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Abstract

The rank-revealing URV decomposition is a useful tool for the subspace-tracking
problem in digital signal processing. Updating the decomposition is a stable process.
However, downdating a rank-revealing URV decomposition can be unstable because
the R factor is ill-conditioned. In this article, we review some existing downdating
algorithms for the full-rank URV decomposition in the absence of the U factor and
develop a new combined algorithm. The combined algorithm has the merits of low cost
and no intermediate breakdown, so the downdate 1s always computable in floating-point
arithmetic. For the rank-revealing URV decomposition, we develop a two-step method
that applies full-rank downdating algorithms to the signal and noise parts separately
without using hyperbolic rotations. We prove that Park and Eldén’s reduction algorithm
and the combined algorithm have relational stabilities for both full-rank and rank-
revealing cases. We demonstrate the efficiency and accuracy of our combined algorithm
on ill-conditioned problems.

1 Introduction

Subspace tracking is an important subject in many applications of digital signal processing.
Suppose that d signals are impinging on an array of m sensors and m > d. With the
presence of noise, after the sensors collect n snapshots, n > m, we will have an n X m data
matrix X whose singular values satisfy

GLZ 200> Ogg 22 0y > 0.

In this case, we say that the data matrix X has numerical rank d. The problem of subspace
tracking is to estimate the numerical rank d and bases for the subspaces corresponding to
{o1,...,04} and {6441,...,0,} in the m-dimensional space.

Computing the singular value decomposition of X or the eigendecomposition of XX
is a common and natural choice for solving this problem. However, both methods require a
large computational burden to update the estimates when the data matrix X incorporates

*This work was supported by NSF Grant CCR 91-15568.
"Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
jwulmcs.anl.gov



an incoming data sample. Stewart [1] introduced a rank-revealing URV decomposition so
that the data matrix can be expressed as
R S
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where

U and V are unitary matrices,
R, is an upper triangular matrix of order d,
G is an upper triangular matrix of order m — d,
inf (Rs) = 04, and
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The rank-revealing property of the R factor provides the information for rank estimation,
and the orthonormal columns of the matrices V; and V,, form bases for the signal and noise
subspaces respectively. The matrix U is usually not saved because of its large order. Taking
advantage of a fast O(m?) numerically stable updating algorithm, one can easily compute
a decomposition of a new data matrix resulting from appending an incoming row of data.
Several URV-based algorithms for finding a signal’s direction-of-arrival have been proposed
and have shown efficient and effective performance [2, 3].

However, in some applications the data matrix X is collected by the rectangular win-
dowing method to reduce the effect of earlier data. As shown in Figure 1, the rectangular
windowing method uses the most recent n samples of data. In this case, a reliable down-
dating algorithm is required to compute a rank-revealing URV decomposition of a matrix
resulting from removing the first row of X.
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Figure 1: The shift of the n size window frame

Downdating algorithms when the matrix U is available are well studied and numerically
stable (e.g., [4] and [5]). Unfortunately, without U, it is difficult to have a numerically stable
downdating algorithm. The LINPACK algorithm [6], the CSNE algorithm [7], Chambers’
algorithm [8], and the reduction algorithm [9] either break down or are sensitive to the
condition number of R. Our goal is to design a new algorithm that will not break down
and that will be more stable than those algorithms.



In this article, we first review existing downdating algorithms for a full-rank URV de-
composition and develop a new combined algorithm (§2). For a rank-revealing URV decom-
position, we review a two-step method that applies those full-rank downdating algorithms
to the signal and noise parts separately (§3). We then show the relational stability for
the combined algorithm (§4). Experimental results are given in §5. Finally, we state our
conclusions in §6.

2 Full-Rank Downdating Algorithms

Consider a data matrix X with full column rank and a URV decomposition,

co[3]-o 2]

where zH

is the first row of the data matrix X, R is an upper triangular matrix of order
m, and U and V are unitary matrices of order n and m respectively. Our goal is to find an
m X m upper triangular matrix 7" and unitary matrices U and V of order n — 1 and m
respectively such that

N ~ 71~

X=U [ ] v,
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By partitioning U and U as

~

U:[ U1 U2 ] and (7 :[ (71 U2 ]7

m+1 n—m-—-1 m n—m-—1
the decompositions can be written as
X R
l H] = WUlloH]VH, (3)

X

~

X = Ohorvi, (4)

where W is the permutation matrix that exchanges the first and last rows. Then we
substitute (4) into (3) and obtain
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We have

[Z,HTVP] :@H[O@]R (5)
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Therefore, the downdating problem is equivalent to finding an m X m upper triangular
matrix 7" and unitary matrices ) and P that satisfy (5).

