section. Inparticular we focus on scene complexity, parallelism, and phase tuning.
15

6.1 Scene ComplexityThe rendering lag is a function of the scene complexity and the geometry transformations.In general a scene consists of essential objects a�ected by the simulation and the backgroundused to give the scientist the illusion of being in the remote environment. For the automotivedisk brake application, the scene consists of a shaded or wire frame version of the Porsche,the rotating tires, and the disk with two pads. The image of the car and tires provides thecontext for the disk brake, conveying position and relative size of the brakes. These twoimages, the car and the tires, are not necessary for the analysis of the brake system. Theelimination of these images can reduce the rendering time, thereby reducing the view lag,without sacri�cing the interface to the simulation. Further research is necessary to develop aperformance model of the rendering time based upon the essential and nonessential objectsin a scene. This model can be used to determine the scene to be used for a given applicationbased upon viewpoint lag constraints.6.2 ParallelismThe simulation time was the major component of the interaction lag for the automotive diskbrake system. This lag can be reduced by the use of more processor nodes. The number ofprocessors nodes to be used for the problem is dictated by the interprocessor communicationrequirements. Further research is necessary to identify the communication requirementsdictated by the algorithm used in the FIFEA code and the domain decomposition schemeand investigate methods for reducing these requirements.With the IWAY project, various supercomputer centers are interconnected by ATM asdescribed previously. This project has made possible the use of a large number of processorsfrom the aggregation of the machines at the di�erent sites. Users are no longer limitedby the number of processors at any given site. Further research is also necessary developdecomposition schemes for a network of supercomputers, which involves communication costsof the local network as well as the wide area network.
16

6.3 Phase TuningThe synchronization lags were another major component of the interaction lag. In particular,the synchronization lag between the rendering and simulation, Tsync(RS), dominated thesynchronization lag. Recall that this lag corresponds to the interval from when the wanddata has been read by the rendering process until it is used by the simulation process. Giventhat the wand updates from the scientist can occur at any time, the average value of Tsync(RS)is equal to half the simulation time. One possible method for reducing this lag is to \phasetune" the various asynchronous processes. This may involve using predictors, based uponprevious interactive inputs, to be used by the simulation process to estimate the wand inputsat the optimal time to reduce the synchronization lag. Another option involves adding adelay mechanism to the various asynchronous processes that can be tuned to reduce thephase miss match, thereby reducing the synchronization lags. Further research is necessaryto explore these options and identify e�ective methods for reducing the synchronization lags.7 SummaryIn this paper we analyzed the lag time of a integrated supercomputer applications withinteractive, immersive virtual interfaces. We conducted an extensive case study of a systemused to display the results of a �nite element simulation of the analysis of an automotive diskbrake system. The simulation was executed on the IBM SP at Argonne National Laboratoryand the virtual interface was available at the San Diego Convention Center. The simulationand virtual system were interconnected via ATM in conjunction with the IWAY project.The analysis entailed the comparison of a system using ATM versus Internet. The results ofthe study indicated that the view lag was within the allowable tolerance, but the interactionlag was over one order of magnitude beyond the tolerance for experienced users and twoorders of magnitude for the inexperienced users. As expected, 81 percent of the view lag wasdue to the rendering component. For the interaction lag, the simulation and synchronizationtimes composed over 95the transmission time using an ATM network between Illinois andCalifornia was approximately half of that using the Internet between two sites in Illinois.The results of the study highlighted the importance of reducing the lag time to a tolera-ble range | 1 s to 0.1 s. Various methods to reduce the end-to-end lag for a supercomput-17

