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To appear in Int. J. for Numerical Methods in Engineering 2Abstract. Automatic mesh generation and adaptive re�nement methods for complexthree-dimensional domains have proven to be very successful tools for the e�cientsolution of complex applications problems. These methods can, however, producepoorly shaped elements that cause the numerical solution to be less accurate and moredi�cult to compute. Fortunately, the shape of the elements can be improved throughseveral mechanisms, including face- and edge-swapping techniques, which change localconnectivity, and optimization-based mesh smoothing methods, which adjust meshpoint location. We consider several criteria for each of these two methods and comparethe quality of several meshes obtained by using di�erent combinations of swappingand smoothing. Computational experiments show that swapping is critical to theimprovement of general mesh quality and that optimization-based smoothing is highlye�ective in eliminating very small and very large angles. High-quality meshes areobtained in a computationally e�cient manner by using optimization-based smoothingto improve only the worst elements and a smart variant of Laplacian smoothing on theremaining elements. Based on our experiments, we o�er several recommendations forthe improvement of tetrahedral meshes.Keywords. Mesh Improvement, Local Reconnection, Mesh Smoothing, OptimalSmoothing



To appear in Int. J. for Numerical Methods in Engineering 31. IntroductionThe use of unstructured �nite element and �nite volume solution methods is increasinglycommon for application problems in science and engineering. Regardless of the particularsolution technique employed, the computational domain must be decomposed into simplegeometric elements. This decomposition can be accomplished by using available automaticmesh generation tools. Unfortunately, meshes generated in this way can contain poorlyshaped or distorted elements, which cause numerical di�culties during the solution process.For example, we know that as element dihedral angles become too large, the discretizationerror in the �nite element solution increases;1 and as angles become too small, the conditionnumber of the element matrix increases.2 Thus, for meshes with highly distorted elements,the solution is both less accurate and more di�cult to compute. This problem is moresevere in three dimensions than in two dimensions, because tetrahedra can be distorted topoor quality in more ways than triangles can. Compared with triangular meshes, tetrahedralmeshes tend to have a larger proportion of poor-quality elements and to have elements thatare more severely distorted.Algorithms for unstructured mesh improvement fall into three basic categories:1. point insertion/deletion to re�ne or coarsen a mesh or to improve the local length scaleof the mesh,3, 4, 5, 62. local reconnection to change mesh topology by face or edge swapping for a given setof vertices,6, 7, 8, 9 and3. mesh smoothing to relocate mesh points to improve mesh quality without changingmesh topology.10, 11, 12In this article, we follow a two-pronged approach to improve the quality of tetrahedralmeshes, swapping mesh faces and edges to improve connectivity and smoothing vertex loca-tions to improve tetrahedron shape. Face- and edge-swapping techniques are widely used,and we give only a brief overview of the methods used. We apply swapping both as an initialstep in mesh improvement and in a targeted way to remove the poorest-quality tetrahedrafrom the mesh. In this context, we de�ne \poor-quality" tetrahedra as those with dihedralangles that are among the smallest or largest in the mesh or with solid angles among thelargest in the mesh; such tetrahedra are candidates for removal.The most common approaches to mesh smoothing are variants on Laplacian smoothing.13While these smoothers are often e�ective, they operate heuristically with no e�ort to lo-cate points speci�cally to improve some quality measure. In this article, we present anoptimization-based smoothing algorithm for tetrahedral meshes that is e�ective in elimi-nating extremal angles in the mesh. For �ve test cases, we show that the highest qualitymeshes are obtained by using a combination of swapping and optimization-based smooth-ing. In addition, we show that meshes of comparable high quality can be obtained at a lowcomputational cost by combining a variant of Laplacian smoothing with optimization-basedsmoothing.The remainder of the article is organized as follows. In Section 2, we describe the swap-ping techniques that we use. In Section 3, we describe a mesh smoothing algorithm using



To appear in Int. J. for Numerical Methods in Engineering 4local optimization. We then present the results of numerical experiments on several testmeshes. Mesh quality improvement by swapping, vertex smoothing, and combinations ofswapping and smoothing is presented, and several recommendations are o�ered. Finally, inSection 5, we o�er concluding remarks and directions for future research.2. Local Mesh Recon�guration TechniquesLocal mesh recon�guration techniques change the connectivity of part of a simplicial meshto improve mesh quality. These techniques can be divided into two classes: face swappingand edge swapping.2.1 Face SwappingFace swapping reconnects the tetrahedra separated by a single interior face. Each interiorface in a tetrahedral mesh separates two tetrahedra made up of a total of �ve points. A largenumber of non-overlapping tetrahedral con�gurations are possible with these �ve points, butonly two can be legally reconnected. These two cases are shown in Figure 1. On the left is acase in which either two or three tetrahedra can be used to �ll the convex hull of a set of �vepoints. Switching from two to three tetrahedra requires the addition of an edge interior tothe convex hull. On the right of the �gure is a con�guration in which two tetrahedra can beexchanged for two di�erent ones. The shaded faces in the �gure are coplanar, and swappingexchanges the diagonal of the coplanar quadrilateral. The two coplanar faces must either beboundary faces or be backed by another pair of tetrahedra that can be swapped two for two.Otherwise, the new edge created by the two for two swap will not be conformal.
Figure 1: Swappable con�gurations of �ve points in three dimensionsBecause each recon�gurable case has only two valid con�gurations,14 a quick comparisonto �nd the one with the higher quality is possible. If the con�gurations are of equal quality,



To appear in Int. J. for Numerical Methods in Engineering 5we select the two-tet con�guration when choosing between two- and three-tet con�gurations,and we choose not to swap in the two for two recon�guration case.2.2 Edge SwappingEdge swapping recon�gures N tetrahedra incident on an edge of the mesh by removing thatedge and replacing the original N tetrahedra by 2N � 4 tetrahedra. The recon�guration isperformed only if every new tetrahedron has better quality than the worst of the N originaltetrahedra. As an example, consider the replacement of �ve tetrahedra incident on an edgewith six. The left side of Figure 2 shows �ve tetrahedra incident on edge TB, which isnormal to the paper. The �ve original tetrahedra are (01BT), (12BT), (23BT), (34BT), and(40BT). The right side of the �gure shows one possible recon�guration of this submesh intosix tetrahedra, (012T), (021B), (024T), (042B), (234T), and (243B). The �nal con�gurationis uniquely speci�ed by listing the \equatorial triangles", those that are not incident oneither of vertices T and B. In this case, those triangles are (012), (024), and (234).
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4 Figure 2: Edge swapping from 5 tetrahedra to 6In principal, edge swapping could be used to replace, for example, 12 tetrahedra with20, but in practice we have found that the number of transformations that improve themesh declines dramatically with increasing N . In particular, for practical cases 7-for-10transformations are rare, and consequently we have not investigated these techniques forN > 7.The primary challenge for e�cient implementation of edge swapping techniques is todetermine which recon�guration of the N original tetrahedra has the highest quality, wherethe quality of a con�guration is equal to the lowest quality of its tetrahedra. We coulddetermine the lowest quality tetrahedron in each con�guration by computing the qualityof each tetrahedron for that con�guration, then repeat this process for each con�guration.However, as Table 1 shows, the number of unique tetrahedra is never larger than and canbe much smaller than the number of con�gurations times the number of tetrahedra in each.Therefore, to implement edge swapping e�ciently, we evaluate the quality of each uniquetetrahedron only once and store that value for use when evaluating the con�guration quality.��Tetrahedra with negative volume are assigned an arbitrarily large negative quality.



