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Abstract. Automatic mesh generation and adaptive refinement methods for complex
three-dimensional domains have proven to be very successful tools for the efficient
solution of complex applications problems. These methods can, however, produce
poorly shaped elements that cause the numerical solution to be less accurate and more
difficult to compute. Fortunately, the shape of the elements can be improved through
several mechanisms, including face- and edge-swapping techniques, which change local
connectivity, and optimization-based mesh smoothing methods, which adjust mesh
point location. We consider several criteria for each of these two methods and compare
the quality of several meshes obtained by using different combinations of swapping
and smoothing. Computational experiments show that swapping is critical to the
improvement of general mesh quality and that optimization-based smoothing is highly
effective in eliminating very small and very large angles. High-quality meshes are
obtained in a computationally efficient manner by using optimization-based smoothing
to improve only the worst elements and a smart variant of Laplacian smoothing on the
remaining elements. Based on our experiments, we offer several recommendations for
the improvement of tetrahedral meshes.

Keywords. Mesh Improvement, Local Reconnection, Mesh Smoothing, Optimal
Smoothing
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1. Introduction

The use of unstructured finite element and finite volume solution methods is increasingly
common for application problems in science and engineering. Regardless of the particular
solution technique employed, the computational domain must be decomposed into simple
geometric elements. This decomposition can be accomplished by using available automatic
mesh generation tools. Unfortunately, meshes generated in this way can contain poorly
shaped or distorted elements, which cause numerical difficulties during the solution process.
For example, we know that as element dihedral angles become too large, the discretization
error in the finite element solution increases;! and as angles become too small, the condition
number of the element matrix increases.? Thus, for meshes with highly distorted elements,
the solution is both less accurate and more difficult to compute. This problem is more
severe in three dimensions than in two dimensions, because tetrahedra can be distorted to
poor quality in more ways than triangles can. Compared with triangular meshes, tetrahedral
meshes tend to have a larger proportion of poor-quality elements and to have elements that
are more severely distorted.
Algorithms for unstructured mesh improvement fall into three basic categories:

1. point insertion/deletion to refine or coarsen a mesh or to improve the local length scale
b3 456

of the mes
2. local reconnection to change mesh topology by face or edge swapping for a given set

of vertices,® "% 2 and

3. mesh smoothing to relocate mesh points to improve mesh quality without changing
mesh topology.!? 11: 12

In this article, we follow a two-pronged approach to improve the quality of tetrahedral
meshes, swapping mesh faces and edges to improve connectivity and smoothing vertex loca-
tions to improve tetrahedron shape. Face- and edge-swapping techniques are widely used,
and we give only a brief overview of the methods used. We apply swapping both as an initial
step in mesh improvement and in a targeted way to remove the poorest-quality tetrahedra
from the mesh. In this context, we define “poor-quality” tetrahedra as those with dihedral
angles that are among the smallest or largest in the mesh or with solid angles among the
largest in the mesh; such tetrahedra are candidates for removal.

The most common approaches to mesh smoothing are variants on Laplacian smoothing.'?
While these smoothers are often effective, they operate heuristically with no effort to lo-
cate points specifically to improve some quality measure. In this article, we present an
optimization-based smoothing algorithm for tetrahedral meshes that is effective in elimi-
nating extremal angles in the mesh. For five test cases, we show that the highest quality
meshes are obtained by using a combination of swapping and optimization-based smooth-
ing. In addition, we show that meshes of comparable high quality can be obtained at a low
computational cost by combining a variant of Laplacian smoothing with optimization-based
smoothing.

The remainder of the article is organized as follows. In Section 2, we describe the swap-
ping techniques that we use. In Section 3, we describe a mesh smoothing algorithm using
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local optimization. We then present the results of numerical experiments on several test
meshes. Mesh quality improvement by swapping, vertex smoothing, and combinations of
swapping and smoothing is presented, and several recommendations are offered. Finally, in
Section 5, we offer concluding remarks and directions for future research.

2. Local Mesh Reconfiguration Techniques

Local mesh reconfiguration techniques change the connectivity of part of a simplicial mesh
to improve mesh quality. These techniques can be divided into two classes: face swapping
and edge swapping.

2.1 Face Swapping

Face swapping reconnects the tetrahedra separated by a single interior face. Each interior
face in a tetrahedral mesh separates two tetrahedra made up of a total of five points. A large
number of non-overlapping tetrahedral configurations are possible with these five points, but
only two can be legally reconnected. These two cases are shown in Figure 1. On the left is a
case in which either two or three tetrahedra can be used to fill the convex hull of a set of five
points. Switching from two to three tetrahedra requires the addition of an edge interior to
the convex hull. On the right of the figure is a configuration in which two tetrahedra can be
exchanged for two different ones. The shaded faces in the figure are coplanar, and swapping
exchanges the diagonal of the coplanar quadrilateral. The two coplanar faces must either be
boundary faces or be backed by another pair of tetrahedra that can be swapped two for two.
Otherwise, the new edge created by the two for two swap will not be conformal.

y
]
@

Figure 1: Swappable configurations of five points in three dimensions

1

Because each reconfigurable case has only two valid configurations,'* a quick comparison

to find the one with the higher quality is possible. If the configurations are of equal quality,
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we select the two-tet configuration when choosing between two- and three-tet configurations,
and we choose not to swap in the two for two reconfiguration case.

2.2 Edge Swapping

Edge swapping reconfigures N tetrahedra incident on an edge of the mesh by removing that
edge and replacing the original N tetrahedra by 2N — 4 tetrahedra. The reconfiguration is
performed only if every new tetrahedron has better quality than the worst of the N original
tetrahedra. As an example, consider the replacement of five tetrahedra incident on an edge
with six. The left side of Figure 2 shows five tetrahedra incident on edge TB, which is
normal to the paper. The five original tetrahedra are (01BT), (12BT), (23BT), (34BT), and
(40BT). The right side of the figure shows one possible reconfiguration of this submesh into
six tetrahedra, (0127T), (021B), (024T), (042B), (234T), and (243B). The final configuration
is uniquely specified by listing the “equatorial triangles”, those that are not incident on
either of vertices T and B. In this case, those triangles are (012), (024), and (234).

2

T

4 0

Figure 2: Edge swapping from 5 tetrahedra to 6

In principal, edge swapping could be used to replace, for example, 12 tetrahedra with
20, but in practice we have found that the number of transformations that improve the
mesh declines dramatically with increasing N. In particular, for practical cases 7-for-10
transformations are rare, and consequently we have not investigated these techniques for
N >T.

The primary challenge for efficient implementation of edge swapping techniques is to
determine which reconfiguration of the N original tetrahedra has the highest quality, where
the quality of a configuration is equal to the lowest quality of its tetrahedra. We could
determine the lowest quality tetrahedron in each configuration by computing the quality
of each tetrahedron for that configuration, then repeat this process for each configuration.
However, as Table 1 shows, the number of unique tetrahedra is never larger than and can
be much smaller than the number of configurations times the number of tetrahedra in each.
Therefore, to implement edge swapping efficiently, we evaluate the quality of each unique
tetrahedron only once and store that value for use when evaluating the configuration quality.*

*Tetrahedra with negative volume are assigned an arbitrarily large negative quality.
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A further efficiency gain is possible by noting that tetrahedra in the final configurations
appear in pairs above and below “equatorial” triangles, such as tetrahedra (012T) and (021B)
in the example above. If the quality of (012T) is worse than that of the original configuration,
we know that (0127T) and (021B) can not be part of the final configuration; therefore, we
need not evaluate the quality of tetrahedron (021B).