Note that if P = I, downdating the URV decomposition is exactly the same as down-
dating a QR decomposition. However, as we shall show later, the presence of the matrix P
will give us flexibility for deriving a more stable algorithm.

We first review several existing algorithms. Then we design a new combined algorithm.
Throughout this article, the matrix Z denotes the product XV and 2 = 25V is the first
row of Z.

2.1 LINPACK and CSNE Algorithms

We begin with algorithms that do not apply plane rotations on the right. In this case,
P =T and R"R forms a Cholesky factorization of the matrix ZZ. The original problem
can be restated as finding an upper triangular matrix 7" such that

THT = RER — 221

which amounts to downdating a Cholesky factorization. The method in the LINPACK
package [10] analyzed by Stewart [6] is a popular choice for solving this problem.

The strategy of the LINPACK algorithm is to recover u'’, the first row of the matrix
U, in order to directly form a new U; in (2) with the structure

po 0H
0 Uy |’
where |u| = 1. Since the original matrix X has full rank, the matrix R is also full rank,

and [uy - -uy,], the first m components of u, can be uniquely determined by solving the
triangular system [ug - - -, | R = 277,

The only constraint for the last (n — m) columns of the matrix U is that they form an
orthonormal basis for the left null subspace of X. Without loss of generality, we can choose
the last (n — m — 1) components of the first row of the matrix U to be zeros. Then we are

free to choose [ 0---0] as the last (n — m) components of v, where

a:\/l—H [wr -] I3 -

Now, we determine a sequence of plane rotations QJr, k = m,...,1 of order m+ 1 in the
(k,m+ 1) plane such that

[ul...umQ]Qm...le[o...ou]_ (6)

Then the downdated triangular matrix T’ results from computing

<Qm---@1>H[£]:[ TH] (7

y4

We now state the LINPACK algorithm formally.



Algorithm 2.1 LINPACK

1. Compute [uy - - -u,,] by solving [u; - - -u,,|R = 2.

2. Compute a = \/1 — | g =~ wm] |3 -
3. Determine plane rotations @, ..., Q1 satisfying (6).

4. Compute the downdated triangular matrix 7" by using (7).

Let one flop be one floating point operation (+, —, , or /). The LINPACK algorithm
requires 4m? +O(m) flops, resulting from m? +O(m) flops in triangular solving and 3m? +
O(m) flops in plane rotations.

It is possible that the matrix R is ill-conditioned. For example, as the signal-to-noise
ratio (SNR) or the sensor-to-signal ratio (m/d) increases, the smallest singular value of the
matrix R tends to zero. Under floating-point arithmetic, a breakdown might occur in the
LINPACK algorithm when there is a negative computed value under the square root at Step
2. To have a more accurate result, Bjorck, Park, and Eldén [7] developed a method called
corrected seminormal equations (CSNE), using the original data matrix in the refinement
of [uy -+ upy) and a.

Let @ be the computed result at Step 1 in the LINPACK algorithm. Since R is
nonsingular, there is a vector w such that Rw = 4. The CSNE algorithm is based on the

seminormal equations
RARw=7e, ,

where ey is the first unit vector of length n. To apply one step of refinement, we need to
find a vector dw such that

R RSw =78 |

where r = ¢; — Zw is the residual. Let éu = Rdéw. Thus we have corrected vectors
we = w + dw and @, = @+ du. For the correction of the scalar o, we have

ae = lu—
= |[|UHey —UHU l zg ] we|2
= ler = Zwellz -

We now state the algorithm formally.

Algorithm 2.2 CSNE

1. Compute % by solving Rfu = z.

2. Compute w by solving Rw = %, and compute the residual r = e; — Zw.
3. Compute 6@ by solving R¥§u = ZHr, and let @ = u + 4.

