
Downdating a Rank-Revealing URV Decomposition�Yuan-Jye Jason WuyNovember 6, 1996AbstractThe rank-revealing URV decomposition is a useful tool for the subspace-trackingproblem in digital signal processing. Updating the decomposition is a stable process.However, downdating a rank-revealing URV decomposition can be unstable becausethe R factor is ill-conditioned. In this article, we review some existing downdatingalgorithms for the full-rank URV decomposition in the absence of the U factor anddevelop a new combined algorithm. The combined algorithm has the merits of low costand no intermediate breakdown, so the downdate is always computable in oating-pointarithmetic. For the rank-revealing URV decomposition, we develop a two-step methodthat applies full-rank downdating algorithms to the signal and noise parts separatelywithout using hyperbolic rotations. We prove that Park and Eld�en's reduction algorithmand the combined algorithm have relational stabilities for both full-rank and rank-revealing cases. We demonstrate the e�ciency and accuracy of our combined algorithmon ill-conditioned problems.1 IntroductionSubspace tracking is an important subject in many applications of digital signal processing.Suppose that d signals are impinging on an array of m sensors and m > d. With thepresence of noise, after the sensors collect n snapshots, n � m, we will have an n�m datamatrix X whose singular values satisfy�1 � � � � � �d >> �d+1 � � � � � �m > 0 :In this case, we say that the data matrix X has numerical rank d. The problem of subspacetracking is to estimate the numerical rank d and bases for the subspaces corresponding tof�1; : : : ; �dg and f�d+1; : : : ; �mg in the m-dimensional space.Computing the singular value decomposition of X or the eigendecomposition of XHXis a common and natural choice for solving this problem. However, both methods require alarge computational burden to update the estimates when the data matrix X incorporates�This work was supported by NSF Grant CCR 91-15568.yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.jwu@mcs.anl.gov



an incoming data sample. Stewart [1] introduced a rank-revealing URV decomposition sothat the data matrix can be expressed asX = U " R0 #V H = U 264 Rs F0 G0 0 375 [Vs Vn] ; (1)whereU and V are unitary matrices,Rs is an upper triangular matrix of order d,G is an upper triangular matrix of order m� d,inf (Rs) � �d, andkGk2F + kFk2F � �2d+1 + � � �+ �2m.The rank-revealing property of the R factor provides the information for rank estimation,and the orthonormal columns of the matrices Vs and Vn form bases for the signal and noisesubspaces respectively. The matrix U is usually not saved because of its large order. Takingadvantage of a fast O(m2) numerically stable updating algorithm, one can easily computea decomposition of a new data matrix resulting from appending an incoming row of data.Several URV-based algorithms for �nding a signal's direction-of-arrival have been proposedand have shown e�cient and e�ective performance [2, 3].However, in some applications the data matrix X is collected by the rectangular win-dowing method to reduce the e�ect of earlier data. As shown in Figure 1, the rectangularwindowing method uses the most recent n samples of data. In this case, a reliable down-dating algorithm is required to compute a rank-revealing URV decomposition of a matrixresulting from removing the �rst row of X .xHt�n�1 xHt�n�1 xHt�n�1xHt�n xHt�n xHt�nxHt�n+1 xHt�n+1 xHt�n+1... ... ...xHt�2 =) xHt�2 =) xHt�2xHt�1 xHt�1time t� 2 xHttime t� 1 time tFigure 1: The shift of the n size window frameDowndating algorithms when the matrix U is available are well studied and numericallystable (e.g., [4] and [5]). Unfortunately, without U , it is di�cult to have a numerically stabledowndating algorithm. The LINPACK algorithm [6], the CSNE algorithm [7], Chambers'algorithm [8], and the reduction algorithm [9] either break down or are sensitive to thecondition number of R. Our goal is to design a new algorithm that will not break downand that will be more stable than those algorithms.2