Table 1: Number of unique tetrahedra and possible configurations for edge swapping

Tets | Tets | Config- | Tets x | Unique
Before | After | urations | Configs | Tets
3 2 1 2 2
4 4 2 8 8
5 6 5 30 20
6 8 14 112 40
7 10 42 420 70

Another key implementation issue is storage of all possible new configurations. As
noted above, these configurations can be specified by their “equatorial” triangles. How-
ever, for convenience we choose to store the connectivity information for the new submesh
— face-to-vertex, face-to-cell, and cell-to-face data. This is a substantial amount of data per
configuration,’ and code testing must verify that the data is entered correctly. To reduce
the size of this task, we take advantage of the fact that configurations can be grouped into
topological classes each represented by a canonical configuration. For example, in the case
of 5-for-6 swapping shown in Figure 2, all possible reconfigurations have the same topology
as the case shown. For each canonical configuration, we store connectivity information for
the new configuration and the number of unique rotations. Rotated configurations are easily
derived from the canonical configuration. Figure 3 shows the equatorial triangles in the
canonical configurations for 4 < N < 7, including the number of unique rotations for each.

We use edge swapping in two ways.
Consider again the configuration of Figure 2. Face swapping will be unsuccessful for face
(0TB) because the submesh formed by tetrahedra (0BT1) and (4BTO0) is not convex. If the
tetrahedron (1BT4) existed, then the face swapping routines would consider a 3-for-2 swap.
Since this is not the case, edge swapping is invoked to determine whether removing edge
(TB) is advantageous. After edge swapping, each face of the submesh is tested to determine
whether further improvements in the mesh can be made with face swapping.

The first is as a supplement to face swapping.

We also use edge swapping in a separate procedure specifically designed to remove poor
quality tetrahedra. This procedure, called BATR for BAd Tetrahedron Removal, examines
each tetrahedron in the mesh and attempts to remove those with large or small dihedral
angles or large solid angles. In this context we define limits on good angles as follows.

o A large dihedral angle is larger than the greater of 150° and the maximum dihedral
angle in the mesh minus 20°.

TWe represent it using 23N — 56 integers.
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Figure 3: Equatorial triangles after edge swapping in the canonical configurations for 4 < N < 7,
including the number of unique rotations for each

N=4

o A small dihedral angle is smaller than the lesser of 30° and the minimum dihedral angle
in the mesh plus 10°.

o A large solid angle is larger than the greater of 240° and the maximum solid angle in
the mesh minus 60°.

These definitions imply that we always seek to remove the tetrahedra with the worst quality
measures while keeping a reasonable limit on the number of tetrahedra we try to eliminate at
any one time. Once a poor-quality tetrahedron has been identified, we attempt to remove an
edge of the tetrahedron from the mesh. Edges having bad dihedral angles are tried first. If
edge swapping fails, we attempt to swap each face of the tetrahedron. If a pass through the
mesh using this approach results in reconfiguration of one or more local sub-meshes, another
pass is made, checking only tetrahedra that are not known to be well-shaped. Typically
two to three passes are required. This procedure is quite effective in removing poor quality
tetrahedra whose neighbors are of good quality. In cases where poor-quality tetrahedra are
adjacent to each other, valid reconfigurations are often impossible to find by edge swapping.

3. An Optimization Approach to Mesh Smoothing

Perhaps the most commonly used mesh-smoothing technique is a local algorithm called
Laplacian smoothing.'® '® This technique adjusts the location of each mesh point to the
arithmetic mean of its incident vertices so that

Y iev T 2iev Yi 2oiev Zi (1)

L free = Ta Yfree = |V| s Rfree — |V| 9

where V' is the set of incident vertices and x, y, and z are the spatial coordinates of each
vertex. This method is computationally inexpensive, but it does not provide any mechanisms
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that guarantee improvement in element quality. In fact, it is possible to produce an invalid
mesh containing elements that are inverted or have negative volume.

Freitag et al. proposed a low-cost, optimization-based alternative to Laplacian smooth-
ing that guarantees valid elements in the final mesh.!® Several results were given that
demonstrated the effectiveness of this method compared with Laplacian smoothing for two-
dimensional, triangular meshes. Like Laplacian smoothing, the optimization algorithm is
local and uses the union of elements that are adjacent to the free vertex as the solution
space. Thus, it can be used as the core of an efficient parallel algorithm. They presented a
P-RAM computational model for parallel implementation based on coloring heuristics. This
model resulted in correct parallel execution and a low run-time bound, and experimental data
showed very good scalable performance on 1 to 64 processors on the IBM SP supercomputer.

In this section we extend this algorithm to three-dimensional tetrahedral meshes and note
that the algorithm is useful for hexahedral meshes as well. A parallel algorithm analogous
to the two-dimensional algorithm has been developed for the three-dimensional case, but we
do not focus on that aspect of our work here. In this article we describe the formulation
of the optimization method and give some useful measures of mesh quality for tetrahedral
meshes. The same formulation applies for hexahedral meshes, but different mesh quality
measures must be used. As in the two-dimensional case, we formulate the problem using
analytic expressions for local mesh quality written in terms of free vertex position. Typical
measures for three-dimensional tetrahedral meshes that have an analytic expression include
measures of the dihedral angles, measures of the solid angles, and element aspect ratios.
Any combination of these can be used within the framework of the optimization method
presented here. Our algorithm seeks to maximize the minimum value of the mesh quality
measure; minimizing the maximum value of the quality measure can be done by negating the
function value. We require that function and gradient evaluations dependent on free vertex
position be provided by the user.

The optimization algorithm for each local subproblem is similar to a minimax technique
used to solve circuit design problems.!” We briefly review the formulation of the problem
here and refer interested readers to a more complete description in our previous paper.'® To
facilitate the discussion of problem formulation, we first introduce some useful notation:

e x: the position of the free vertex

fi(x): an analytic function for a mesh quality measure that in general is nonlinear.
For example, if we consider maximizing the minimum dihedral angle of the mesh, each
tetrahedron will have six function values for each location of the point x. Let the entire
set of function values, f;, be S.

e gi(x): the analytic gradient of the mesh quality measure corresponding to fi(x)i. The
gradient evaluation code was created using the ADIC automatic differentiation software
package developed at Argonne National Laboratory.'®

o A: the set of functions that achieve a minimum at point x (the active set)

o x*, A*: the optimal solution and the active set at x*
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As the location of x changes in the solution space, the minimum function value in the
corresponding submesh is given by the composite function

6(x) = mip () )

We illustrate the character of this function by showing a one-dimensional slice through a
typical function ¢ in Figure 4. Note that each f;(x) is a smooth, continuously differentiable
function and that multiple function values can obtain the minimum value. Hence, the com-
posite function ¢(x) has discontinuous partial derivatives where two or more of the functions
fi obtain the minimum value, that is, where the active set A changes.