To appear in Int. J. for Numerical Methods in Engineering 6A further e�ciency gain is possible by noting that tetrahedra in the �nal con�gurationsappear in pairs above and below \equatorial" triangles, such as tetrahedra (012T) and (021B)in the example above. If the quality of (012T) is worse than that of the original con�guration,we know that (012T) and (021B) can not be part of the �nal con�guration; therefore, weneed not evaluate the quality of tetrahedron (021B).Table 1: Number of unique tetrahedra and possible con�gurations for edge swappingTets Tets Con�g- Tets � UniqueBefore After urations Con�gs Tets3 2 1 2 24 4 2 8 85 6 5 30 206 8 14 112 407 10 42 420 70Another key implementation issue is storage of all possible new con�gurations. Asnoted above, these con�gurations can be speci�ed by their \equatorial" triangles. How-ever, for convenience we choose to store the connectivity information for the new submesh| face-to-vertex, face-to-cell, and cell-to-face data. This is a substantial amount of data percon�guration,y and code testing must verify that the data is entered correctly. To reducethe size of this task, we take advantage of the fact that con�gurations can be grouped intotopological classes each represented by a canonical con�guration. For example, in the caseof 5-for-6 swapping shown in Figure 2, all possible recon�gurations have the same topologyas the case shown. For each canonical con�guration, we store connectivity information forthe new con�guration and the number of unique rotations. Rotated con�gurations are easilyderived from the canonical con�guration. Figure 3 shows the equatorial triangles in thecanonical con�gurations for 4 � N � 7, including the number of unique rotations for each.We use edge swapping in two ways. The �rst is as a supplement to face swapping.Consider again the con�guration of Figure 2. Face swapping will be unsuccessful for face(0TB) because the submesh formed by tetrahedra (0BT1) and (4BT0) is not convex. If thetetrahedron (1BT4) existed, then the face swapping routines would consider a 3-for-2 swap.Since this is not the case, edge swapping is invoked to determine whether removing edge(TB) is advantageous. After edge swapping, each face of the submesh is tested to determinewhether further improvements in the mesh can be made with face swapping.We also use edge swapping in a separate procedure speci�cally designed to remove poorquality tetrahedra. This procedure, called BATR for BAd Tetrahedron Removal, examineseach tetrahedron in the mesh and attempts to remove those with large or small dihedralangles or large solid angles. In this context we de�ne limits on good angles as follows.� A large dihedral angle is larger than the greater of 150o and the maximum dihedralangle in the mesh minus 20o.yWe represent it using 23N � 56 integers.
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7 7 7 7 7 7Figure 3: Equatorial triangles after edge swapping in the canonical con�gurations for 4 � N � 7,including the number of unique rotations for each� A small dihedral angle is smaller than the lesser of 30o and the minimumdihedral anglein the mesh plus 10o.� A large solid angle is larger than the greater of 240o and the maximum solid angle inthe mesh minus 60o.These de�nitions imply that we always seek to remove the tetrahedra with the worst qualitymeasures while keeping a reasonable limit on the number of tetrahedra we try to eliminate atany one time. Once a poor-quality tetrahedron has been identi�ed, we attempt to remove anedge of the tetrahedron from the mesh. Edges having bad dihedral angles are tried �rst. Ifedge swapping fails, we attempt to swap each face of the tetrahedron. If a pass through themesh using this approach results in recon�guration of one or more local sub-meshes, anotherpass is made, checking only tetrahedra that are not known to be well-shaped. Typicallytwo to three passes are required. This procedure is quite e�ective in removing poor qualitytetrahedra whose neighbors are of good quality. In cases where poor-quality tetrahedra areadjacent to each other, valid recon�gurations are often impossible to �nd by edge swapping.3. An Optimization Approach to Mesh SmoothingPerhaps the most commonly used mesh-smoothing technique is a local algorithm calledLaplacian smoothing.13, 15 This technique adjusts the location of each mesh point to thearithmetic mean of its incident vertices so thatxfree = Pi2V xijV j ; yfree = Pi2V yijV j ; zfree = Pi2V zijV j ; (1)where V is the set of incident vertices and x; y; and z are the spatial coordinates of eachvertex. This method is computationally inexpensive, but it does not provide any mechanisms



To appear in Int. J. for Numerical Methods in Engineering 8that guarantee improvement in element quality. In fact, it is possible to produce an invalidmesh containing elements that are inverted or have negative volume.Freitag et al. proposed a low-cost, optimization-based alternative to Laplacian smooth-ing that guarantees valid elements in the �nal mesh.16 Several results were given thatdemonstrated the e�ectiveness of this method compared with Laplacian smoothing for two-dimensional, triangular meshes. Like Laplacian smoothing, the optimization algorithm islocal and uses the union of elements that are adjacent to the free vertex as the solutionspace. Thus, it can be used as the core of an e�cient parallel algorithm. They presented aP-RAM computational model for parallel implementation based on coloring heuristics. Thismodel resulted in correct parallel execution and a low run-time bound, and experimental datashowed very good scalable performance on 1 to 64 processors on the IBM SP supercomputer.In this section we extend this algorithm to three-dimensional tetrahedral meshes and notethat the algorithm is useful for hexahedral meshes as well. A parallel algorithm analogousto the two-dimensional algorithm has been developed for the three-dimensional case, but wedo not focus on that aspect of our work here. In this article we describe the formulationof the optimization method and give some useful measures of mesh quality for tetrahedralmeshes. The same formulation applies for hexahedral meshes, but di�erent mesh qualitymeasures must be used. As in the two-dimensional case, we formulate the problem usinganalytic expressions for local mesh quality written in terms of free vertex position. Typicalmeasures for three-dimensional tetrahedral meshes that have an analytic expression includemeasures of the dihedral angles, measures of the solid angles, and element aspect ratios.Any combination of these can be used within the framework of the optimization methodpresented here. Our algorithm seeks to maximize the minimum value of the mesh qualitymeasure; minimizing the maximumvalue of the quality measure can be done by negating thefunction value. We require that function and gradient evaluations dependent on free vertexposition be provided by the user.The optimization algorithm for each local subproblem is similar to a minimax techniqueused to solve circuit design problems.17 We brie
y review the formulation of the problemhere and refer interested readers to a more complete description in our previous paper.16 Tofacilitate the discussion of problem formulation, we �rst introduce some useful notation:� x: the position of the free vertex� fi(x): an analytic function for a mesh quality measure that in general is nonlinear.For example, if we consider maximizing the minimum dihedral angle of the mesh, eachtetrahedron will have six function values for each location of the point x. Let the entireset of function values, fi, be S.� gi(x): the analytic gradient of the mesh quality measure corresponding to fi(x)i. Thegradient evaluation code was created using the ADIC automatic di�erentiation softwarepackage developed at Argonne National Laboratory.18� A: the set of functions that achieve a minimum at point x (the active set)� x�, A�: the optimal solution and the active set at x�



To appear in Int. J. for Numerical Methods in Engineering 9As the location of x changes in the solution space, the minimum function value in thecorresponding submesh is given by the composite function�(x) = mini2S fi(x): (2)We illustrate the character of this function by showing a one-dimensional slice through atypical function � in Figure 4. Note that each fi(x) is a smooth, continuously di�erentiablefunction and that multiple function values can obtain the minimum value. Hence, the com-posite function �(x) has discontinuous partial derivatives where two or more of the functionsfi obtain the minimum value, that is, where the active set A changes.
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Figure 4: A one-dimensional slice through the nonsmooth function �(x)We solve the nonsmooth optimization problem (2) using an analogue of the steepestdescent method for smooth functions. The search direction �g at each step is computed bysolving the quadratic programming problemmin �gT �g where �g =Xi2A�igi(x)subject to Xi2A�i = 1; �i � 0for the �i. This gives the direction of steepest descent from all possible convex linear combi-nations of the gradients in the active set at x. The line search subproblem along �g is solvedby �nding the linear approximation of each function fi(x) given by the �rst-order Taylorseries approximation, fi(x+ �) = fi(x) + �Tgi(x):



To appear in Int. J. for Numerical Methods in Engineering 10Using this information, we can predict the points at which the active set A will change bycomputing the intersection of each linear approximation with the projection of the currentactive function in the search direction. The distance to the nearest intersection point fromthe current location gives the initial step length, �. The initial step is accepted if the actualimprovement exceeds 90 percent of the estimated improvement or the subsequent step resultsin a smaller function improvement. Otherwise � is halved recursively until a step is acceptedor � falls below some minimum step length tolerance.The optimization process is terminated if one of the following conditions apply: (1)the step size falls below the minimum step length with no improvement obtained; (2) themaximum number of iterations is exceeded; (3) the achieved improvement of any given stepis less than some user-de�ned tolerance; or (4) the Kuhn-Tucker conditions of nonlinearprogramming Xi2A� �igi(x�) = 0Xi2A� �i = 1; �i � 0; i 2 A�are satis�ed indicating that we have found a local maximum x�.17Amenta et al.19 have shown that this technique is equivalent to a generalized linearprogramming (GLP) technique and can therefore be solved in linear time. In addition, theconvex level set criterion for solution uniqueness of the GLP technique can be applied tothese algorithms. Amenta et al. determine the convexity of the level sets for a number ofstandard mesh quality measures in both two and three dimensions.We note that other optimization-based smoothing techniques have been developed by re-searchers in the mesh generation and computational geometry communities. These methodsdi�er primarily in the optimization procedure used or in the quantity that is optimized. Forexample, Bank20 and Shephard and Georges21 propose similar techniques for triangles andtetrahedra, respectively. In these methods, an element shape quality measure, q(t), is de�nedbased on a ratio of element area (volume) to side lengths (face areas). In each case, q(t)is equal to one for equilateral elements and is small for distorted elements. The free vertexis moved along the line that connects its current position to the position that makes q(t)equal to one for the worst element in the local submesh. The line search in this directionis terminated when two elements have equal shape measure. We note that this does notnecessarily guarantee that the optimal local solution has been found.All the techniques mentioned above, including the one described in this article, opti-mize the mesh according to element geometry. In contrast, Bank and Smith 22 propose twosmoothing techniques to minimize the error in �nite element solutions computed with trian-gular elements with linear basis functions. Both methods use a damped Newton's methodto minimize the interpolation error or the a posteriori error estimates for an elliptic partialdi�erential equation. The quantity minimized in both of these cases requires the computa-tion of approximate second derivatives for the �nite element solution as well as the shapefunction q(t) for triangular elements mentioned above. Although the authors present con-vergence histories for these techniques, no timing results are given that quantify the cost ande�ectiveness of these techniques compared with the geometric techniques mentioned earlier.



To appear in Int. J. for Numerical Methods in Engineering 114. Computational ExperimentsWe now present computational results for �ve test cases: two randomly generated meshes andthree meshes generated for application problems. For each test mesh, a standard startingmesh was generated, and all comparison cases began with that same mesh. The randommeshes were each generated in a cube with points incrementally inserted at random in theinterior. Each point was connected to the vertices of the tetrahedron containing it, withpoints near an existing face or edge in the tetrahedralization projected onto that face oredge. No swapping or smoothing was done as these initial meshes were generated, andmesh quality was correspondingly poor at the outset. The �rst case, rand1, has 1086 pointsapproximately equally distributed through the domain and 5104 tetrahedra. The secondrandom mesh, rand2 has 5086 points clustered at the center of the cube by selecting randomnumbers from a Gaussian deviate and 25704 tetrahedra.The third and fourth test meshes were generated in the interiors of a tire incineratorand a tangentially-�red (t-�red) industrial boiler, respectively. Interior points were insertedat the circumcenter of cells that were larger than appropriate, based on an automaticallycomputed local length scale, or that had a large dihedral angle and had a volume largerthan a user-de�ned tolerance. After the insertion of each point, nearby faces were swappedby using the in-sphere criterion to improve local mesh connectivity. After all points wereinserted, all faces were swapped by using the minmax dihedral angle criterion. The tireincinerator mesh initially has 2570 vertices and 11098 tetrahedra, and the t-�red mesh has7265 vertices and 37785 tetrahedra. Because these meshes were generated more sensiblythan the random meshes, initial quality is much better than in the random cases.The �nal test case is a mesh generated around the ONERA M6 wing attached to a 
atwall. This is a standard geometry for testing three-dimensional compressible 
ow solutionalgorithms. This particular mesh is coarse, having 6,000 vertices and 31,978 tetrahedra.Hence, the initial mesh quality is poor, especially near the junction of the wing and the wall.For each test case, we present results for mesh quality using dihedral angles as a qualitymeasure.z The maximum and minimum dihedral angles over the entire mesh are given as anindication of how poor the worst elements are. To give quantitative information about thenumber of poor tetrahedra, we also give the percentage of dihedral angles falling below 6,12, and 18 degrees and above 162, 168, and 174 degrees. To improve the readability of thissection, several tables of results that support our conclusions and recommendations but donot add new information are included in a separate appendix.Recommendations for mesh improvement are made on the premise that computationalPDE codes behave poorly when very small or very large dihedral angles are present, andthat, therefore, the goal of mesh improvement is to remove such angles.4.1 Improvement Using Local Reconnection Techniques OnlyThe �rst experiment compares the e�ectiveness of several local reconnection strategies inimproving mesh quality for the random meshes. We use three geometric quality measureszWe prefer not to use measures such as aspect ratio that are misleading for anisotropic meshes.