In this article, we �rst review existing downdating algorithms for a full-rank URV de-composition and develop a new combined algorithm (x2). For a rank-revealing URV decom-position, we review a two-step method that applies those full-rank downdating algorithmsto the signal and noise parts separately (x3). We then show the relational stability forthe combined algorithm (x4). Experimental results are given in x5. Finally, we state ourconclusions in x6.2 Full-Rank Downdating AlgorithmsConsider a data matrix X with full column rank and a URV decomposition,X = " xHbX # = U " R0 #V H ;where xH is the �rst row of the data matrix X , R is an upper triangular matrix of orderm, and U and V are unitary matrices of order n and m respectively. Our goal is to �nd anm�m upper triangular matrix T and unitary matrices bU and bV of order n � 1 and mrespectively such that bX = bU " T0 # bV H :By partitioning U and bU asU = [ U1 U2 ] and bU = [ bU1 bU2 ];m+ 1 n�m� 1 m n�m� 1 (2)the decompositions can be written as" bXxH # = WU1 " R0H #V H ; (3)bX = bU1T bV H ; (4)where W is the permutation matrix that exchanges the �rst and last rows. Then wesubstitute (4) into (3) and obtain" bU1 00H 1 # " TxH bV # bV H = WU1 " R0H #V H ;or " TxH bV # = " bUH1 00H 1 #WU1 " R0H #V H bV :Let QH = " bUH1 00H 1 #WU1 and P = V H bV :We have " TxHV P # = QH " R0H #P: (5)3



Therefore, the downdating problem is equivalent to �nding an m � m upper triangularmatrix T and unitary matrices Q and P that satisfy (5).Note that if P = I , downdating the URV decomposition is exactly the same as down-dating a QR decomposition. However, as we shall show later, the presence of the matrix Pwill give us exibility for deriving a more stable algorithm.We �rst review several existing algorithms. Then we design a new combined algorithm.Throughout this article, the matrix Z denotes the product XV and zH = xHV is the �rstrow of Z.2.1 LINPACK and CSNE AlgorithmsWe begin with algorithms that do not apply plane rotations on the right. In this case,P = I and RHR forms a Cholesky factorization of the matrix ZHZ. The original problemcan be restated as �nding an upper triangular matrix T such thatTHT = RHR� zzH ;which amounts to downdating a Cholesky factorization. The method in the LINPACKpackage [10] analyzed by Stewart [6] is a popular choice for solving this problem.The strategy of the LINPACK algorithm is to recover uH , the �rst row of the matrixU , in order to directly form a new U1 in (2) with the structure" � 0H0 bU1 # ;where j�j = 1. Since the original matrix X has full rank, the matrix R is also full rank,and [u1 � � �um], the �rst m components of u, can be uniquely determined by solving thetriangular system [u1 � � �um]R = zH .The only constraint for the last (n�m) columns of the matrix U is that they form anorthonormal basis for the left null subspace of X . Without loss of generality, we can choosethe last (n�m� 1) components of the �rst row of the matrix U to be zeros. Then we arefree to choose [� 0 � � �0] as the last (n�m) components of uH , where� = q1� k [u1 � � �um] k22 :Now, we determine a sequence of plane rotations Qk; k = m; : : :; 1 of order m+1 in the(k;m+ 1) plane such that [u1 � � �um �]Qm � � �Q1 = [0 � � �0 �] : (6)Then the downdated triangular matrix T results from computing(Qm � � �Q1)H " R0H # = " TzH # : (7)We now state the LINPACK algorithm formally.4



Algorithm 2.1 LINPACK1. Compute [u1 � � �um] by solving [u1 � � �um]R = zH .2. Compute � = q1� k [u1 � � �um] k22 .3. Determine plane rotations Qm; : : : ; Q1 satisfying (6).4. Compute the downdated triangular matrix T by using (7).Let one op be one oating point operation (+;�; �, or =). The LINPACK algorithmrequires 4m2+O(m) ops, resulting from m2+O(m) ops in triangular solving and 3m2+O(m) ops in plane rotations.It is possible that the matrix R is ill-conditioned. For example, as the signal-to-noiseratio (SNR) or the sensor-to-signal ratio (m=d) increases, the smallest singular value of thematrix R tends to zero. Under oating-point arithmetic, a breakdown might occur in theLINPACK algorithm when there is a negative computed value under the square root at Step2. To have a more accurate result, Bj�orck, Park, and Eld�en [7] developed a method calledcorrected seminormal equations (CSNE), using the original data matrix in the re�nementof [u1 � � �um] and �.Let �uH be the computed result at Step 1 in the LINPACK algorithm. Since R isnonsingular, there is a vector w such that Rw = �u. The CSNE algorithm is based on theseminormal equations RHRw = ZHe1 ;where e1 is the �rst unit vector of length n. To apply one step of re�nement, we need to�nd a vector �w such that RHR�w = ZHr ;where r = e1 � Zw is the residual. Let ��u = R�w. Thus we have corrected vectorswc = w + �w and �uc = �u+ ��u. For the correction of the scalar �, we have�c = ku� �uck2= kUHe1 � UHU " R0 #wck2= ke1 � Zwck2 :We now state the algorithm formally.Algorithm 2.2 CSNE1. Compute �u by solving RH �u = z.2. Compute w by solving Rw = �u, and compute the residual r = e1 � Zw.3. Compute ��u by solving RH��u = ZHr, and let �u = �u+ ��u.4. Compute �w by solving R�w = ��u. 5