X

Figure 4: A one-dimensional slice through the nonsmooth function ¢(z)

We solve the nonsmooth optimization problem (2) using an analogue of the steepest
descent method for smooth functions. The search direction g at each step is computed by
solving the quadratic programming problem

min g'g where g = figi(x)
icA
subject to Zﬂl =1, 5 >0
icA
for the ;. This gives the direction of steepest descent from all possible convex linear combi-
nations of the gradients in the active set at x. The line search subproblem along g is solved
by finding the linear approximation of each function f;(x) given by the first-order Taylor
series approximation,

filx+6) = filx) + 8" gi(x).
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Using this information, we can predict the points at which the active set A will change by
computing the intersection of each linear approximation with the projection of the current
active function in the search direction. The distance to the nearest intersection point from
the current location gives the initial step length, «. The initial step is accepted if the actual
improvement exceeds 90 percent of the estimated improvement or the subsequent step results
in a smaller function improvement. Otherwise « is halved recursively until a step is accepted
or « falls below some minimum step length tolerance.

The optimization process is terminated if one of the following conditions apply: (1)
the step size falls below the minimum step length with no improvement obtained; (2) the
maximum number of iterations is exceeded; (3) the achieved improvement of any given step
is less than some user-defined tolerance; or (4) the Kuhn-Tucker conditions of nonlinear

programming
Z )\ZgZ(X*) =0
1EA*
Z)\Zzl, )\220, e A"
1EA*

are satisfied indicating that we have found a local maximum x*.17

Amenta et al.'® have shown that this technique is equivalent to a generalized linear
programming (GLP) technique and can therefore be solved in linear time. In addition, the
convex level set criterion for solution uniqueness of the GLP technique can be applied to
these algorithms. Amenta et al. determine the convexity of the level sets for a number of
standard mesh quality measures in both two and three dimensions.

We note that other optimization-based smoothing techniques have been developed by re-
searchers in the mesh generation and computational geometry communities. These methods
differ primarily in the optimization procedure used or in the quantity that is optimized. For
example, Bank?® and Shephard and Georges?! propose similar techniques for triangles and
tetrahedra, respectively. In these methods, an element shape quality measure, ¢(t), is defined
based on a ratio of element area (volume) to side lengths (face areas). In each case, ¢(t)
is equal to one for equilateral elements and is small for distorted elements. The free vertex
is moved along the line that connects its current position to the position that makes ¢(t)
equal to one for the worst element in the local submesh. The line search in this direction
is terminated when two elements have equal shape measure. We note that this does not
necessarily guarantee that the optimal local solution has been found.

All the techniques mentioned above, including the one described in this article, opti-
mize the mesh according to element geometry. In contrast, Bank and Smith *? propose two
smoothing techniques to minimize the error in finite element solutions computed with trian-
gular elements with linear basis functions. Both methods use a damped Newton’s method
to minimize the interpolation error or the a posteriori error estimates for an elliptic partial
differential equation. The quantity minimized in both of these cases requires the computa-
tion of approximate second derivatives for the finite element solution as well as the shape
function ¢(t) for triangular elements mentioned above. Although the authors present con-
vergence histories for these techniques, no timing results are given that quantify the cost and
effectiveness of these techniques compared with the geometric techniques mentioned earlier.
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4. Computational Experiments

We now present computational results for five test cases: two randomly generated meshes and
three meshes generated for application problems. For each test mesh, a standard starting
mesh was generated, and all comparison cases began with that same mesh. The random
meshes were each generated in a cube with points incrementally inserted at random in the
interior. Each point was connected to the vertices of the tetrahedron containing it, with
points near an existing face or edge in the tetrahedralization projected onto that face or
edge. No swapping or smoothing was done as these initial meshes were generated, and
mesh quality was correspondingly poor at the outset. The first case, rand1, has 1086 points
approximately equally distributed through the domain and 5104 tetrahedra. The second
random mesh, rand2 has 5086 points clustered at the center of the cube by selecting random
numbers from a Gaussian deviate and 25704 tetrahedra.

The third and fourth test meshes were generated in the interiors of a tire incinerator
and a tangentially-fired (t-fired) industrial boiler, respectively. Interior points were inserted
at the circumcenter of cells that were larger than appropriate, based on an automatically
computed local length scale, or that had a large dihedral angle and had a volume larger
than a user-defined tolerance. After the insertion of each point, nearby faces were swapped
by using the in-sphere criterion to improve local mesh connectivity. After all points were
inserted, all faces were swapped by using the minmax dihedral angle criterion. The tire
incinerator mesh initially has 2570 vertices and 11098 tetrahedra, and the t-fired mesh has
7265 vertices and 37785 tetrahedra. Because these meshes were generated more sensibly
than the random meshes, initial quality is much better than in the random cases.

The final test case is a mesh generated around the ONERA M6 wing attached to a flat
wall. This is a standard geometry for testing three-dimensional compressible flow solution
algorithms. This particular mesh is coarse, having 6,000 vertices and 31,978 tetrahedra.
Hence, the initial mesh quality is poor, especially near the junction of the wing and the wall.

For each test case, we present results for mesh quality using dihedral angles as a quality
measure.t The maximum and minimum dihedral angles over the entire mesh are given as an
indication of how poor the worst elements are. To give quantitative information about the
number of poor tetrahedra, we also give the percentage of dihedral angles falling below 6,
12, and 18 degrees and above 162, 168, and 174 degrees. To improve the readability of this
section, several tables of results that support our conclusions and recommendations but do
not add new information are included in a separate appendix.

Recommendations for mesh improvement are made on the premise that computational
PDE codes behave poorly when very small or very large dihedral angles are present, and
that, therefore, the goal of mesh improvement is to remove such angles.

4.1 Improvement Using Local Reconnection Techniques Only

The first experiment compares the effectiveness of several local reconnection strategies in
improving mesh quality for the random meshes. We use three geometric quality measures

+ . . . . .
*We prefer not to use measures such as aspect ratio that are misleading for anisotropic meshes.
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to determine whether to locally reconnect a tetrahedral mesh: maxmin sine of dihedral
angle, minmax dihedral angle, and in-sphere. The maxmin sine of dihedral angle criterion
chooses the configuration that maximizes the minimum sine of the dihedral angles of the
tetrahedra in the submesh. The minmax dihedral angle criterion minimizes the maximum
dihedral angle of the tetrahedra. The in-sphere criterion, appropriate only for face swapping,
selects the configuration in which no tetrahedron in the five-point local submesh contains
the other point in its circumsphere. This leads to a locally Delaunay tetrahedralization in
the sense that no face in the mesh has incident cells that violate the in-sphere criterion
and are reconfigurable. For all criteria, however, the optimum reached by face and edge
swapping is almost certainly local rather than global. Recent work by Joe? describes a more
advanced technique for improving mesh quality by local transformations. This approach
notwithstanding, it is not known whether the global optimum can be reached by any series
of local transformations.

Table 2 shows mesh quality results for the initial rand1 mesh and the same mesh following
local reconnection. Results are given for eight different local reconnection strategies: (1)
face swapping to minimize the maximum dihedral angle; (2) face swapping to maximize the
minimum sine of the dihedral angles; (3-4) each of the above preceded by a pass of in-sphere
face swapping; and (5-8) each of the four cases given above with edge-swapping allowed when
the minmax angle and maxmin sine criteria are used. We note that strategies for which the
final step is a pass of in-sphere swapping leave very poor extremal angles and large numbers
of bad dihedral angles, and so are not considered here.