To appear in Int. J. for Numerical Methods in Engineering 12to determine whether to locally reconnect a tetrahedral mesh: maxmin sine of dihedralangle, minmax dihedral angle, and in-sphere. The maxmin sine of dihedral angle criterionchooses the con�guration that maximizes the minimum sine of the dihedral angles of thetetrahedra in the submesh. The minmax dihedral angle criterion minimizes the maximumdihedral angle of the tetrahedra. The in-sphere criterion, appropriate only for face swapping,selects the con�guration in which no tetrahedron in the �ve-point local submesh containsthe other point in its circumsphere. This leads to a locally Delaunay tetrahedralization inthe sense that no face in the mesh has incident cells that violate the in-sphere criterionand are recon�gurable. For all criteria, however, the optimum reached by face and edgeswapping is almost certainly local rather than global. Recent work by Joe9 describes a moreadvanced technique for improving mesh quality by local transformations. This approachnotwithstanding, it is not known whether the global optimum can be reached by any seriesof local transformations.Table 2 shows mesh quality results for the initial rand1mesh and the same mesh followinglocal reconnection. Results are given for eight di�erent local reconnection strategies: (1)face swapping to minimize the maximum dihedral angle; (2) face swapping to maximize theminimum sine of the dihedral angles; (3-4) each of the above preceded by a pass of in-sphereface swapping; and (5-8) each of the four cases given above with edge-swapping allowed whenthe minmax angle and maxmin sine criteria are used. We note that strategies for which the�nal step is a pass of in-sphere swapping leave very poor extremal angles and large numbersof bad dihedral angles, and so are not considered here.Recommendation 1 Never use the in-sphere criterion during the �nal pass of face swap-ping. The in-sphere criterion performs poorly in practice with respect to extremal angles.In all cases, edge swapping proves to be bene�cial; it improves the worst dihedral anglein the mesh, the number of bad angles in the mesh, or both. Using in-sphere face swappingas a �rst step dramatically improves the distribution of dihedral angles at the expense ofdegrading the extremal angle. The results for mesh rand2 are similar and included inAppendix A.Recommendation 2 Edge swapping is a bene�cial supplement to face swapping and shouldbe used.4.2 Improvement Using Mesh Smoothing Techniques OnlyOur baseline smoothing technique for comparison is Laplacian smoothing, which moves eachvertex to the average of the location of its neighbors, provided that this point does not resultin an invalid mesh. Also, we have implemented a \smart" variant of Laplacian smoothing,which requires that the local mesh quality be improved before accepting a change in vertexlocation. Any local quality criterion suitable for use with the optimization-based smoothingcan be used in this context.For optimization-based smoothing, we present results for �ve di�erent objective functions:



To appear in Int. J. for Numerical Methods in Engineering 13Table 2: Mesh quality improvement for rand1 with swappingMin. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oInitial 0:32o 178:97o 1.41 4.90 9.86 2.40 1.08 0.24Without Edge SwappingMinmax angle 0:54o 178:97o 0.76 3.20 7.40 1.21 0.46 0.11Maxmin sine 0:54o 178:97o 0.68 2.94 6.94 1.27 0.49 0.12In-sphere, thenminmax angle 3:6 � 10�6o 180:00o 0.45 1.48 3.28 0.58 0.30 0.11In-sphere, thenmaxmin sine 3:6 � 10�6o 180:00o 0.46 1.48 3.26 0.60 0.32 0.12With Edge SwappingMinmax angle 0:54o 178:97o 0.24 1.42 4.19 0.36 0.15 0.034Maxmin sine 0:54o 178:97o 0.15 0.96 3.16 0.43 0.15 0.033In-sphere, thenminmax angle 0:26o 177:88o 0.15 0.78 2.25 0.24 0.10 0.025In-sphere, thenmaxmin sine 0:38o 179:08o 0.16 0.68 1.98 0.28 0.14 0.0511. Maximize the minimum dihedral angle (maxmin angle)2. Minimize the maximum dihedral angle (minmax angle)3. Maximize the minimum cosine of the dihedral angles (maxmin cosine)4. Minimize the maximum cosine of the dihedral angles (minmax cosine)5. Maximize the minimum sine of the dihedral angles (maxmin sine)We expect nearly identical results, though not necessarily identical convergence behavior,from two pairs of these measures:maxmin angle � minmax cosineminmax angle � maxmin cosine:Table 3 shows the results of smoothing rand1 using Laplacian smoothing, smart Laplaciansmoothing for two of the �ve criteria given, and optimization-based smoothing for each ofthe �ve criteria. Results for the other smart Laplacian approaches are identical to one of thetwo smart Laplacian results presented.The improvement in mesh quality is not as pronounced for smoothing as for swappingbecause the connectivity is too irregular to allow a truly high-quality mesh. Nevertheless,all the optimization-based smoothing criteria improve mesh quality signi�cantly, especiallyin the sense of improving the extremal angles. The Laplacian smoother does a poor job ofeliminating very bad angles. The smart Laplacian smoothers perform better in this respect,but still are signi�cantly worse than the optimization-based smoothers. Optimization criteriathat seek only to force all dihedral angles away from 180 degrees (minmax angle and maxmin



To appear in Int. J. for Numerical Methods in Engineering 14cosine) are unsuccessful in eliminating small dihedral angles, whereas criteria that forcedihedral angles away from 0 degrees (maxmin angle and minmax cosine) also succeed ineliminating large dihedral angles. This di�erence can be important in practice because bothlarge and small angles can a�ect the quality of the �nal application solution. Note also thatthe pairs of smoothing criteria expected to perform comparably behave similarly, with oneexception. The minmax cosine criterion does not improve the extremal angles as much asits analog, the maxmin angle criterion. The 
atness of the cosine near 0 and 180 degreesprevents rapid quality improvement when moving points in tetrahedra with extremely poorangles, and the optimization code concludes that improvement is too slow to be fruitful.Finally, the maxmin sine criterion, which forces dihedral angles away from both 0 and 180degrees, is very successful in removing dihedral angles at both extremes. The results formesh rand2 are similar and are included in Appendix A.Table 3: Mesh quality improvement for rand1 with smoothingMin. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oLap: No constraint 0:0026o 179:996o 2.45 6.90 12.21 3.46 1.84 0.63Lap: Maxmin angle 1:18o 177:43o 0.71 3.23 7.28 1.55 0.58 0.14Lap: Minmax angle 0:67o 177:43o 0.73 3.44 7.55 1.44 0.54 0.091Opt: Maxmin angle 4:79o 175:59o 0.11 1.23 6.21 0.71 0.21 0.0065Opt: Minmax angle 5:37 � 10�4o 172:75o 2.71 5.54 9.09 0.16 0.039 0Opt: Maxmin cosine 0:018o 172:57o 2.31 4.78 8.71 0.17 0.033 0Opt: Minmax cosine 1:70o 176:21o 0.11 1.26 6.31 0.71 0.19 0.016Opt: Maxmin sine 4:20o 175:73o 0.085 1.05 6.09 0.60 0.11 0.00334.3 Improvement Using the Combined Swapping/Smoothing ApproachNext we show that the gains in mesh quality from local reconnection and smoothing can bemade cumulatively. To determine which reconnection strategy performs best in conjunctionwith smoothing, we compare the results of the four reconnection strategies with edge swap-ping enabled followed by six passes of optimization-based smoothing using the the maxminsine criterion for rand1. Table 4 shows that smoothing eliminates the worst tetrahedra in allcases. Quantitatively, however, there are important di�erences. The maxmin sine reconnec-tion criterion consistently outperforms the minmax angle criterion, especially in improvingthe worst angle in the mesh. Likewise, the use of in-sphere swapping as a �rst reconnectionpass gives a dramatic improvement regardless of the criterion used for the second pass. Theseresults are consistent across a number of test cases.Recommendation 3 We recommend that meshes whose connectivity has not been improvedduring generation be reconnected using in-sphere face swapping, followed by face and edgeswapping using the maxmin sine of dihedral angle criterion. For meshes that have initiallyreasonable connectivity, only the second pass need be performed.