ing/virtual system were also discussed. We considered scene complexity, parallel processing,and phase tuning. Future work entails quantifying the impact on end-to-end lag for theaforementioned methods.AcknowledgmentsThe authors thank Micheal Papka, Terry Disz, Warren Smith, Jonathan Geisler, Lois Curf-man, and Steve Tuecke for their long hours of help in making the various libraries work inharmony. The authors also acknowledge the IWAY leaders, Tom Defanti and Rick Stevens,for making this project possible and Jason Leigh for assisting with the development of theImmersaDesk images.The author at Northwestern University was supported by a National Science FoundationYoung Investigator Award, under grant CCR{9357781. The authors at Argonne NationalLaboratory were supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38. The author at the University of Illinois in Chicago wassupported by a Laboratory Graduate Grant from Argonne National Laboratory. Finally, theauthors at the University of Illinois in Urbana-Champaign were supported by the AdvancedResearch Projects Agency under ARPA contracts DAVT63-91-C-0029 and DABT63-93-C-0040, by the National Science Foundation under grants NSF IRI 92-12976, NSF ASC 92-12369, and NSF CDA 94-01124, and by the National Aeronautics and Space Administrationunder NASA Contracts NGT-51023, NAG-1-613, and USRA 5555-22.References[Balay et al., 1995] Balay, S., Gropp, W., Curfman McInnes, L., and Smith, B. 1995.PETSc 2.0 Users Manual. Technical Report ANL-95/11. ArgonneNational Laboratory.[Bishop et al., 1992] Bishop, G., Fuchs, H. 1992. Research Directions in Virtual En-vironments. Computer Graphics. 26:153-177.[Deering, 1992] Deering, M. 1992. High Resolution Virtual Reality. ComputerGraphics. 26:195-202.18

[Disz et al., 1995] Disz, T., Papka, M., Pellegrino, M., and Stevens, R. 1995. Shar-ing Visualization Experiences among Remote Virtual Environ-ments. Proceedings of the International Workshop on High Per-formance Computing for Computer Graphics and Visualization,Swansea, United Kingdom.[Friedmann et al., 1992] Friedmann, M., Starner, T., and Pentland A. 1992. Device Syn-chronization Using an Optimal Linear Filter. Computer Graph-ics. 25:57-62.[Funkhouser et al., 1993] Funkhouser, T. and Sequin, C. H. 1993. Adaptive Display Al-gorithm for Interactive Frame During Visualization of ComplexVirtual Environments. Computer Graphics. 27:247-254.[Gropp et al., 1994] Gropp, W., Lusk, E., and Skjellum, A. 1994. Using MPI PortableParallel Programming with the Message-Passing Interface. Mas-sachusetss: MIT Press, Cambridge.[Holloway, 1991] Holloway, R. L. 1991. Viper: A Quasi-real-time Virtual WorldsApplication. Technical Report TR92-0004. University of NorthCarolina at Chapel Hill.[Hughes, 1987] Hughes, T. 1987. The Finite Element Method. Englewood Cli�s:Prentice-Hall, Inc.[Jones et al., 1992] Jones, M. and Plassmann, P. 1992. Solution of Large, SparseSystems of Linear Equations in Massively Parallel Applications.Proceedings of Supercomputing.[Kalawsky, 1993] Kalawsky, R. 1993. The Science of Virtual Reality and VirtualEnvironments, New York: Addison-Wesley.[Liang et al., 1991] Liang, J., Shaw, C., and Green M. 1991. On Temporal-SpatialRealism in the Virtual Reality Environment. Proceedings of the1991 User Interface Software Technology.
19