4. Compute dw by solving Réw = 4.



5. Compute o, = ||r — Zow||5.
6. Determine plane rotations @1, ..., Q. satisfying (6).

7. Compute the downdated triangular matrix 7" by using (7).

There are four linear triangular systems to solve and three matrix-vector multiplications.

The CSNE algorithm needs 6mn 4 7m? 4 O(m) flops.

2.2 Chambers’ Algorithm
Chambers’ algorithm [8] is another method that does not apply right rotations. The idea
is quite simple. With P = I, if we premultiply both sides in (5) by the unitary matrix @,

we have the updating problem
R T

Then we examine the updating process and reverse it to obtain a solution to our downdating

problem.
The most common way for solving this updating problem is to apply a sequence of left
plane rotations Q, k = 1,...,m of order m+1 in the (k, m+ 1) plane to eliminate the row

vector 2/, Note that each rotation modifies only one row of 7' to compute the corresponding
row of R. Therefore, we can reverse each rotation process and recover the matrix T row by
row.

For (1, the rotation process can be expressed as

M1 T2 o Tim | c s i1 tiz 0 g
| mo = : (8)
0 2z - ZzZ, -5 c 21 Z2 ot Zm,

zZ1

where

ti
c= ————, and s =

2 2 2 '
tH + 2 t + 2

(9)

Now suppose that [ryy - -ry,] and [z - - - z,,] are known. Our goal is to compute [t11 -« Ty, ]
and [Z9 -+ Zp].
Since ri1 = 1/t3, + 27, we have
2

_ 2
tll = 7‘11 — Zl .

Once ty; is known, the scalars ¢ and s are computed by (9). From the first row in (8) for
computing r1;,¢ = 2,...,m, we have

ti = (ri;— szi)/c. (10)
Applying the result in (10) to the second row in (8), we obtain

Z; = cz; — sty . (11)



Repeating this process will yield the downdated upper triangular matrix T" one row at a
time.
The algorithm is formally stated as the following.

Algorithm 2.3 CHAMBERS

(M = 2HV)
Fork=1,2,...,m

1. Compute tgr = «/rzk — zz.

2. Ifk<m

Compute ¢ = tgr/rrp and s = z /rg.

Compute (tg k41 - tgm) by using (10).
Replace (zk41 -+ 2m) by (Zpy1 -+ Zm) in (11).
End if

End for

Chambers’ algorithm requires only 3m? + O(m) flops. However, the algorithm breaks
down when the argument of the square root at Step 1 is nonpositive for k < m, and there is
no way to recover. When the breakdown happens at k& = m, this implies that ¢,,,, is quite
small, and Park and Eldén [9] suggest letting ¢,,,, = 0. Thus the matrix T possibly has
rank one less than the matrix R. It will be proved in Section 4 that setting ¢,,,, to zero
gives an acceptable relative error bound.

2.3 Reduction Algorithm

We now introduce an algorithm described by Park and Eldén [9] that applies right rotations.
The reduction algorithm works on the problem (5) directly. We first determine a sequence
of right plane rotations Py, k =1,...,m — 1 of order m in the (k, k4 1) plane such that

[Zl cc o Zm—1 Zm]Pl . 'Pm—l = [0 . 0 HZHQ:I .

Each Py reduces number of nonzeroes by one. When we apply P to the matrix R, we
create a nonzero entry at the (k -+ 1,k) position in [R” 07]7. So we use a corresponding
left plane rotation Qf in the (k,k 4+ 1) plane to eliminate that nonzero entry. Therefore,
the matrix

g_y"Q{I[]g]Py”Pm_l (12)

remains upper triangular. The resulting matrix in the above equation is equal to the
downdated triangular matrix 7' except at position (m,m), and t,,,, can be computed by
simply taking the square root of the difference between the square of the (m, m)-entry in
(12) and ||z||2-

We now state the algorithm formally.