To appear in Int. J. for Numerical Methods in Engineering 15Table 4: Comparison of the e�ectiveness of smoothing for four di�erent swapping options (meshrand1, edge swapping enabled, maxmin sine smoothing)Min. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oMinmax angle 6:74o 171:14o 0 0.24 1.34 0.11 0.0093 0Maxmin sine 9:74o 168:09o 0 0.030 0.50 0.049 0.0030 0In-sphere, thenminmax angle 9:90o 166:01o 0 0.014 0.15 0.017 0 0In-sphere, thenmaxmin sine 12:59o 167:25o 0 0 0.20 0.017 0 0Table 5 shows the results for rand1 using the local reconnection procedure given inRecommendation 3 followed by each of the eight smoothing options discussed in the precedingsection. The distribution of dihedral angles for each random mesh improves signi�cantlyregardless of the choice of smoothing criterion. As was the case with smoothing used alone,all Laplacian smoothers fail to eliminate poorly shaped elements from the mesh. Againwe see that the criteria for optimization-based smoothing that seek only to remove largeangles from the mesh do not succeed in eliminating small angles. The three other criteria |maxmin angle, minmax cosine, and maxmin sine | give comparable results for these testcases. Table 5: Mesh quality improvement for rand1 with both swapping and smoothingMin. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oLap: No constraint 0:49o 178:97o 0.099 0.37 0.97 0.19 0.082 0.034Lap: Maxmin angle 2:19o 175:65o 0.034 0.20 0.82 0.082 0.034 0.0057Lap: Minmax angle 0:57o 178:88o 0.077 0.30 1.08 0.091 0.051 0.023Opt: Maxmin angle 14:05o 165:05o 0 0 0.12 0.011 0 0Opt: Minmax angle 0:024o 159:96o 1.29 2.52 4.48 0 0 0Opt: Maxmin cosine 0:0066o 176:26o 1.18 2.40 4.31 0.026 0.011 0.0085Opt: Minmax cosine 15:01o 166:71o 0 0 0.16 0.0085 0 0Opt: Maxmin sine 12:59o 167:25o 0 0 0.20 0.017 0 0An important question in any local smoothing algorithm is the number of smoothingpasses required to improve the mesh to the point where further improvement is negligible.Table 6 shows the e�ect of various numbers of smoothing passes with the maxmin sinecriterion on rand1. Similar results for rand2 with the maxmin angle criterion can be foundin Appendix A. In both cases swapping was used before smoothing. In each case, meshquality improves only negligibly after the fourth or �fth smoothing pass.We conclude this subsection with a comparison of the computational e�ciency of thevarious mesh improvement techniques. Table 7 compares timings for mesh improvementusing swapping, smoothing, and a combination of the two for rand2 on a 110 MHz SPARC



To appear in Int. J. for Numerical Methods in Engineering 16Table 6: E�ect of the number of optimization passes on mesh improvement (rand1 with maxminsine smoothing) Min. Max. % Dihedral Angles < % Dihedral Angles >Passes Dihed. Dihed. 6o 12o 18o 162o 168o 174o0 0:38o 179:08o 0.17 0.68 1.98 0.28 0.14 0.0511 0:40o 179:21o 0.063 0.19 0.89 0.088 0.046 0.0262 8:10o 169:55o 0 0.065 0.53 0.043 0.0028 03 10:51o 167:20o 0 0.028 0.34 0.026 0 04 12:23o 166:88o 0 0 0.25 0.020 0 05 12:48o 167:02o 0 0 0.22 0.014 0 06 12:59o 167:25o 0 0 0.20 0.017 0 05. The times for the swapping-only cases indicate that edge swapping, while very bene�cial,is a relatively costly operation. More work is needed to improve the e�ciency of this scheme;improvement will mostly likely take the form of reducing the number of cases that the edgeswapping algorithm examines in detail. The di�erence in timings for smoothing with andwithout swapping is due to several di�erences in the swapped verses nonswapped mesh. Ap-proximately 30 percent of the Laplacian smoothing steps on the nonswapped mesh result inan invalid mesh as compared with approximately 3 percent on the swapped meshes. Becausean invalid step requires less time to execute than the full Laplacian step, the nonswappedmesh can be smoothed more quickly. A similar situation holds for the optimization-basedsmoothing. Optimization-based smoothing requires an average of approximately 3.9 itera-tions on the swapped mesh and about 3.7 iterations on the nonswapped mesh. A higherpercentage of equilibrium points is found on the swapped mesh than on the nonswappedmesh, and the quality is correspondingly better. For these examples, optimization-basedsmoothing takes 10 times longer than smart Laplacian smoothing and 25 to 30 times longerthan simple Laplacian smoothing.Table 7: Sample times for mesh improvement (mesh rand2)Swap Smoothing Smoothing Time per Min. Max.Case Time (sec) Time (sec) Calls Call (msec) Dihed. Dihed.Face Swap only 34.6 | | | 3:52 � 10�6o 179:83oFace and Edge Swap 156 | | | 0:322o 178:72oLap: No constraint | 8.13 14832 .565 0:014o 179:98oLap: Maxmin sine | 21.9 14832 1.52 0:63o 178:82oOpt: Maxmin sine | 211 14832 14.7 1:91o 177:69oSwap + Lap: No constraint 156 10.1 14832 .704 :0223o 179:96oSwap + Lap: Maxmin sine 156 30.0 14832 2.08 :322o 178:72oSwap + Opt: Maxmin sine 156 305 14832 21.2 6:59o 171:32o