[Liu et al., 1993] Liu A., Tharp G., French L., Lai S., and Stark L. 1993. Someof What One Needs to Know about Using Head-Mounted Dis-plays to Improve Teleoperator Performance. IEEE Transactionson Robotics and Automation. 9:638-648.[Mine, 1993] Mine, M. R. 1993. Characterization of End-to-End Delays inHead-Mounted Display System. Technical Report TR93-001 Uni-versity of North Carolina at Chapel Hill.[Cruz-Neira et al., 1993] Cruz-Neira, C, Sandin, D. J., and DeFanti, T. 1993. Surround-Screen Projection-Based Virtual Reality: The Design and Im-plementation of the CAVE. Proceedings of SIGGRAPH.[Reed et al., 1995] Reed, D. A., Shields, K. A., Scullin, W. H., Tavera, L. F., andElford, C. L. 1995. Virtual Reality and Parallel Systems Perfor-mance Analysis. IEEE Computer. November.[Reed et al., 1996] Reed, D. A., Elford, C. L., Madhyastha, T., Scullin, W. H.,Aydt, R. A., and Smirni, E. 1996. I/O, Performance Analysis,and Performance Data Immersion. Proceedings of MASCOTS.[SGI] Silicon Graphics Onyx Installation Guide. Document Number108-7042-010.[Smith et al., 1993] Smith, B. and Gropp, W. 1993. Scalable, Extensible, andPortable Numerical Libraries. Proceedings of Scalable ParallelLibraries Conference.[SpacePad, 1995] SpacePad Position and Orientation Measurement System Instal-lation and Operation Guide. 1995. Ascension Technology Corpo-ration.[Taylor et al., 1995] Taylor, V., Stevens, R., and Can�eld, T. 1995. PerformanceModels of Interactive, Immersive Visualization for Scienti�c Ap-plications. Proceedings of the International Workshop on HighPerformance Computing for Computer Graphics and Visualiza-tion. Swansea, United Kingdom.20

[Wloka, 1993] Wloka, M. 1993. Time-critical Graphics. Technical Report CS-93-50. Brown University. Department of Computer Science.[Wloka, 1995] Wloka, M. 1995. Lag in Multiprocessor Virtual Reality. Presence.4:50-63.

21

Table 1: Lag values (8 processor IBM SP) using IWAY with Internet values in parenthesesLag Mean Std. Dev. %Qview %QinteractComponent (ms) (ms)Ttrack 5.85 2.63 4.51 0.01Tsync(TR) 2.92 | 2.25 0.005Trender 105.81 11.01 81.66 0.18Tsync(RS) 18788.16 | NA 32.75Tread 820.83 49.38 NA 1.43(1358.57)Tsim 37576.31 581.5 NA 65.50Twrite 2.26 0.17 NA 0.004(2.00)Tsync(SR) 52.91 | NA 0.09Tsync(F) 15.0 | 11.58 0.03Total: | | 129.58 ms 57370.05 ms

22

Figure CaptionsFigure 1: Parallel Computing/Visualization Environment
Figure 2: ImmersaDeskTM Graphics Display
Figure 3: Components of Lag Time for Qview and Qinteract
Figure 4: Virtual Disk Brake
Figure 5: Disk Brake Finite Element Mesh
Figure 6: Temperature Distribution (Rotating Disk)

23

O
N

Y
X

 S
h

ared
 M

em
o

ry

. . .

RS6K

RS6K

RS6K

RS6K
IBM
Vulcan
Switch

Ethernet

ATM OC-3c

ATM

Ethernet

R4400

R4400

R4400

R4400

SGI Serial

SGI SerialWand

Header Tracker

M8000

IBM PC

Reality
Engine

Reality
Engine

Reality
Engine

Silicon Graphics ONYX

128 node IBM SP-2 (Argonne National Laboratory)

(San Diego Convention Center)

ImmersaDesk(TM) (San Diego Convention Center)

Figure 1: Parallel Computing/Visualization Environment

24

Figure 2: ImmersaDeskTM Graphics Display

25

Simulation

Render 0

Tracker

User

main

Process

Wand and Head

Tracker Event

Simulation Update Lag

Rendering Lag

Synchronization Lag(render/sim) Synchronization Lag(sim/render)

Sync Lag(frame rate)

Scene Update

(due to head event)

Scene Update

(due to wand event)

Wand/Simulation Interaction Lag

Viewpoint Lag

Sync Lag(tracker/render)

Network Write Lag

Network Read LagFigure 3: Components of Lag Time for Qview and Qinteract

26

Figure 4: Virtual Disk Brake

27

Figure 5: Disk Brake Finite Element Mesh

28

Figure 6: Temperature Distribution (Rotating Disk)

29