Algorithm 2.4 REDUCTION

(M = 2HV)



1. Fork=1,2,....,m—1

1.1. Compute a right rotation P to eliminate z; with zr41, and apply it
to R and V.

1.2. Compute a left rotation () to eliminate rj4q ; with rpy.

1.3. Let [tkk s tkm] = [rkk s T‘km].

End for

2. Compute b = r?nm - HZH%

The reduction algorithm requires 12m?+O(m) flops. Again, the argument in the square
root at Step 2 might be negative under floating-point arithmetic. We let ¢,,,, = 0 if this
occurs.

2.4 Combined Algorithm

None of the algorithms considered so far is ideal. The LINPACK algorithm will stop when
a breakdown occurs. Even with one step of refinement, the CSNE algorithm will lead to
an inaccurate result if the computed w is far from accurate. Thus, the LINPACK-type
algorithms are unreliable if R is ill-conditioned.

Chambers’ algorithm has an attractive computational cost, but there is a risk of in-
termediate breakdown. On the other hand, the reduction algorithm avoids intermediate
breakdown but is more expensive. However, since both algorithms reduce the problem size
one by one and compute the downdated triangular matrix 7" row by row, we can com-
bine Chambers’s algorithm and the reduction algorithm in order to obtain low cost and no
intermediate breakdown.

The idea is to apply Chambers’ algorithm first. If a breakdown occurs at k < m, we
adopt one reduction step to reduce the problem size by one and then apply Chambers’
algorithm until the next breakdown. If breakdown occurs at k = m, we let ¢,,, = 0. We
now state the algorithm.

Algorithm 2.5 COMBINED
(M = 2HV)
1. Fork=1,2,....,m—1

1.1. Compute p = r}, — z}.
1.2. Ifp>0
% perform one step of Chambers’ algorithm %
Compute tx, = \/p.
Compute ¢ =t /rrr and s = zi /rg.
Compute (tgr+1 - tem) by (10).
Replace (zk41 -+ 2m) by (Zpy1 -+ Zn) in (11).

1.3. Else
% perform one step of the reduction algorithm%



Compute a right rotation Py to eliminate zp with zzy1, and
apply it to R and V.

Compute a left rotation () to eliminate ry4q , with rgy.

Let [tkk s tkm] = [rkk s T‘km].

End if

End for

0 ifr2 —22 <0

2. Lett = . .
et tmm { Ve, — 22 ifri  —22 >0

The complexity of the combined algorithm lies between 3m? and 12m?, depending on
how many reduction steps it takes.

3 Rank-Revealing Downdating Algorithms

We now consider downdating a rank-revealing URV decomposition. Referring to (1), the
matrix R has the data of the signal (R,) well separated from that of the noise (/' and
(), and we need to preserve this signal-noise (or large-small) structure for the downdated
triangular matrix 7. Therefore, we change our problem equation (5) to

R, F T, B
QF | 0 G | P= 0 C 7
0H oH pg Zp,

where
P, 0 d
H _ H H _ s
2= z z ], and P_[O Pn] o d
d m-—d d m—d

We cannot directly apply the reduction step in the combined algorithms to the rank-
revealing case because the presence of the matrix P might mix the signal and noise data.
The LINPACK, CSNE, and Chambers’ algorithms have no risk of mixing signal and noise
but could produce an inaccurate result or a breakdown because R is ill-conditioned.

Park and Eldén [9] give a simple and direct method called the two-step procedure to
solve this problem. They consider only the LINPACK, CSNE, and reduction algorithms.
A similar method is also studied by Barlow and Zha [11]. They suggest applying one of
the algorithms for the full-rank problem to compute the signal (7%) and noise (C') parts
separately. The only additional work required is a connection task: we have to compute B
and modify z after computing T,. Then we can patch these two parts together to form
the downdated triangular matrix 7.

Note that the left plane rotations that do not involve the vector z in downdating
the signal part are applied to the matrix I directly and there is no need to update 2.
However, for those rotations that update the vector 27, we need an algorithm to perform

5
the corresponding computation on 2z and F.



Park and Eldén choose hyperbolic rotations as the connection algorithm. For the LIN-
PACK and CSNE algorithms, d hyperbolic rotations are required. Only one such rotation is
needed for the reduction algorithm. However, the hyperbolic rotation is not recommended
because it is not backward stable [12] [13].