To appear in Int. J. for Numerical Methods in Engineering 174.4 Improvement Using Combined Laplacian/Optimization-Based SmoothingWe would ideally like a smoothing technique that is as e�ective as optimization-basedsmoothing techniques at the cost of Laplacian smoothing. In this section we investigatea combined Laplacian/optimization-based smoothing approach. Smart Laplacian smoothingis used as the initial step, and the resulting submesh is evaluated for improvement. If themesh quality is improved, the step is accepted. An additional test is performed to comparethe current quality of the submesh with a user-de�ned threshold value. If the quality is lessthan the threshold value, optimization-based smoothing is performed to further improve themesh, otherwise the smoothing algorithm proceeds to the next submesh. A drawback tousing a �xed threshold for optimization-based smoothing is that mesh improvement ceaseswhen the threshold is reached. Therefore, we also consider a 
oating threshold value thatcan be reset after each smoothing pass to the worst remaining angle plus some constant.This ensures that optimization-based smoothing always tries to improve a reasonably smallnumber of poor-quality tetrahedra.In Table 8, we give the results for this combination approach on rand1. We �rst swap eachof the meshes using the recommended procedure. We then smooth the mesh using six passesof smart Laplacian, optimization-based smoothing only, and the combination approach for�ve di�erent threshold values: �xed values of 5 degrees, 10 degrees, 15 degrees, and 30degrees; and a 
oating value of 10 degrees for the �rst pass followed by the worst remainingangle plus �ve degrees on subsequent passes. We use the maxmin sine criterion for smoothingin all cases. In addition to mesh quality information, we give the average time required tosmooth each local submesh. It is clear that the combination approach with a threshold of10 to 15 degrees results in very high quality meshes at a fraction of the optimization-onlysmoothing cost. In fact meshes with quality comparable to or better than that obtainedwith optimization-based smoothing alone can be computed for 1.5 to 2 times the cost ofsmart Laplacian smoothing. The cost and �nal mesh quality for the 
oating thresholdfalls between the combined approach with thresholds of 10 and 15 degrees. The bene�t ofusing the 
oating threshold is that no advance knowledge of the attainable extremal angle isrequired to consistently approach that limit. Similar trends are evident for rand2 and thoseresults are given in Appendix A.Recommendation 4 The local reconnection schemes should be followed by three to fourpasses of a combined Laplacian/optimization-based smoothing technique with a 
oating thresh-old. Quality criteria that tend to eliminate small angles in the mesh are more e�ective thancriteria that tend to eliminate large angles.4.5 Improvement of Application MeshesWe now con�rm that the mesh improvement recommendations given above for the randommeshes are appropriate for the application meshes. First, however, we address an anomalythat appears in an examination of the e�ect of number of smoothing passes for the tireincinerator mesh. A smoothing history is presented in Table 9; the mesh was reconnected by



To appear in Int. J. for Numerical Methods in Engineering 18Table 8: Mesh quality improvement for combined Laplacian/optimization-based smoothing (meshrand1) Min. Max. % Dihedral Angles < % Dihedral Angles > TimeCase Dihed. Dihed. 6o 12o 18o 162o 168o 174o (ms)Laplacian :490o 178:97o 0.099 0.37 0.98 0.19 0.082 0.034 2.01Optimization 12:59o 167:25o 0 0 0.20 0.017 0 0 18.2Combined (30) 12:59o 166:98o 0 0 0.088 0.0057 0 0 17.5Combined (15) 14:06o 164:18o 0 0 0.53 0.020 0 0 3.37Combined (10) 10:13o 169:20o 0 0.12 0.74 0.040 0.0057 0 2.29Combined (5) 5:13o 170:72o 0.0057 0.22 0.87 0.074 0.023 0 2.04Floating 13:42o 164:74o 0 0 0.33 0.0028 0 0 2.95Table 9: E�ect of the number of optimization passes on mesh improvement (tire with minmaxangle smoothing) Min. Max. % Dihedral Angles < % Dihedral Angles >Passes Dihed. Dihed. 6o 12o 18o 162o 168o 174o0 3:36o 172:38o 0.065 0.33 0.86 0.035 0.012 01 5:20o 164:55o 0.0015 0.026 0.22 0.0045 0 02 5:20o 164:25o 0.0015 0.0030 0.091 0.0015 0 03 5:20o 161:43o 0.0015 0.0030 0.045 0 0 04 5:20o 161:43o 0.0015 0.0030 0.036 0 0 0using the maxmin sine criterion with edge swapping before smoothing. The smallest dihedralangle in the mesh could not be improved beyond 5:20o, but the optimization-based smoothingcode reported a minimum dihedral angle of 14:3o among all submeshes which it attemptedto smooth. On careful investigation, we found the cause of this discrepancy: a tetrahedronwith all four of its vertices on the boundary of the mesh. As our smoothing algorithm onlyoperates on vertices internal to the mesh, these vertices could not be relocated. When theBATR procedure described in Section 2.2 was invoked after two smoothing passes, the worsttetrahedron in the mesh was removed and the mesh quality improved dramatically, to aminimum dihedral angle of 13:67o; the results are shown in Table 10. Note that the worstangle remaining in this mesh still lies in a tetrahedron with all vertices on the boundary.Although using BATR does not always have such a signi�cant e�ect, it is categoricallyrecommended because the cost is low and the potential bene�t high.Recommendation 5 We recommend performing two passes of smoothing followed by aprocedure such as BATR to remove the worst tetrahedra from the mesh and �nishing withtwo more passes of smoothing.To demonstrate that our recommendations are appropriate for the tire incinerator mesh,we present a set of cases in which one recommendation has been ignored. The baseline meshimprovement scheme for these cases is a pass of face and edge swapping using the maxmin sine