Recommendation 1 Never use the in-sphere criterion during the final pass of face swap-
ping. The in-sphere criterion performs poorly in practice with respect to extremal angles.

In all cases, edge swapping proves to be beneficial; it improves the worst dihedral angle
in the mesh, the number of bad angles in the mesh, or both. Using in-sphere face swapping
as a first step dramatically improves the distribution of dihedral angles at the expense of

degrading the extremal angle. The results for mesh rand2 are similar and included in
Appendix A.

Recommendation 2 FEdge swapping is a beneficial supplement to face swapping and should
be used.

4.2 Improvement Using Mesh Smoothing Techniques Only

Our baseline smoothing technique for comparison is Laplacian smoothing, which moves each
vertex to the average of the location of its neighbors, provided that this point does not result
in an invalid mesh. Also, we have implemented a “smart” variant of Laplacian smoothing,
which requires that the local mesh quality be improved before accepting a change in vertex
location. Any local quality criterion suitable for use with the optimization-based smoothing
can be used in this context.

For optimization-based smoothing, we present results for five different objective functions:
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Table 2: Mesh quality improvement for rand1 with swapping

Min. Max. || % Dihedral Angles < || % Dihedral Angles >
Case Dihed. | Dihed. | 6° | 12° [ 18° 162° | 168° | 174°
Initial [ 0320 [178.97° [ 1.41[4.90] 9.86 | 240 ] 1.08 ] 0.24
Without Edge Swapping
Minmax angle 0.54° 178.97° [ 0.76 [ 3.20 [ 7.40 1.21 ] 0.46 | 0.11
Maxmin sine 0.54° 178.97° || 0.68 | 2.94 |  6.94 1.27 | 0.49 | 0.12
In-sphere, then 3.6-10-° | 180.00° || 0.45 | 148 | 328 | 0.58 | 0.30 | 0.11
minmax angle
In-sphere, then 3.6-1075° | 180.00° || 0.46 | 1.48 | 3.26 0.60 | 0.32 | 0.12

maxmin sine

With Edge Swapping

Minmax angle 0.54° 178.97° [ 0.24 [ 1.42 ] 4.19 0.36 [ 0.15 | 0.034
Maxmin sine 0.54° 178.97° || 0.15 | 0.96 | 3.16 0.43 | 0.15 | 0.033
In-sphere, then 0.26° 177.88° || 0.15 | 0.78 | 2.25 0.24 | 0.10 | 0.025
minmax angle

In-sphere, then 0.38° 179.08° || 0.16 | 0.68 | 1.98 0.28 | 0.14 | 0.051

maxmin sine

1. Maximize the minimum dihedral angle (maxmin angle)

2. Minimize the maximum dihedral angle (minmax angle)

3. Maximize the minimum cosine of the dihedral angles (maxmin cosine)
4. Minimize the maximum cosine of the dihedral angles (minmax cosine)
5. Maximize the minimum sine of the dihedral angles (maxmin sine)

We expect nearly identical results, though not necessarily identical convergence behavior,
from two pairs of these measures:

maxmin angle A minmax cosine

minmax angle A maxmin cosine.

Table 3 shows the results of smoothing rand1 using Laplacian smoothing, smart Laplacian
smoothing for two of the five criteria given, and optimization-based smoothing for each of
the five criteria. Results for the other smart Laplacian approaches are identical to one of the
two smart Laplacian results presented.

The improvement in mesh quality is not as pronounced for smoothing as for swapping
because the connectivity is too irregular to allow a truly high-quality mesh. Nevertheless,
all the optimization-based smoothing criteria improve mesh quality significantly, especially
in the sense of improving the extremal angles. The Laplacian smoother does a poor job of
eliminating very bad angles. The smart Laplacian smoothers perform better in this respect,
but still are significantly worse than the optimization-based smoothers. Optimization criteria
that seek only to force all dihedral angles away from 180 degrees (minmax angle and maxmin
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cosine) are unsuccessful in eliminating small dihedral angles, whereas criteria that force
dihedral angles away from 0 degrees (maxmin angle and minmax cosine) also succeed in
eliminating large dihedral angles. This difference can be important in practice because both
large and small angles can affect the quality of the final application solution. Note also that
the pairs of smoothing criteria expected to perform comparably behave similarly, with one
exception. The minmax cosine criterion does not improve the extremal angles as much as
its analog, the maxmin angle criterion. The flatness of the cosine near 0 and 180 degrees
prevents rapid quality improvement when moving points in tetrahedra with extremely poor
angles, and the optimization code concludes that improvement is too slow to be fruitful.
Finally, the maxmin sine criterion, which forces dihedral angles away from both 0 and 180
degrees, is very successful in removing dihedral angles at both extremes. The results for
mesh rand2 are similar and are included in Appendix A.

Table 3: Mesh quality improvement for randl with smoothing

Min. Max. % Dihedral Angles < || % Dihedral Angles >

Case Dihed. Dihed. 6° | 12° | 18° [ 162°] 168° | 174°

Lap: No constraint 0.0026° 179.996° | 2.45 | 6.90 | 12.21 3.46 | 1.84 0.63
Lap: Maxmin angle 1.18° 177.43° 0.71 | 3.23 7.28 1.55 | 0.58 0.14
Lap: Minmax angle 0.67° 177.43° 0.73 | 3.44 7.55 1.44 | 0.54 | 0.091
Opt: Maxmin angle 4.79° 175.59° 0.11 | 1.23 | 6.21 0.71 | 0.21 | 0.0065

Opt: Minmax angle || 5.37-1074° | 172.75° 2.71 | 5.54 | 9.09 0.16 | 0.039 0
Opt: Maxmin cosine 0.018° 172.57° 2.31 | 4.78 8.71 0.17 | 0.033 0
Opt: Minmax cosine 1.70° 176.21° 0.11 | 1.26 6.31 0.71 | 0.19 | 0.016
Opt: Maxmin sine 4.20° 175.73° || 0.085 | 1.05 | 6.09 0.60 | 0.11 | 0.0033

4.3 Improvement Using the Combined Swapping/Smoothing Approach

Next we show that the gains in mesh quality from local reconnection and smoothing can be
made cumulatively. To determine which reconnection strategy performs best in conjunction
with smoothing, we compare the results of the four reconnection strategies with edge swap-
ping enabled followed by six passes of optimization-based smoothing using the the maxmin
sine criterion for rand1. Table 4 shows that smoothing eliminates the worst tetrahedra in all
cases. Quantitatively, however, there are important differences. The maxmin sine reconnec-
tion criterion consistently outperforms the minmax angle criterion, especially in improving
the worst angle in the mesh. Likewise, the use of in-sphere swapping as a first reconnection
pass gives a dramatic improvement regardless of the criterion used for the second pass. These
results are consistent across a number of test cases.

Recommendation 3 We recommend that meshes whose connectivity has not been improved
during generation be reconnected using in-sphere face swapping, followed by face and edge
swapping using the maxmin sine of dihedral angle criterion. For meshes that have initially
reasonable connectivity, only the second pass need be performed.