5. Compute �c = kr � Z�wk2:6. Determine plane rotations Q1; : : : ; Qm satisfying (6).7. Compute the downdated triangular matrix T by using (7).There are four linear triangular systems to solve and three matrix-vector multiplications.The CSNE algorithm needs 6mn+ 7m2 + O(m) ops.2.2 Chambers' AlgorithmChambers' algorithm [8] is another method that does not apply right rotations. The ideais quite simple. With P = I , if we premultiply both sides in (5) by the unitary matrix Q,we have the updating problem " R0H # = Q " TzH # :Then we examine the updating process and reverse it to obtain a solution to our downdatingproblem.The most common way for solving this updating problem is to apply a sequence of leftplane rotations Qk; k = 1; : : : ; m of order m+1 in the (k;m+1) plane to eliminate the rowvector zH . Note that each rotation modi�es only one row of T to compute the correspondingrow of R. Therefore, we can reverse each rotation process and recover the matrix T row byrow.For Q1, the rotation process can be expressed as" r11 r12 � � � r1m0 �z2 � � � �zm # = " c s�s c # " t11 t12 � � � t1mz1 z2 � � � zm # ; (8)where c = t11qt211 + z21 ; and s = z1qt211 + z21 : (9)Now suppose that [r11 � � �r1m] and [z1 � � �zm] are known. Our goal is to compute [t11 � � � t1m]and [�z2 � � � �zm].Since r11 = qt211 + z21 , we have t11 = qr211 � z21 :Once t11 is known, the scalars c and s are computed by (9). From the �rst row in (8) forcomputing r1i; i = 2; : : : ; m, we havet1i = (r1i � szi)=c : (10)Applying the result in (10) to the second row in (8), we obtain�zi = czi � st1i : (11)6



Repeating this process will yield the downdated upper triangular matrix T one row at atime.The algorithm is formally stated as the following.Algorithm 2.3 Chambers(zH = xHV )For k = 1; 2; : : : ; m1. Compute tkk = qr2kk � z2k .2. If k < mCompute c = tkk=rkk and s = zk=rkk.Compute (tk;k+1 � � � tkm) by using (10).Replace (zk+1 � � � zm) by (�zk+1 � � � �zm) in (11).End ifEnd forChambers' algorithm requires only 3m2 + O(m) ops. However, the algorithm breaksdown when the argument of the square root at Step 1 is nonpositive for k < m, and there isno way to recover. When the breakdown happens at k = m, this implies that tmm is quitesmall, and Park and Eld�en [9] suggest letting tmm = 0. Thus the matrix T possibly hasrank one less than the matrix R. It will be proved in Section 4 that setting tmm to zerogives an acceptable relative error bound.2.3 Reduction AlgorithmWe now introduce an algorithm described by Park and Eld�en [9] that applies right rotations.The reduction algorithm works on the problem (5) directly. We �rst determine a sequenceof right plane rotations Pk; k = 1; : : : ; m� 1 of order m in the (k; k+ 1) plane such that[z1 � � �zm�1 zm]P1 � � �Pm�1 = [0 � � �0 kzk2] :Each Pk reduces number of nonzeroes by one. When we apply Pk to the matrix R, wecreate a nonzero entry at the (k + 1; k) position in [RH 0H ]H . So we use a correspondingleft plane rotation QHk in the (k; k + 1) plane to eliminate that nonzero entry. Therefore,the matrix QHm�1 � � �QH1 " R0 #P1 � � �Pm�1 (12)remains upper triangular. The resulting matrix in the above equation is equal to thedowndated triangular matrix T except at position (m;m), and tmm can be computed bysimply taking the square root of the di�erence between the square of the (m;m)-entry in(12) and kzk2.We now state the algorithm formally.Algorithm 2.4 Reduction(zH = xHV ) 7