To appear in Int. J. for Numerical Methods in Engineering 19Table 10: E�ect of the number of optimization passes and edge swapping on mesh improvement(tire with minmax angle smoothing)Min. Max. % Dihedral Angles < % Dihedral Angles >Passes Dihed. Dihed. 6o 12o 18o 162o 168o 174o0 3:36o 172:38o 0.065 0.33 0.86 0.035 0.012 01 5:20o 164:55o 0.0015 0.026 0.22 0.0045 0 02 5:20o 164:25o 0.0015 0.0030 0.091 0.0015 0 0BATR 9:44o 164:25o 0 0.0015 0.088 0.0015 0 03 13:67o 159:82o 0 0 0.046 0 0 04 13:67o 159:82o 0 0 0.038 0 0 0criterion; two passes of combined Laplacian/optimization-based smoothing with a 
oatingthreshold and the maxmin sine criterion; an application of the BATR procedure; and twomore passes of smoothing with the same parameters. For each example, Table 11 tells whichrecommendation was ignored, summarizes the variation from recommended parameters, andgives the resulting mesh quality and total execution time. No angles greater than 168oappear for any of the examples, so two of the usual columns are absent from the table. Onlyone case that ran faster than the baseline case produces a mesh of comparable quality (�xedthreshold, 15o), and the time savings is only 3%. The only case with a better �nal meshthan the baseline case is the case in which passes of smoothing and BATR alternate; thiscase improves the maximum dihedral angle in the mesh by 1:3o at a cost of 25% more CPUtime. A similar table for the tfire mesh is presented in the appendix, with comparableresults.Table 12 shows the improvement in mesh quality achieved for each of the three applicationmeshes using our recommended procedure. For all three cases, mesh quality is improved sig-ni�cantly. The �nal mesh quality di�ers dramatically among the three cases, because of theinitial topology and point distribution of the meshes. For example, the M6 wing mesh beganwith a very large number of poor dihedral angles in adjacent tetrahedra. While smoothingimproved many tetrahedra, some could not be improved without making a neighboring cellworse, and so no improvement was made.This clustering of bad tetrahedra is a common occurrence in our �nal meshes, withthe worst cells often sharing vertices, edges, or even faces. Figures 6 and 5 show surfacewireframes for the tire incinerator and t-�red boiler, along with the worst tetrahedra|thosewith dihedral angles less than 18o or greater than 162o. For the t-�red boiler, these tetrahedrafall primarily into a single clump along a corner of the geometry. Figure 7 shows a closeupof a region around the leading edge of the wing at the wall where there is a concentrationof poor-quality tetrahedra. Further work is needed to improve quality in di�cult cases suchas these in which boundary constraints or clustering prevents the improvement of poorlyshaped elements.



To appear in Int. J. for Numerical Methods in Engineering 20Table 11: Veri�cation of mesh improvement recommendations for tire meshMax. Min. % Dihedrals < % > TimeRec. Variation Dihed. Dihed. 6o 12o 18o 162o (sec)| Baseline 13:67o 159:82o 0 0 0.038 0 43.31 In-sphere swap 9:03o 162:22o 0 0.021 1.20 0.0028 45.62 BATR, no edge swap 5:20o 161:43o 0.0015 0.0030 0.16 0 27.33 Angle swap 5:20o 161:43o 0.0015 0.0030 0.13 0 38.2In-sphere + Angle 11:80o 159:11o 0 0.0015 0.15 0 50.8In-sphere + Sine 5:20o 161:43o 0.0015 0.0030 0.10 0 55.94 Optimize 13:67o 159:74o 0 0 0.049 0 127.7Fixed thresh. 10o 10:19o 164:14o 0 0.011 0.12 0.0015 40.5Fixed thresh. 15o 13:67o 159:92o 0 0 0.079 0 42.1Lap: Maxmin angle 8:64o 164:38o 0 0.012 0.13 0.0030 45.9Maxmin angle 13:67o 161:71o 0 0 0.045 0 48.0Maxmin cosine 0:77o 156:14o 0.048 0.19 0.72 0 67.95 No BATR 5:20o 161:43o 0.0015 0.0030 0.036 0 40.0Multi-BATR 13:67o 158:52o 0 0 0.027 0 54.8
Table 12: Mesh improvement for three application meshesMin. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oTire incinerator before 0:66o 178:88o 0.11 0.54 1.27 0.074 0.035 0.0075Tire incinerator after 13:67o 159:82o 0 0 0.038 0 0 0T-�re boiler before 0:048o 179:86o 0.16 0.50 0.99 0.24 0.12 0.037T-�re boiler after 5:61o 174:15o 0.0013 0.029 0.11 0.019 0.0071 0.00045ONERA M6 wing before 0:0066o 179:984o 0.78 1.63 2.85 0.57 0.41 0.23ONERA M6 wing after 0:098o 179:76o 0.16 0.66 1.46 0.17 0.076 0.018
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Figure 5: Surface wireframe of tire incinerator mesh with badly shaped tets
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Figure 6: Surface wireframe of tangentially-�red boiler mesh with badly shaped tets
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Figure 7: Closeup of leading edge of ONERA M6 wing surface mesh with badly shaped tets



To appear in Int. J. for Numerical Methods in Engineering 245. ConclusionsIn this article we compared combinations of mesh swapping and mesh smoothing techniquesused to improve the quality of tetrahedral meshes. Using two random meshes as test cases,we showed that each mechanism fails to give high-quality meshes when used individually;that is, not all of the very large and very small dihedral angles were removed from the meshes.Local reconnection was performed using the minmax dihedral angle and maxmin sine of di-hedral angle criteria, with and without edge swapping and with and without a preparatorypass of face swapping using the in-sphere criterion. Both Laplacian and optimization-basedsmoothing techniques fail to improve the general distribution of angles because they can-not change local mesh connectivity. However, we showed that the cumulative improvementobtained when combining in-sphere and maxmin sine recon�guration (with edge swapping)followed by optimization-based smoothing results in very high quality meshes. In addi-tion, experiments showed that a combination of smart Laplacian smoothing followed byoptimization-based smoothing led to meshes equal in quality to those generated exclusivelyby optimization-based smoothing at a much lower computational cost. The use of a meshquality dependent threshold for invocation of optimization-based smoothing was found to beinexpensive as well as guaranteeing the highest practical degree of mesh optimization.For three application meshes, we demonstrated that the same smoothing techniques areagain e�ective. Of the smoothing criteria considered here, we found that the maxmin sinequality measure was the most consistently e�ective in eliminating both small and large angles.Also, we showed that in some cases, a tetrahedron can be unimprovable by smoothing becauseits vertices are on the boundary of the mesh; but the tetrahedron can be removed by edgeswapping. For the remaining poor-quality elements that could not be improved using ourcurrent techniques, we presented evidence that these tetrahedra tend to be clustered together.In this situation, swapping fails because local reconnection is not legal, and smoothing failsbecause improving one tetrahedron reduces the quality of a neighbor.Several enhancements are being incorporated into the mesh improvement software toincrease its e�ectiveness and e�ciency. Our current software uses mesh smoothing to improvethe quality of the volume mesh once the surface mesh has been generated. We plan to addsurface mesh-smoothing capabilities to the optimization-based algorithm by incorporatingadditional constraints to bind the free vertex to the boundary surfaces. We are also interestedin examining optimization-based smoothing with other measures including aspect ratio andsolid angles and in developing smoothing measures appropriate for use on anisotropic meshes.We intend to improve the e�ciency of our edge-swapping implementation and to investigatethe use of more sophisticated local reconnection algorithms, such as that of Joe9. For all of themeshes discussed in this article, it is possible to �nd (possibly very expensive) idiosyncraticcombinations of the operations described that result in a signi�cantly better �nal mesh.Additional work is required to �nd more powerful mesh improvement techniques that willallow a more e�ective general prescription for mesh improvement. Finally, further work isneeded to quantify the gains, if any, in solution speed and accuracy for computational scienceproblems due to mesh improvement using these techniques.This software is being incorporated into the SUMAA3d23 and GRUMMP projects atArgonne National Laboratory, which will provide an integrated framework for parallel un-
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To appear in Int. J. for Numerical Methods in Engineering 27Appendix A: Supporting TablesTable 13: Mesh quality improvement for rand2 with swappingMin. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oInitial 0:10o 179:84o 2.57 8.33 14.77 4.24 2.04 0.51Without Edge SwappingMinmax angle 0:57o 179:20o 1.51 5.82 11.52 2.51 1.07 0.21Maxmin sine 0:57o 179:11o 1.32 5.33 10.86 2.53 1.09 0.21In-sphere, thenminmax angle 6:0 � 10�6o 180:00o 0.60 1.82 3.78 0.77 0.43 0.16In-sphere, thenmaxmin sine 3:5 � 10�6o 180:00o 0.60 1.80 3.75 0.77 0.43 0.16With Edge SwappingMinmax angle 0:57o 178:96o 0.45 2.54 6.40 0.63 0.18 0.031Maxmin sine 0:57o 178:96o 0.23 1.51 4.82 0.75 0.25 0.046In-sphere, thenminmax angle 0:32o 178:88o 0.18 0.83 2.40 0.23 0.10 0.027In-sphere, thenmaxmin sine 0:32o 178:72o 0.11 0.63 1.99 0.26 0.11 0.021Table 14: Mesh quality improvement for rand2 with smoothingMin. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oLap: No constraint 0:0026o 179:996o 2.45 6.90 12.21 3.46 1.84 0.63Lap: Maxmin angle 0:64o 178:76o 1.58 6.32 12.35 3.03 1.35 0.26Lap: Minmax angle 0:51o 178:83o 1.71 6.39 12.35 2.95 1.24 0.23Opt: Maxmin angle 2:64o 178:35o 0.25 4.49 11.82 1.99 0.59 0.059Opt: Minmax angle 5:59 � 10�5o 174:53o 3.62 7.69 12.93 1.11 0.21 0.00065Opt: Maxmin cosine 5:68 � 10�5o 175:69o 3.35 7.32 12.58 1.03 0.18 0.0045Opt: Minmax cosine 0:10o 179:84o 0.45 4.50 11.88 2.09 0.71 0.11Opt: Maxmin sine 2:58o 177:16o 0.27 4.47 11.83 2.01 0.58 0.019