To appear in Int. J. for Numerical Methods in Engineering 15

Table 4: Comparison of the effectiveness of smoothing for four different swapping options (mesh
randi, edge swapping enabled, maxmin sine smoothing)

Min. Max. || % Dihedral Angles < || % Dihedral Angles >

Case Dihed. | Dihed. || 6° | 12° [ 18° 162° | 168° [ 174°

Minmax angle 6.74° | 171.14° || 0 | 0.24 1.34 0.11 | 0.0093 0

Maxmin sine 9.74° [ 168.09° | 0 | 0.030 | 0.50 | 0.049 | 0.0030 | 0

In-sphere, then 9.90° | 166.01° | 0 | 0.014| 015 [ 0.017| o 0
minmax angle

In-sphere, then 12.59° | 167.25° | 0 | 0 020 | 0017] o0 0
maxmin sine

Table 5 shows the results for rand1 using the local reconnection procedure given in
Recommendation 3 followed by each of the eight smoothing options discussed in the preceding
section. The distribution of dihedral angles for each random mesh improves significantly
regardless of the choice of smoothing criterion. As was the case with smoothing used alone,
all Laplacian smoothers fail to eliminate poorly shaped elements from the mesh. Again
we see that the criteria for optimization-based smoothing that seek only to remove large
angles from the mesh do not succeed in eliminating small angles. The three other criteria —
maxmin angle, minmax cosine, and maxmin sine — give comparable results for these test
cases.

Table 5: Mesh quality improvement for rand1 with both swapping and smoothing

Min. Max. || % Dihedral Angles < || % Dihedral Angles >
Case Dihed. | Dihed. || 6° [ 12° | 18° 162° [ 168° | 174°

Lap: No constraint 0.49° | 178.97° || 0.099 | 0.37 0.97 0.19 | 0.082 | 0.034
Lap: Maxmin angle 2.19° | 175.65° || 0.034 | 0.20 0.82 0.082 | 0.034 | 0.0057
Lap: Minmax angle 0.57% | 178.88° | 0.077 | 0.30 1.08 0.091 | 0.051 | 0.023

Opt: Maxmin angle 14.05° | 165.05° 0 0 0.12 0.011 0 0
Opt: Minmax angle 0.024° | 159.96° || 1.29 | 2.52 | 4.48 0 0 0
Opt: Maxmin cosine || 0.0066° | 176.26° || 1.18 | 2.40 4.31 0.026 | 0.011 | 0.0085
Opt: Minmax cosine || 15.01° | 166.71° 0 0 0.16 0.0085 0 0
Opt: Maxmin sine 12.59° | 167.25° 0 0 0.20 0.017 0 0

An important question in any local smoothing algorithm is the number of smoothing
passes required to improve the mesh to the point where further improvement is negligible.
Table 6 shows the effect of various numbers of smoothing passes with the maxmin sine
criterion on rand1. Similar results for rand2 with the maxmin angle criterion can be found
in Appendix A. In both cases swapping was used before smoothing. In each case, mesh
quality improves only negligibly after the fourth or fifth smoothing pass.

We conclude this subsection with a comparison of the computational efficiency of the
various mesh improvement techniques. Table 7 compares timings for mesh improvement
using swapping, smoothing, and a combination of the two for rand2 on a 110 MHz SPARC
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Table 6: Effect of the number of optimization passes on mesh improvement (rand1l with maxmin
sine smoothing)

Min. Max. || % Dihedral Angles < || % Dihedral Angles >
Passes || Dihed. | Dihed. || 6° | 12° | 18° | 162° | 168° [ 174°
0 0.38° | 179.08° | 0.17 | 0.68 1.98 0.28 0.14 | 0.051
1 0.40° | 179.21° || 0.063 | 0.19 0.89 | 0.088 | 0.046 | 0.026
2 8.10° | 169.55° 0 0.065 | 0.53 || 0.043 | 0.0028 0
3 10.51° | 167.20° 0 0.028 | 0.34 || 0.026 0 0
4 12.23° | 166.88° 0 0 0.25 || 0.020 0 0
) 12.48° | 167.02° 0 0 0.22 0.014 0 0
6 12.59° | 167.25° 0 0 0.20 || 0.017 0 0

5. The times for the swapping-only cases indicate that edge swapping, while very beneficial,
is a relatively costly operation. More work is needed to improve the efficiency of this scheme;
improvement will mostly likely take the form of reducing the number of cases that the edge
swapping algorithm examines in detail. The difference in timings for smoothing with and
without swapping is due to several differences in the swapped verses nonswapped mesh. Ap-
proximately 30 percent of the Laplacian smoothing steps on the nonswapped mesh result in
an invalid mesh as compared with approximately 3 percent on the swapped meshes. Because
an invalid step requires less time to execute than the full Laplacian step, the nonswapped
mesh can be smoothed more quickly. A similar situation holds for the optimization-based
smoothing. Optimization-based smoothing requires an average of approximately 3.9 itera-
tions on the swapped mesh and about 3.7 iterations on the nonswapped mesh. A higher
percentage of equilibrium points is found on the swapped mesh than on the nonswapped
mesh, and the quality is correspondingly better. For these examples, optimization-based
smoothing takes 10 times longer than smart Laplacian smoothing and 25 to 30 times longer
than simple Laplacian smoothing.

Table 7: Sample times for mesh improvement (mesh rand2)

Swap Smoothing | Smoothing | Time per Min. Max.

Case Time (sec) | Time (sec) Calls Call (msec) Dihed. Dihed.
Face Swap only 34.6 — — — 3.52-1075° | 179.83°
Face and Iidge Swap 156 — — — 0.322° 178.72°
Lap: No constraint — 8.13 14832 .565 0.014° 179.98°
Lap: Maxmin sine — 21.9 14832 1.52 0.63° 178.82°
Opt: Maxmin sine — 211 14832 14.7 1.91° 177.69°
Swap + Lap: No constraint 156 10.1 14832 .704 .0223° 179.96°
Swap + Lap: Maxmin sine 156 30.0 14832 2.08 .322° 178.72°
Swap + Opt: Maxmin sine 156 305 14832 21.2 6.59° 171.32°
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4.4 Improvement Using Combined Laplacian/Optimization-Based Smoothing

We would ideally like a smoothing technique that is as effective as optimization-based
smoothing techniques at the cost of Laplacian smoothing. In this section we investigate
a combined Laplacian/optimization-based smoothing approach. Smart Laplacian smoothing
is used as the initial step, and the resulting submesh is evaluated for improvement. If the
mesh quality is improved, the step is accepted. An additional test is performed to compare
the current quality of the submesh with a user-defined threshold value. If the quality is less
than the threshold value, optimization-based smoothing is performed to further improve the
mesh, otherwise the smoothing algorithm proceeds to the next submesh. A drawback to
using a fixed threshold for optimization-based smoothing is that mesh improvement ceases
when the threshold is reached. Therefore, we also consider a floating threshold value that
can be reset after each smoothing pass to the worst remaining angle plus some constant.
This ensures that optimization-based smoothing always tries to improve a reasonably small
number of poor-quality tetrahedra.