1. For k = 1; 2; : : : ; m� 11.1. Compute a right rotation Pk to eliminate zk with zk+1, and apply itto R and V .1.2. Compute a left rotation Qk to eliminate rk+1;k with rkk.1.3. Let [tkk � � � tkm] = [rkk � � � rkm].End for2. Compute tmm = qr2mm � kzk22.The reduction algorithm requires 12m2+O(m) ops. Again, the argument in the squareroot at Step 2 might be negative under oating-point arithmetic. We let tmm = 0 if thisoccurs.2.4 Combined AlgorithmNone of the algorithms considered so far is ideal. The LINPACK algorithm will stop whena breakdown occurs. Even with one step of re�nement, the CSNE algorithm will lead toan inaccurate result if the computed u is far from accurate. Thus, the LINPACK-typealgorithms are unreliable if R is ill-conditioned.Chambers' algorithm has an attractive computational cost, but there is a risk of in-termediate breakdown. On the other hand, the reduction algorithm avoids intermediatebreakdown but is more expensive. However, since both algorithms reduce the problem sizeone by one and compute the downdated triangular matrix T row by row, we can com-bine Chambers's algorithm and the reduction algorithm in order to obtain low cost and nointermediate breakdown.The idea is to apply Chambers' algorithm �rst. If a breakdown occurs at k < m, weadopt one reduction step to reduce the problem size by one and then apply Chambers'algorithm until the next breakdown. If breakdown occurs at k = m, we let tmm = 0. Wenow state the algorithm.Algorithm 2.5 Combined(zH = xHV )1. For k = 1; 2; : : : ; m� 11.1. Compute � = r2kk � z2k .1.2. If � > 0% perform one step of Chambers' algorithm %Compute tkk = p�.Compute c = tkk=rkk and s = zk=rkk.Compute (tk;k+1 � � � tkm) by (10).Replace (zk+1 � � � zm) by (�zk+1 � � � �zm) in (11).1.3. Else% perform one step of the reduction algorithm%8



Compute a right rotation Pk to eliminate zk with zk+1, andapply it to R and V .Compute a left rotation Qk to eliminate rk+1;k with rkk.Let [tkk � � � tkm] = [rkk � � � rkm].End ifEnd for2. Let tmm = ( 0 if r2mm � z2m � 0pr2mm � z2m if r2mm � z2m > 0 .The complexity of the combined algorithm lies between 3m2 and 12m2, depending onhow many reduction steps it takes.3 Rank-Revealing Downdating AlgorithmsWe now consider downdating a rank-revealing URV decomposition. Referring to (1), thematrix R has the data of the signal (Rs) well separated from that of the noise (F andG), and we need to preserve this signal-noise (or large-small) structure for the downdatedtriangular matrix T . Therefore, we change our problem equation (5) toQH 264 Rs F0 G0H 0H 375P = 264 Ts B0 CzHs Ps zHn Pn 375 ;where zH = [ zHs zHn ]; and P = " Ps 00 Pn # dm� d :d m� d d m� dWe cannot directly apply the reduction step in the combined algorithms to the rank-revealing case because the presence of the matrix P might mix the signal and noise data.The LINPACK, CSNE, and Chambers' algorithms have no risk of mixing signal and noisebut could produce an inaccurate result or a breakdown because R is ill-conditioned.Park and Eld�en [9] give a simple and direct method called the two-step procedure tosolve this problem. They consider only the LINPACK, CSNE, and reduction algorithms.A similar method is also studied by Barlow and Zha [11]. They suggest applying one ofthe algorithms for the full-rank problem to compute the signal (Ts) and noise (C) partsseparately. The only additional work required is a connection task: we have to compute Band modify zHn after computing Ts. Then we can patch these two parts together to formthe downdated triangular matrix T .Note that the left plane rotations that do not involve the vector zHs in downdatingthe signal part are applied to the matrix F directly and there is no need to update zHn .However, for those rotations that update the vector zHs , we need an algorithm to performthe corresponding computation on zHn and F .9