To appear in Int. J. for Numerical Methods in Engineering 28Table 15: Mesh quality improvement for rand2 with both swapping and smoothingMin. Max. % Dihedral Angles < % Dihedral Angles >Case Dihed. Dihed. 6o 12o 18o 162o 168o 174oLap: No constraint :037o 179:85o 0.18 0.52 1.11 0.25 0.14 0.064Lap: Maxmin angle 0:32o 178:72o 0.057 0.25 0.88 0.13 0.054 0.0086Lap: Minmax angle 0:32o 178:72o 0.059 0.26 0.89 0.13 0.056 0.0086Opt: Maxmin angle 9:81o 169:99o 0 0.026 0.24 0.034 0.0034 0Opt: Minmax angle 1:27 � 10�6o 164:09o 1.16 2.46 4.31 0.0017 0 0Opt: Maxmin cosine 0:0028o 177:27o 1.08 2.31 4.20 0.011 0.0057 0.0017Opt: Minmax cosine 10:57o 170:64o 0 0.023 0.23 0.037 0.0029 0Opt: Maxmin sine 9:72o 167:65o 0 0.017 0.26 0.016 0 0Table 16: E�ect of the number of optimization passes on mesh improvement (rand2 with minmaxangle smoothing) Min. Max. % Dihedral Angles < % Dihedral Angles >Passes Dihed. Dihed. 6o 12o 18o 162o 168o 174o0 0:32o 178:72o 0.11 0.63 1.99 0.26 0.093 0.0211 2:80o 175:72o 0.027 0.23 0.95 0.12 0.034 0.00232 4:38o 172:85o 0.0068 0.12 0.59 0.075 0.010 03 6:61o 174:84o 0 0.072 0.41 0.054 0.0080 0.000574 7:81o 171:46o 0 0.048 0.31 0.044 0.0046 05 9:01o 169:86o 0 0.027 0.27 0.037 0.0028 06 9:81o 169:99o 0 0.026 0.24 0.034 0.0034 0Table 17: Mesh quality improvement for combined Laplacian/optimization-based smoothing (meshrand2) Min. Max. % Dihedral Angles < % Dihedral Angles > TimeCase Dihed. Dihed. 6o 12o 18o 162o 168o 174o msLaplacian 0:322o 178:72o 0.057 0.25 0.88 0.13 0.054 0.0085 2.08Optimization 9:72o 167:65o 0 0.017 0.26 0.016 0 0 21.2Combined (30) 10:58o 168:31o 0 0.022 0.22 0.014 0.00057 0 18.5Combined (15) 9:91o 167:83o 0 0.021 0.77 0.039 0 0 3.74Combined (10) 8:99o 169:87o 0 0.12 0.86 0.062 0.0040 0 2.56Combined (5) 5:00o 174:27o 0.017 0.22 0.87 0.10 0.021 0.00057 2.15Floating 8:69o 168:93o 0 0.055 0.81 0.043 0.0029 0 2.53
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Table 18: Veri�cation of mesh improvement recommendations for tfire meshMax. Min. % Dihedrals < % Dihedrals > TimeRec. Variation Dihed. Dihed. 6o 12o 18o 162o 168o 174o (sec)| Baseline 4:91o 175:00o .0018 .034 .11 .019 .0076 .0013 154.31 In-sphere swap :00043o 180:00o .0033 .059 .92 .015 .0058 .0012 121.92 BATR, No edge swap 3:18o 175:37o .0097 .048 .13 .020 .010 .0018 99.1BATR, Angle, no edge 4:02o 175:87o .0075 .046 .13 .018 .010 .0018 96.73 Angle swap 6:98o 171:41o 0 .022 .11 .015 .0044 0 142.9In-sphere + Angle :0058o 179:99o .0031 .025 .12 .013 .0039 .0009 179.3In-sphere + Sine :00043o 180:00o .0035 .012 .084 .0092 .0035 .0017 193.14 Optimize 4:66o 174:50o .0018 .026 .061 .018 .0076 .0009 513.9Fixed thresh. 10o 4:04o 175:77o .0040 .043 .12 .024 .010 .0013 154.1Fixed thresh. 15o 4:11o 175:72o .0040 .029 .093 .018 .0080 .0013 156.9Lap: Maxmin angle 2:22o 178:22o .0093 .055 .13 .032 .015 .0040 176.2Maxmin angle 5:30o 177:17o .0013 .030 .10 .016 .0062 .0005 179.9Maxmin cosine 0:88o 176:32o .023 .12 .41 .024 .012 .0049 268.2Three passes 4:76o 174:48o .0044 .044 .12 .021 .010 .0022 136.9Five passes 5:31o 174:46o .0013 .032 .11 .020 .0071 .0009 171.25 No BATR 4:16o 174:86o .0062 .044 .13 .025 .011 .0013 143.5Multi-BATR 4:98o 174:37o .0022 .044 .11 .019 .010 .0009 176.3