In Table 8, we give the results for this combination approach on rand1. We first swap each
of the meshes using the recommended procedure. We then smooth the mesh using six passes
of smart Laplacian, optimization-based smoothing only, and the combination approach for
five different threshold values: fixed values of 5 degrees, 10 degrees, 15 degrees, and 30
degrees; and a floating value of 10 degrees for the first pass followed by the worst remaining
angle plus five degrees on subsequent passes. We use the maxmin sine criterion for smoothing
in all cases. In addition to mesh quality information, we give the average time required to
smooth each local submesh. It is clear that the combination approach with a threshold of
10 to 15 degrees results in very high quality meshes at a fraction of the optimization-only
smoothing cost. In fact meshes with quality comparable to or better than that obtained
with optimization-based smoothing alone can be computed for 1.5 to 2 times the cost of
smart Laplacian smoothing. The cost and final mesh quality for the floating threshold
falls between the combined approach with thresholds of 10 and 15 degrees. The benefit of
using the floating threshold is that no advance knowledge of the attainable extremal angle is
required to consistently approach that limit. Similar trends are evident for rand2 and those
results are given in Appendix A.

Recommendation 4 The local reconnection schemes should be followed by three to four
passes of a combined Laplacian/optimization-based smoothing technique with a floating thresh-
old. Quality criteria that tend to eliminate small angles in the mesh are more effective than
criteria that tend to eliminate large angles.

4.5 Improvement of Application Meshes

We now confirm that the mesh improvement recommendations given above for the random
meshes are appropriate for the application meshes. First, however, we address an anomaly
that appears in an examination of the effect of number of smoothing passes for the tire
incinerator mesh. A smoothing history is presented in Table 9; the mesh was reconnected by
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Table 8: Mesh quality improvement for combined Laplacian/optimization-based smoothing (mesh
randl)

Min. Max. || % Dihedral Angles < || % Dihedral Angles > | Time

Case Dihed. | Dihed. 6° 12° 18° 162° 168° | 174° | (ms)
Laplacian A490° | 178.97° || 0.099 | 0.37 | 0.98 0.19 0.082 | 0.034 | 2.01
Optimization 12.59¢ | 167.25° 0 0 0.20 0.017 0 0 18.2
Combined (30) || 12.59° | 166.98° 0 0 0.088 || 0.0057 0 0 17.5
Combined (15) || 14.06° | 164.18° 0 0 0.53 0.020 0 0 3.37
Combined (10) || 10.13° | 169.20° 0 0.12 | 0.74 0.040 | 0.0057 0 2.29
Combined (5) 5.13° | 170.72° || 0.0057 | 0.22 | 0.87 0.074 | 0.023 0 2.04
Floating 13.42° | 164.74° 0 0 0.33 || 0.0028 0 0 2.95

Table 9: Effect of the number of optimization passes on mesh improvement (tire with minmax
angle smoothing)

Min. Max. % Dihedral Angles < || % Dihedral Angles >
Passes | Dihed. | Dihed. 6° [ 120 [ 18° [ 162° | 168 [ 174°

0 3.36° | 172.38° || 0.065 0.33 0.86 0.035 | 0.012 0
1 5.20° | 164.55° || 0.0015 | 0.026 | 0.22 || 0.0045 0
2 5.20° | 164.25° || 0.0015 | 0.0030 | 0.091 || 0.0015 0
3 5.20° | 161.43° || 0.0015 | 0.0030 | 0.045 0 0
4 5.20° | 161.43° || 0.0015 | 0.0030 | 0.036 0 0

oo o O

using the maxmin sine criterion with edge swapping before smoothing. The smallest dihedral
angle in the mesh could not be improved beyond 5.20°, but the optimization-based smoothing
code reported a minimum dihedral angle of 14.3° among all submeshes which it attempted
to smooth. On careful investigation, we found the cause of this discrepancy: a tetrahedron
with all four of its vertices on the boundary of the mesh. As our smoothing algorithm only
operates on vertices internal to the mesh, these vertices could not be relocated. When the
BATR procedure described in Section 2.2 was invoked after two smoothing passes, the worst
tetrahedron in the mesh was removed and the mesh quality improved dramatically, to a
minimum dihedral angle of 13.67°; the results are shown in Table 10. Note that the worst
angle remaining in this mesh still lies in a tetrahedron with all vertices on the boundary.
Although using BATR does not always have such a significant effect, it is categorically
recommended because the cost is low and the potential benefit high.

Recommendation 5 We recommend performing two passes of smoothing followed by a
procedure such as BATR to remove the worst tetrahedra from the mesh and finishing with
two more passes of smoothing.

To demonstrate that our recommendations are appropriate for the tire incinerator mesh,
we present a set of cases in which one recommendation has been ignored. The baseline mesh
improvement scheme for these cases is a pass of face and edge swapping using the maxmin sine
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Table 10: Effect of the number of optimization passes and edge swapping on mesh improvement
(tire with minmax angle smoothing)

Min. Max. % Dihedral Angles < || % Dihedral Angles >

Passes || Dihed. | Dihed. 6° [ 120 [ 18° [ 162° | 168 | 174°
0 3.36° | 172.38° || 0.065 0.33 0.86 0.035 | 0.012 0
1 5.20° | 164.55° || 0.0015 | 0.026 | 0.22 | 0.0045 0 0
2 5.20° | 164.25° || 0.0015 | 0.0030 | 0.091 || 0.0015 0 0
BATR || 9.44° | 164.25° 0 0.0015 | 0.088 || 0.0015 0 0
3 13.67° | 159.82¢ 0 0 0.046 0 0 0
4 13.67° | 159.82° 0 0 0.038 0 0 0

criterion; two passes of combined Laplacian/optimization-based smoothing with a floating
threshold and the maxmin sine criterion; an application of the BATR procedure; and two
more passes of smoothing with the same parameters. For each example, Table 11 tells which
recommendation was ignored, summarizes the variation from recommended parameters, and
gives the resulting mesh quality and total execution time. No angles greater than 168°
appear for any of the examples, so two of the usual columns are absent from the table. Only
one case that ran faster than the baseline case produces a mesh of comparable quality (fixed
threshold, 15°), and the time savings is only 3%. The only case with a better final mesh
than the baseline case is the case in which passes of smoothing and BATR alternate; this
case improves the maximum dihedral angle in the mesh by 1.3° at a cost of 25% more CPU
time. A similar table for the tfire mesh is presented in the appendix, with comparable
results.

Table 12 shows the improvement in mesh quality achieved for each of the three application
meshes using our recommended procedure. For all three cases, mesh quality is improved sig-
nificantly. The final mesh quality differs dramatically among the three cases, because of the
initial topology and point distribution of the meshes. For example, the M6 wing mesh began
with a very large number of poor dihedral angles in adjacent tetrahedra. While smoothing
improved many tetrahedra, some could not be improved without making a neighboring cell
worse, and so no improvement was made.