Park and Eld�en choose hyperbolic rotations as the connection algorithm. For the LIN-PACK and CSNE algorithms, d hyperbolic rotations are required. Only one such rotation isneeded for the reduction algorithm. However, the hyperbolic rotation is not recommendedbecause it is not backward stable [12] [13].In contrast to hyperbolic rotations, Equations (10) and (11) in Chambers' algorithm givean alternative way to perform the two-step method, computing [Ts B] and modifying zHnsimultaneously. Chambers' algorithm and the hyperbolic rotations di�er only in the formulato modify zHn . The left rotations in (12) for the reduction algorithm also are applied to thematrix F directly. Therefore, the only connection task left in the combined algorithm is tomodify the last row of the corrected F when tdd is assigned to be 0.The assignment occurs when we want to �nd a unitary matrix QHd and vectors ~zHn and[tdd bHd ] such that QHd 264 rdd fHd0 G0 ~zHn 375 = 264 tdd bHd0 G� �zHn 375 ; (13)where the downdated vector [� �zHn ] results from the previous d� 1 downdating step. We lettdd = 0 if there is a negative argument in prdd � � caused by rdd � �. The same assignmentis also needed in the reduction algorithm for downdating the signal part. In this case, Parkand Eld�en let ~zHn = �zHn and bH = fH after the zero assignment, and go on downdating thenoise part.We have a di�erent approach after observing (13) closely. The zero assignment makesQHd to be a plane rotation with 90 degree rotation, or a permutation matrix, so that bHd =~zHn . In this case, further downdating to the noise part is not necessary because the nextdowndated vector is exactly equal to a row of the matrix B. We just let bH = 0, C = G,and stop the downdating right here. Thus the combined algorithm can be applied to therank-revealing case without using hyperbolic rotations.In Section 5, we will show that the combined algorithm plus the zeroes assignment makea good connection between the signal and noise parts. Since we do not require any additionalcomputation, the complexity of the combined algorithm for the rank-revealing case is stillO(m2). Therefore, we have an algorithm that makes the downdate always computable inoating-point arithmetic.We note that in the rank-revealing case, since one row is deleted from the original datamatrix, the resulting triangular matrix Ts can have numerical rank degeneracy. We examinethe resulting matrix Ts by applying the deation algorithm de�ned in [1] after performingeach downdate. If Ts is rank de�cient, we repartition the matrix, reducing the dimensionof Ts.4 Error AnalysisIn contrast to the methods in which the matrix U is available [4, 5], none of the down-dating algorithms that we consider is backward stable in the classical sense [14]. In fact,Bj�orck, Park, and Eld�en [7] state that no algorithm using the matrix R only to computethe required entries of the matrix U can be backward stable. However, Stewart [6] found anspecial error property called relational or mixed stability for these algorithms. Furthermore,10



Stewart [13] showed that relational stability can be preserved after a sequence of updatesand downdates. He also proved that if the �nal leading principal matrix Ts in the sequenceis well conditioned, it will be computed accurately. Based on this analysis, our goal is toverify the relational stability of the combined algorithm. Throughout this section, a tildewill denote a result computed in oating-point arithmetic. The quantities kAk and kxk willdenote the Frobenius norm of a matrix A and the Euclidean norm of a vector x respectively.We study the �rst-order perturbation analysis only and suppress the higher-order terms.The relation symbol <� denotes less than or equal to without considering the second- andhigher-order terms.Suppose that ~T is the computed downdated triangular matrix. Relational stabilityensures that there exists an (m+ 1)�m matrix E satisfyingkEk <� kmkRk�M ; (14)and unitary matrices bQ and bP such thatbQH " R0 # bP = " ~TzH bP #+E : (15)Here �M is the machine relative precision and km is a constant depending on m and thecomputer arithmetic. For convenience, we let yH = zH bP and express E asE = " �~T�yH # :From (15), we can understand why these algorithms are not backward stable, because theerror matrix E is dependent not only on R and z but also on the result ~T .It has been shown in (14) that,� km = m2=2 + 9mpm+O(m); for the LINPACK algorithm [6],� km = 4mpm; for Chambers' algorithm [12].On the other hand, algorithms involving hyperbolic rotations do not have relational stabilitybecause the parameter km in (14) is not bounded and depends on the tangents of rotationangles [12]. Therefore, the two-step method using hyperbolic rotations is not relationallystable.Our next task is to prove that the reduction algorithm has relational stability. We adoptthe notation in [14] that fl (a) represents the oating-point representation of a. Operationsin oating-point arithmetic are based on the following rules:1. fl (a � b) = (a � b)(1 + �) ;2. fl (a=b) = (a=b)(1+ �) ;3. fl (a� b) = a(1 + �1)� b(1 + �2) ;4. fl (pa) = pa(1 + �) ; 11