In contrast to hyperbolic rotations, Equations (10) and (11) in Chambers’ algorithm give
an alternative way to perform the two-step method, computing [T, B] and modifying 2!
simultaneously. Chambers’ algorithm and the hyperbolic rotations differ only in the formula
to modify 2. The left rotations in (12) for the reduction algorithm also are applied to the
matrix F directly. Therefore, the only connection task left in the combined algorithm is to

modify the last row of the corrected F' when ¢y, is assigned to be 0.

The assignment occurs when we want to find a unitary matrix ng and vectors 77 and
[taq b%'] such that
raa fI tag bY
QY1 o ¢ |=| 0 G |, (13)
0z ¢

where the downdated vector [¢ 2] results from the previous d — 1 downdating step. We let
tgq = 0 if there is a negative argument in \/rgq — & caused by rgqy =~ £. The same assignment
is also needed in the reduction algorithm for downdating the signal part. In this case, Park
and Eldén let 2 = 211 and bH = fH after the zero assignment, and go on downdating the
noise part.

We have a different approach after observing (13) closely. The zero assignment makes
ng to be a plane rotation with 90 degree rotation, or a permutation matrix, so that b? =
#H In this case, further downdating to the noise part is not necessary because the next
downdated vector is exactly equal to a row of the matrix B. We just let 0¥ =0, C = G,
and stop the downdating right here. Thus the combined algorithm can be applied to the
rank-revealing case without using hyperbolic rotations.

In Section 5, we will show that the combined algorithm plus the zeroes assignment make
a good connection between the signal and noise parts. Since we do not require any additional
computation, the complexity of the combined algorithm for the rank-revealing case is still
O(m?). Therefore, we have an algorithm that makes the downdate always computable in
floating-point arithmetic.

We note that in the rank-revealing case, since one row is deleted from the original data
matrix, the resulting triangular matrix 75 can have numerical rank degeneracy. We examine
the resulting matrix T by applying the deflation algorithm defined in [1] after performing
each downdate. If T is rank deficient, we repartition the matrix, reducing the dimension
of T.

4 Error Analysis

In contrast to the methods in which the matrix U is available [4, 5], none of the down-
dating algorithms that we consider is backward stable in the classical sense [14]. In fact,
Bjorck, Park, and Eldén [7] state that no algorithm using the matrix R only to compute
the required entries of the matrix U can be backward stable. However, Stewart [6] found an
special error property called relational or mized stability for these algorithms. Furthermore,
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Stewart [13] showed that relational stability can be preserved after a sequence of updates
and downdates. He also proved that if the final leading principal matrix T in the sequence
is well conditioned, it will be computed accurately. Based on this analysis, our goal is to
verify the relational stability of the combined algorithm. Throughout this section, a tilde
will denote a result computed in floating-point arithmetic. The quantities || A|| and ||z|| will
denote the Frobenius norm of a matrix A and the Euclidean norm of a vector z respectively.
We study the first-order perturbation analysis only and suppress the higher-order terms.
The relation symbol < denotes less than or equal to without considering the second- and
higher-order terms.

Suppose that T is the computed downdated triangular matrix. Relational stability
ensures that there exists an (m 4 1) x m matrix F satisfying

1Bl < Eo || R [€ar (14)

and unitary matrices @ and P such that
~u | R | 5 T
H _ R
Q [O]P_[ZHP]—I_E' (15)

Here €ps is the machine relative precision and k,, is a constant depending on m and the
computer arithmetic. For convenience, we let y = 27 P and express I as

AT
e-[3%]

From (15), we can understand why these algorithms are not backward stable, because the
error matrix F is dependent not only on R and z but also on the result T'.
It has been shown in (14) that,

o k, =m?/2 +9my/m + O(m), for the LINPACK algorithm [6],
o k., = 4my/m, for Chambers’ algorithm [12].

On the other hand, algorithms involving hyperbolic rotations do not have relational stability
because the parameter k,, in (14) is not bounded and depends on the tangents of rotation
angles [12]. Therefore, the two-step method using hyperbolic rotations is not relationally
stable.