This clustering of bad tetrahedra is a common occurrence in our final meshes, with
the worst cells often sharing vertices, edges, or even faces. Figures 6 and 5 show surface
wireframes for the tire incinerator and t-fired boiler, along with the worst tetrahedra—those
with dihedral angles less than 18° or greater than 162°. For the t-fired boiler, these tetrahedra
fall primarily into a single clump along a corner of the geometry. Figure 7 shows a closeup
of a region around the leading edge of the wing at the wall where there is a concentration
of poor-quality tetrahedra. Further work is needed to improve quality in difficult cases such
as these in which boundary constraints or clustering prevents the improvement of poorly
shaped elements.
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Table 11: Verification of mesh improvement recommendations for tire mesh

Max. Min. % Dihedrals < % > || Time
Rec. Variation Dihed. | Dihed. 6° 12° 18° 162° || (sec)
— | Baseline 13.67° | 159.82° 0 0 0.038 0 43.3
1 In-sphere swap 9.03° | 162.22° 0 0.021 | 1.20 | 0.0028 || 45.6
2 | BATR, no edge swap || 5.20° | 161.43° || 0.0015 | 0.0030 | 0.16 0 27.3
3 | Angle swap 5.20° | 161.43° || 0.0015 | 0.0030 | 0.13 0 38.2
In-sphere + Angle 11.80° | 159.11° 0 0.0015 | 0.15 0 50.8
In-sphere + Sine 5.20° | 161.43° || 0.0015 | 0.0030 | 0.10 0 55.9
4 | Optimize 13.67° | 159.74° 0 0 0.049 0 127.7
Fixed thresh. 10° 10.19° | 164.14° 0 0.011 | 0.12 || 0.0015 || 40.5
Fixed thresh. 15° 13.67° | 159.92° 0 0 0.079 0 42.1
Lap: Maxmin angle 8.64° | 164.38° 0 0.012 | 0.13 || 0.0030 || 45.9
Maxmin angle 13.67° | 161.71° 0 0 0.045 0 48.0
Maxmin cosine 0.77° | 156.14° || 0.048 0.19 0.72 0 67.9
5 | No BATR 5.20° | 161.43° || 0.0015 | 0.0030 | 0.036 0 40.0
Multi-BATR 13.67° | 158.52° 0 0 0.027 0 54.8

Table 12: Mesh improvement for three application meshes

Min. Max. % Dihedral Angles < % Dihedral Angles >
Case Dihed. | Dihed. 6° | 12° | 18° [ 162° | 168° | 174°
Tire incinerator before 0.66° 178.88° 0.11 0.54 | 1.27 || 0.074 | 0.035 | 0.0075
Tire incinerator after 13.67° 159.82° 0 0 0.038 0 0 0
T-fire boiler before 0.048° | 179.86° 0.16 0.50 | 0.99 0.24 0.12 0.037
T-fire boiler after 5.61° 174.15° | 0.0013 | 0.029 | 0.11 | 0.019 | 0.0071 | 0.00045
ONERA M6 wing before || 0.0066° | 179.984° 0.78 1.63 | 2.85 0.57 0.41 0.23
ONERA M6 wing after 0.098° | 179.76° 0.16 0.66 | 1.46 0.17 | 0.076 0.018
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Figure 5: Surface wireframe of tire incinerator mesh with badly shaped tets
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Figure 6: Surface wireframe of tangentially-fired boiler mesh with badly shaped tets
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Figure 7: Closeup of leading edge of ONERA M6 wing surface mesh with badly shaped tets
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5. Conclusions

In this article we compared combinations of mesh swapping and mesh smoothing techniques
used to improve the quality of tetrahedral meshes. Using two random meshes as test cases,
we showed that each mechanism fails to give high-quality meshes when used individually;
that is, not all of the very large and very small dihedral angles were removed from the meshes.
Local reconnection was performed using the minmax dihedral angle and maxmin sine of di-
hedral angle criteria, with and without edge swapping and with and without a preparatory
pass of face swapping using the in-sphere criterion. Both Laplacian and optimization-based
smoothing techniques fail to improve the general distribution of angles because they can-
not change local mesh connectivity. However, we showed that the cumulative improvement
obtained when combining in-sphere and maxmin sine reconfiguration (with edge swapping)
followed by optimization-based smoothing results in very high quality meshes. In addi-
tion, experiments showed that a combination of smart Laplacian smoothing followed by
optimization-based smoothing led to meshes equal in quality to those generated exclusively
by optimization-based smoothing at a much lower computational cost. The use of a mesh
quality dependent threshold for invocation of optimization-based smoothing was found to be
inexpensive as well as guaranteeing the highest practical degree of mesh optimization.

For three application meshes, we demonstrated that the same smoothing techniques are
again effective. Of the smoothing criteria considered here, we found that the maxmin sine
quality measure was the most consistently effective in eliminating both small and large angles.
Also, we showed that in some cases, a tetrahedron can be unimprovable by smoothing because
its vertices are on the boundary of the mesh; but the tetrahedron can be removed by edge
swapping. For the remaining poor-quality elements that could not be improved using our
current techniques, we presented evidence that these tetrahedra tend to be clustered together.
In this situation, swapping fails because local reconnection is not legal, and smoothing fails
because improving one tetrahedron reduces the quality of a neighbor.

Several enhancements are being incorporated into the mesh improvement software to
increase its effectiveness and efficiency. Our current software uses mesh smoothing to improve
the quality of the volume mesh once the surface mesh has been generated. We plan to add
surface mesh-smoothing capabilities to the optimization-based algorithm by incorporating
additional constraints to bind the free vertex to the boundary surfaces. We are also interested
in examining optimization-based smoothing with other measures including aspect ratio and
solid angles and in developing smoothing measures appropriate for use on anisotropic meshes.
We intend to improve the efficiency of our edge-swapping implementation and to investigate
the use of more sophisticated local reconnection algorithms, such as that of Joe®. For all of the
meshes discussed in this article, it is possible to find (possibly very expensive) idiosyncratic
combinations of the operations described that result in a significantly better final mesh.
Additional work is required to find more powerful mesh improvement techniques that will
allow a more effective general prescription for mesh improvement. Finally, further work is
needed to quantify the gains, if any, in solution speed and accuracy for computational science
problems due to mesh improvement using these techniques.

This software is being incorporated into the SUMAA3d?** and GRUMMP projects at

Argonne National Laboratory, which will provide an integrated framework for parallel un-
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structured mesh applications. Therefore, we are working to develop parallel algorithms
similar to the framework given previously'® for three-dimensional mesh smoothing and face
swapping methods.
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Table 13: Mesh quality improvement for rand2 with swapping

Min. Max. || % Dihedral Angles < || % Dihedral Angles >

Case Dihed. | Dihed. || 6° [ 12° | 18° 162° | 168° | 174°

Initial | 010> [179.84° [ 2.57 [ 833 14.77 | 424 |2.04] 051
Without Edge Swapping
Minmax angle 0.57° 179.20° [ 1.51 [ 5.82 [ 11.52 [[2.51 [ 1.07 [ 0.21
Maxmin sine 0.57° 179.11° || 1.32 | 5.33 | 10.86 || 2.53 | 1.09 | 0.21
In-sphere, then 6.0-107%° | 180.00° || 0.60 | 1.82 | 3.78 || 0.77 | 0.43 | 0.16
minmax angle
In-sphere, then 3.5-107%° | 180.00° || 0.60 | 1.80 | 3.75 0.77 | 0.43 | 0.16
maxmin sine
With Edge Swapping

Minmax angle 0.57° 178.96° || 0.45 | 2.54 6.40 0.63 | 0.18 | 0.031
Maxmin sine 0.57° 178.96° || 0.23 | 1.51 4.82 0.75 | 0.25 0.046
In-sphere, then 0.32° 178.88° || 0.18 | 0.83 |  2.40 0.23 | 0.10 | 0.027
minmax angle
In-sphere, then 0.32° 178.72° | 0.11 | 0.63 | 1.99 0.26 | 0.11 | 0.021
maxmin sine