where j�j; j�1j; j�2j � �M . For convenience, we denotefl 2((a+ b) + c) = fl (fl (a+ b) + c) :Each step of the combined algorithm uses either Chambers' algorithm or the reductionalgorithm to reduce the problem size by one. Thus, we need only to prove relational stabilityfor the reduction algorithm.The main computation in the reduction algorithm is plane rotation. Therefore, we beginwith an error analysis for computing right plane rotations. At Step 1.1 in Algorithm 2.4,we compute a sequence of plane rotations ~P1; : : : ; ~Pm�1 so that~yH = flm�1((� � �(zH ~P1) � � �) ~Pm�1) ;where ~y is a multiple of the mth unit vector. Wilkinson [14, pp. 135{138] showed that, forany z, there exists a sequence of exactly orthogonal matrices bP1; : : : ; bPm�1 independent ofz such that k�yHk � k~yH � zH bP1 � � � bPm�1k <� 6(m� 1)kzk�M : (16)Next, we apply these right rotations to the matrix R and compute corresponding leftplane rotations ~Q1; : : : ; ~Qm�1 so that~T 0 = fl 2m�2( ~QHm�1(� � �( ~QH1 (R ~P1)) � � � ~Pm�1)) : (17)(Here the left rotations are of order m, which is one less than those in (5) since we applythem to the matrix R only.) Note that the matrix ~T 0 is equal to the matrix ~T except inthe (m;m)-entry. As Wilkinson [14, p. 141] pointed out, the order of pre- and postmulti-plications a�ects only the second-order term in error analysis. For convenience, we derivean error bound for the case in which the left rotations are applied after applying all theright rotations, though the right and left rotations are applied alternately in the reductionalgorithm.Let R0 = flm�1((� � �(R ~P1) � � �) ~Pm�1) :By an argument similar to the derivation of (16) and norm property, we havekR0 � R bP1 � � � bPm�1k <� 6(m� 1)kRk�M : (18)Furthermore, there also exists a sequence of exactly orthogonal matrices bQ1,: : :, bQm�1 suchthat k ~T 0 � bQHm�1 � � � bQH1 R0k <� 6(m� 1)kR0k�M ; (19)Applying the triangular inequality to (18), we havekR0k � (pm+ 6(m� 1)�M )kRk ; (20)where the pm comes from taking the Frobenius norm of a unitary matrix. Therefore,combining (18), (19), and (20), we havek�~T 0k � k ~T 0 � bQHm�1 � � � bQH1 R bP1 � � � bPm�1k� k ~T 0 � bQHm�1 � � � bQH1 R0k+ k bQHm�1 � � � bQH1 (R0 �R bP1 � � � bPm�1)k<� 6(m� 1)kR0k�M +pmkR0 �R bP1 � � � bPm�1k<� 6(m� 1)�M(pm+ 6(m� 1)�M )kRk+ 6(m� 1)pm�MkRk :12