Our next task is to prove that the reduction algorithm has relational stability. We adopt
the notation in [14] that fl (a) represents the floating-point representation of a. Operations
in floating-point arithmetic are based on the following rules:

L fl{axb)=(axb)(1+e),

2. fi(a/b) = (a/b)(1+€),

3. fllatb)=a(l+e)Eb(l+e),
4. fl(Va) =Va(l+e),
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where |€|, |e1], |e2] < epr. For convenience, we denote

M ((a+b)+c)=fi(fl(a+b)+c).

Each step of the combined algorithm uses either Chambers’ algorithm or the reduction
algorithm to reduce the problem size by one. Thus, we need only to prove relational stability
for the reduction algorithm.

The main computation in the reduction algorithm is plane rotation. Therefore, we begin
with an error analysis for computing right plane rotations. At Step 1.1 in Algorithm 2.4,
we compute a sequence of plane rotations P, ..., P,_; so that

gt = AN TR ) Paea)

where 7 is a multiple of the mth unit vector. Wilkinson [14, pp. 1357238] showed that, for

any z, there exists a sequence of exactly orthogonal matrices Py, ..., P,_1 independent of
z such that R R
1Ay" ) = (15" = 2" Py Psa | S 6(m = D)l zlear - (16)

Next, we apply these right rotations to the matrix R and compute corresponding left
plane rotations (J1,...,Qn_1 so that

T'= 2" (@ (- (QF (RPY)) -+ Prea)) (17)

(Here the left rotations are of order m, which is one less than those in (5) since we apply
them to the matrix R only.) Note that the matrix T’ is equal to the matrix T except in
the (m, m)-entry. As Wilkinson [14, p. 141] pointed out, the order of pre- and postmulti-
plications affects only the second-order term in error analysis. For convenience, we derive
an error bound for the case in which the left rotations are applied after applying all the
right rotations, though the right and left rotations are applied alternately in the reduction
algorithm.
Let
R = fi" Y (- (RP)--)P,_1) .

By an argument similar to the derivation of (16) and norm property, we have

|R = BBy Poyl £ 6(m — D[ Rlleas (18)
Furthermore, there also exists a sequence of exactly orthogonal matrices @1,. . @m_l such
that ) R R
1T = Q1+ QT R'[| £ 6(m — L[| R [lear (19)
Applying the triangular inequality to (18), we have
IR < (Vm + 6(m — Len)[| ]| (20)

where the \/m comes from taking the Frobenius norm of a unitary matrix. Therefore,
combining (18), (19), and (20), we have

AT = T = Qpiy - QY RP -+ P
< T = Qi QU R+ 10—y - Q1 (R = RPy - Pruy)|
S 6(m—1)||Rlexr+ Vm||[R = RPy -+ By |
< 6(m = Dew(Vm +6(m — Dea)|| B[ + 6(m — 1)v/men| ]|

12



Neglecting the €3, term, we have that
IAT'| £ 12(m — 1)V/men || B])- (21)

Now, in Step 2 of the reduction algorithm, we compute ,,,, from the (m,m)-entry of
T (updated R) and 7, (approximate 2-norm of z) using the equation

Erm = ([ + )2 (1F €3) = (I + €2)* (14 e)](1+ e5)} 2 (1 + €6) ,
where
ler] < 12(m — 1)y/men||R|| from (21),
leo] < 6(m—1)||z]leps from (16), and
< ey from floating-point operations rules.

|€3|7 |€4|7 |€5|7 |€6|

Simplifying the above equation using the fact that ||z|| < ||R]|| and neglecting the €2, term,
we characterize an error bound for ¢,,,, by

| Atm| < [12(m = 1)v/m + 2]em || B - (22)

Note that ,,,, should be nonnegative in the reduction algorithm. If there is a breakdown
at the final step, it means that zero is within the bounded interval

[ — (12(m = D)V/m + 2)em || R, T + (12(m = 1)v/m + 2)enr|| R] -

Thus, Park and Eldén’s suggestion to put a zero when a breakdown occurs is acceptable.
Consequently, combining (16), (21), and (22), we derive a relational error bound for the
reduction algorithm as

VIAT P + | A2 + | 572

el <
< [12(m = 1)vm+O(m)]em|| B - (23)

Therefore, we have shown that the combined algorithm (Algorithm 2.5) has relational sta-
bility.