Table 14: Mesh quality improvement for rand2 with smoothing

Min. Max. % Dihedral Angles < || % Dihedral Angles >
Case Dihed. Dihed. || 6° | 12° [ 18° 162° | 168° | 174°
Lap: No constraint 0.0026° 179.996° || 2.45 | 6.90 12.21 3.46 | 1.84 0.63
Lap: Maxmin angle 0.64° 178.76° || 1.58 | 6.32 12.35 3.03 | 1.35 0.26
Lap: Minmax angle 0.51° 178.83° || 1.71 | 6.39 | 12.35 2.95 | 1.24 0.23
Opt: Maxmin angle 2.64° 178.35° || 0.25 | 4.49 | 11.82 1.99 | 0.59 | 0.059
Opt: Minmax angle | 5.59-107°° | 174.53° | 3.62 | 7.69 | 12.93 1.11 | 0.21 | 0.00065
Opt: Maxmin cosine || 5.68-107°° | 175.69° | 3.35 | 7.32 12.58 1.03 | 0.18 | 0.0045
Opt: Minmax cosine 0.10° 179.84° | 0.45 | 4.50 11.88 2.09 | 0.71 0.11
Opt: Maxmin sine 2.58° 177.16° | 0.27 | 4.47 11.83 2.01 | 0.58 | 0.019
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Table 15: Mesh quality improvement for rand2 with both swapping and smoothing

Min. Max. || % Dihedral Angles < % Dihedral Angles >
Case Dihed. Dihed. || 6° | 12° | 18° 162° | 168° [ 174°
Lap: No constraint .037° 179.85° || 0.18 | 0.52 1.11 0.25 0.14 0.064
Lap: Maxmin angle 0.32° 178.72° || 0.057 | 0.25 0.88 0.13 0.054 | 0.0086
Lap: Minmax angle 0.32° 178.72° || 0.059 | 0.26 0.89 0.13 0.056 | 0.0086
Opt: Maxmin angle 9.81° 169.99° 0 0.026 | 0.24 0.034 | 0.0034 0
Opt: Minmax angle || 1.27-107%% | 164.09° || 1.16 | 2.46 | 4.31 | 0.0017 0 0
Opt: Maxmin cosine 0.0028° 177.27° || 1.08 | 2.31 4.20 0.011 | 0.0057 | 0.0017
Opt: Minmax cosine 10.57° 170.64° 0 0.023 | 0.23 0.037 | 0.0029 0
Opt: Maxmin sine 9.72° 167.65° 0 0.017 | 0.26 0.016 0 0

Table 16: Effect of the number of optimization passes on mesh improvement (rand2 with minmax
angle smoothing)

Min. Max. || % Dihedral Angles < % Dihedral Angles >
Passes || Dihed. | Dihed. 6° | 120 [ 18° [ 162° | 168° | 174°
0 0.32° | 178.72° 0.11 0.63 | 1.99 || 0.26 | 0.093 0.021
1 2.80° | 175.72° || 0.027 | 0.23 | 0.95 || 0.12 | 0.034 | 0.0023
2 4.38° | 172.85° || 0.0068 | 0.12 | 0.59 || 0.075 | 0.010 0
3 6.61° | 174.84° 0 0.072 | 0.41 || 0.054 | 0.0080 | 0.00057
4 7.81° | 171.46° 0 0.048 | 0.31 || 0.044 | 0.0046 0
) 9.01° | 169.86° 0 0.027 | 0.27 || 0.037 | 0.0028 0
6 9.81° | 169.99° 0 0.026 | 0.24 || 0.034 | 0.0034 0

Table 17: Mesh quality improvement for combined Laplacian/optimization-based smoothing (mesh

rand?2)
Min. Max. || % Dihedral Angles < % Dihedral Angles > Time
Case Dihed. | Dihed. || 6° | 12° | 18° | 162° | 168° [ 174° | ms

Laplacian 0.322° | 178.72° || 0.057 | 0.25 | 0.88 0.13 0.054 0.0085 | 2.08
Optimization 9.72° | 167.65° 0 0.017 | 0.26 | 0.016 0 0 21.2
Combined (30) || 10.58° | 168.31° 0 0.022 | 0.22 || 0.014 | 0.00057 0 18.5
Combined (15) || 9.91° | 167.83° 0 0.021 | 0.77 || 0.039 0 0 3.74
Combined (10) || 8.99° | 169.87° 0 0.12 | 0.86 | 0.062 | 0.0040 0 2.56
Combined (5) 5.00° | 174.27° || 0.017 | 0.22 | 0.87 0.10 0.021 | 0.00057 | 2.15
Floating 8.69° | 168.93° 0 0.055 | 0.81 | 0.043 | 0.0029 0 2.53
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Table 18: Verification of mesh improvement recommendations for tfire mesh

Max. Min. % Dihedrals < % Dihedrals > Time
Rec. Variation Dihed. | Dihed. 6° 12° | 18° || 162° | 168° | 174° | (sec)
— | Baseline 4.91° | 175.00° || .0018 | .034 | .11 .019 | .0076 | .0013 || 154.3
1 In-sphere swap .00043° | 180.00° || .0033 | .059 | .92 .015 | .0058 | .0012 || 121.9
2 BATR, No edge swap 3.18° | 175.37° || .0097 | .048 | .13 .020 | .010 | .0018 || 99.1
BATR, Angle, no edge || 4.02° | 175.87° || .0075 | .046 | .13 .018 | .010 | .0018 || 96.7
3 Angle swap 6.98° 171.41° 0 022 11 .015 | .0044 0 142.9
In-sphere + Angle .0058° | 179.99° || .0031 | .025 | .12 .013 | .0039 | .0009 || 179.3
In-sphere + Sine .00043° | 180.00° || .0035 | .012 | .084 || .0092 | .0035 | .0017 || 193.1
4 Optimize 4.66° | 174.50° | .0018 | .026 | .061 || .018 | .0076 | .0009 | 513.9
Fixed thresh. 10° 4.04° 175.77° || .0040 | .043 | .12 .024 | .010 | .0013 || 154.1
Fixed thresh. 15° 4.11° | 175.72° || .0040 | .029 | .093 || .018 | .0080 | .0013 || 156.9
Lap: Maxmin angle 2.22° | 178.22° || .0093 | .065 | .13 .032 | .015 | .0040 || 176.2
Maxmin angle 5.30° | 177.17° || .0013 | .030 | .10 .016 | .0062 | .0005 || 179.9
Maxmin cosine 0.88° 176.32° || .023 12 A1 .024 | .012 | .0049 || 268.2
Three passes 4.76° 174.48° || .0044 | .044 | .12 .021 .010 | .0022 || 136.9
Five passes 5.31° 174.46° || .0013 | .032 | .11 .020 | .0071 | .0009 || 171.2
) No BATR 4.16° 174.86° || .0062 | .044 | .13 .025 .011 | .0013 || 143.5
Multi-BATR 4.98° | 174.37° || .0022 | .044 | .11 .019 | .010 | .0009 || 176.3