Finally, since the two-step procedure use either left rotations or permutations (if a zero is
assigned), the error bound in (23) holds for the rank-revealing case. Thus the rank-revealing
combined algorithm also has relational stability.

5 Experimental Results

In this section, we show some experimental results for the rank-revealing downdating prob-
lem. Several combinations of full-rank algorithms can be applied to the signal and noise
parts. However, considering the properties and complexity for each algorithm, we choose
the following three combinations as our test algorithms:

Phase Algorithm A Algorithm B Algorithm C

Signal LINPACK/CSNE Reduction Combined
Connection Hyperbolic Hyperbolic | Chambers’/Zeroes

Noise LINPACK/Reduction | Reduction Combined
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Note that the LINPACK algorithm cannot be present alone in any phase because it must
be with a backup algorithm to recover from a possible breakdown at Step 2.

We construct a 100 x 8 test matrix K whose entries are taken from a uniform distribution
in (0,1). Some portions of the matrix K are multiplied by scalars v and § to make varied
numerical ranks. Then we multiply K on the right by a random unitary matrix. The size
of the window function is 12.

To estimate the numerical rank, we need a tolerance described in [1]. The tolerance is
an upper bound for the sum of squares of the singular values in the noise part and works
like a barrier that separates the signal and noise parts. The numerical rank d is chosen as
the smallest integer such that the norm of the resulting matrix C'is less than the tolerance.

Suppose that the sizes of the noise collected in sensors are roughly the same. It has
been shown in [3] that the sum of the squares of the (m — d) smallest singular values of the
data matrix sampled by the rectangular windowing method satisfies

Ohp1 -+ op &~ (m — d)e? * (window size) |
where ¢ is the noise size. Therefore, in our tests, the tolerances are chosen as

tol u = 1, * § x \/12(8 — d) , for the updating algorithm,
tol_d = 1pq %6 x\/12(8 —d 4 1) , for the deflation algorithm.

The factors 1, and 4 are chosen by users to control the the accuracy of the approximate
signal subspace. In our tests, the factor 1, is set to 1 and the factor 14 is chosen to make
all three test algorithms give correct ranks.
Suppose that we partition the covariance matrix of the data matrix 7 as
A, A
A= ZHZ — s c
[ Al A, ] |
where A; is of order d. We test the accuracy of the signal part by computing the relative
error norm o
|As = T Tl
[Asllr

where T, is the computed Ty. Let Z = WEYH be the singular value decomposition of the
matrix Z, where W and Y are unitary matrices. For the accuracy of the noise part, we
compute the sum of the sines of the canonical angles between the subspaces spanned by the
last 8 — d columns of the matrices V' and Y. Finally, we measure the relative error norm of
the covariance matrix L
|A =TT ||r
1AlF

where T' denotes the computed T'. All computations use double-precision IEEE floating-
point arithmetic.

To make a fair comparison, we ran 50 trials for each test. The average costs over 50
trials, 88 downdates per trial, for each test are given in Table 1.

Test 1 & 2: Our first test matrix has a fixed numerical rank of 4. The test matrix K is
constructed as

14



1 25 50 75 100

O~NOUTRWNE

where the gray area is multiplied by § = 10~* for Test 1 and by § = 10~% for Test
2. The factor 14 is set to 4 and 8 for Test 1 and 2 respectively. Tables 2 and 3 show
the average results of the rank estimates, the relative error norms, and the condition
numbers of the matrix R. No breakdown occurs, so the LINPACK algorithm is always
used in Algorithm A. All three algorithms give good results. However, Table 1 shows
that the average cost of Algorithm C is less than that of the other two.

To make an ill-conditioned signal or noise part, we now increase the condition number
of Rs or G by applying another scalar ~.

Test 3: Suppose that we have one signal stronger than others. The test matrix K looks
like

1 15 40 55 70 80 100

O~NOUTRWNE

where the light gray area is multiplied by § = 10™7 and the dark gray area is multiplied
by v = 102. The scalar v makes R, ill-conditioned around those positions with a
sharp rank drop. We choose the factor ¥y = 20. The results are given in Figure 2
and Figure 3.

In the first graph of Figure 2, we also mark the position where there is a breakdown.
A “¥” means that the CSNE algorithms is applied instead of the LINPACK algorithm.
A “47 represents an assignment of 0 in the signal part in the reduction algorithm (no
hyperbolic rotation is applied). A “o” shows that the combined algorithm assigns a
0 in the signal part and applies the plane rotations to eliminate the last row of the
corrected F.

Algorithms A and B have a large relative error for the signal part when a breakdown
occurs. Because of the ill-conditioned R,, the solutions to the triangular linear systems
in Algorithm A are less accurate, even if the CSNE algorithm corrects it by one step of
refinement. For Algorithm B, the reduction steps in the signal part not only transfer
the norm of the vector 2 to its last component but also transfer most of the energy
of R, to its last column. The enlargement of the arguments at Step 2 in Algorithm 2.4
increases the absolute error when we assign a 0 to ¢z4. Algorithm C still has good
performance in this test.
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Test 4: We construct the test matrix K as

1 15 40 55 70 80 100

O~NOUTRWNE

where the light gray area is multiplied by § = 1076 and the dark gray area is multiplied
by v = 1072, The factor 14 is set to 6. The scalar v makes G ill-conditioned so that
the data matrix behaves similarly to the one with large sensor-to-signal ratio (m/d).

Figure 4 shows the results. No breakdown occurs in any algorithm. However, the
relative errors for the signal part of Algorithm A and B jump when the numerical
rank increases. We find that the large errors actually start from the numerical rank
degeneracy around position 26 shown in Figure 5. This is due to the ill-conditioned G
and the inaccurately computed noise part when downdating by hyperbolic rotations.
Again, Algorithm C shows good results.

6 Conclusions

We have presented a new algorithm, the combined algorithm, and shown its good perfor-
mance on several ill-conditioned downdating problems. The combined algorithm has the
following features:

e The work per downdate is O(m?).
e The algorithm is as efficient as Chambers’ algorithm and does not break down.

e Since the algorithm does not use hyperbolic rotations, it has relational stability with
the coefficient k,, = 12(m — 1)/m for the full-rank case and k,, = 18(m — 1)\/m for

the rank-revealing case.

We believe that the combined algorithm is suitable for real-time computations.
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Algorithm A | Algorithm B | Algorithm C
Test 1 533 922 256
Test 2 533 922 524
Test 3 624 920 278
Test 4 571 920 260

Table 1: Average operations count (flops) for all tests

Ave. Rank Ave. Error Ave.
Algorithm | Estimate Signal Noise Cond(R)
A 4 2.6937e-15 | 5.9723e-04 | 9.6484e4-04
B 4 3.2455e-15 | 5.9723e-04 | 9.6484e4-04
C 4 2.1222e-15 | 5.9723e-04 | 9.6484e+04

Table 2: Average results of the rank estimates, the signal and noise errors, and the condition
numbers of R for Test 1 (§ = 107%)

Ave. Rank Ave. Error Ave.
Algorithm | Estimate Signal Noise Cond(R)
A 4 2.3847Te-15 | 6.2704e-08 | 1.0911e4-09
B 4 2.8806e-15 | 6.2704e-08 | 1.0911e4-09
C 4 2.3357e-15 | 6.2704e-08 | 1.0911e4-09

Table 3: Average results of the rank estimates, the signal and noise errors, and the condition
numbers of R for Test 2 (§ = 1078)
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Figure 2: The plots of the estimated rank, the signal error, and the noise error vs. the
window position for Test 3 (§ = 1077 and vy = 10%)
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" Relative Errors for Covariance Matrix
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Figure 3: The plots of the relative errors for the covariance matrix vs. the window position
for Test 3 (6 = 1077 and v = 10?)
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Figure 4: The plots of the estimated rank, the signal error, and the noise error vs. the
window position for Test 4 (§ = 107° and v = 107?)

21



0 Relative Errors for Covariance Matrix
10_ F T T T T T T T T T

—11|

10 3 1
107
-13

—14

15|

10 3

-16 I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100

10

Algorithm A - — - — . Algorithm B — — ——  Algorithm C

Figure 5: The plots of the relative errors for the covariance matrix vs. the window position
for Test 4 (§ = 107% and v = 1077)
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