Neglecting the �2M term, we have thatk�~T 0k <� 12(m� 1)pm�MkRk: (21)Now, in Step 2 of the reduction algorithm, we compute ~tmm from the (m;m)-entry of~T 0 (updated R) and ~ym (approximate 2-norm of zH) using the equation~tmm = f[(~t0mm + �1)2(1 + �3)� (~ym + �2)2(1 + �4)](1 + �5)g 12 (1 + �6) ;where j�1j <� 12(m� 1)pm�MkRk from (21),j�2j <� 6(m� 1)kzk�M from (16), andj�3j; j�4j; j�5j; j�6j � �M from oating-point operations rules.Simplifying the above equation using the fact that kzk � kRk and neglecting the �2M term,we characterize an error bound for ~tmm byj�~tmmj <� [12(m� 1)pm+ 2]�MkRk : (22)Note that ~tmm should be nonnegative in the reduction algorithm. If there is a breakdownat the �nal step, it means that zero is within the bounded interval[~tmm � (12(m� 1)pm+ 2)�MkRk ; ~tmm + (12(m� 1)pm+ 2)�MkRk] :Thus, Park and Eld�en's suggestion to put a zero when a breakdown occurs is acceptable.Consequently, combining (16), (21), and (22), we derive a relational error bound for thereduction algorithm as kEk � qk�~T 0k2 + j�~tmmj2 + k�~yHk2<� [12(m� 1)pm+ O(m)]�MkRk : (23)Therefore, we have shown that the combined algorithm (Algorithm 2.5) has relational sta-bility.Finally, since the two-step procedure use either left rotations or permutations (if a zero isassigned), the error bound in (23) holds for the rank-revealing case. Thus the rank-revealingcombined algorithm also has relational stability.5 Experimental ResultsIn this section, we show some experimental results for the rank-revealing downdating prob-lem. Several combinations of full-rank algorithms can be applied to the signal and noiseparts. However, considering the properties and complexity for each algorithm, we choosethe following three combinations as our test algorithms:Phase Algorithm A Algorithm B Algorithm CSignal LINPACK/CSNE Reduction CombinedConnection Hyperbolic Hyperbolic Chambers'/ZeroesNoise LINPACK/Reduction Reduction Combined13



Note that the LINPACK algorithm cannot be present alone in any phase because it mustbe with a backup algorithm to recover from a possible breakdown at Step 2.We construct a 100�8 test matrixK whose entries are taken from a uniform distributionin (0; 1). Some portions of the matrix K are multiplied by scalars  and � to make variednumerical ranks. Then we multiply K on the right by a random unitary matrix. The sizeof the window function is 12.To estimate the numerical rank, we need a tolerance described in [1]. The tolerance isan upper bound for the sum of squares of the singular values in the noise part and workslike a barrier that separates the signal and noise parts. The numerical rank d is chosen asthe smallest integer such that the norm of the resulting matrix C is less than the tolerance.Suppose that the sizes of the noise collected in sensors are roughly the same. It hasbeen shown in [3] that the sum of the squares of the (m� d) smallest singular values of thedata matrix sampled by the rectangular windowing method satis�es�2d+1 + � � �+ �2m � (m� d)�2 � (window size) ;where � is the noise size. Therefore, in our tests, the tolerances are chosen astol u =  u � � �p12(8� d) ; for the updating algorithm,tol d =  d � � �p12(8� d+ 1) ; for the deation algorithm.The factors  u and  d are chosen by users to control the the accuracy of the approximatesignal subspace. In our tests, the factor  u is set to 1 and the factor  d is chosen to makeall three test algorithms give correct ranks.Suppose that we partition the covariance matrix of the data matrix Z asA = ZHZ = " As AcAHc An # ;where As is of order d. We test the accuracy of the signal part by computing the relativeerror norm kAs � ~THs ~TskFkAskF ;where ~Ts is the computed Ts. Let Z = W�Y H be the singular value decomposition of thematrix Z, where W and Y are unitary matrices. For the accuracy of the noise part, wecompute the sum of the sines of the canonical angles between the subspaces spanned by thelast 8� d columns of the matrices V and Y . Finally, we measure the relative error norm ofthe covariance matrix kA� ~TH ~TkFkAkF ;where ~T denotes the computed T . All computations use double-precision IEEE oating-point arithmetic.To make a fair comparison, we ran 50 trials for each test. The average costs over 50trials, 88 downdates per trial, for each test are given in Table 1.Test 1 & 2: Our �rst test matrix has a �xed numerical rank of 4. The test matrix KH isconstructed as 14
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1 25 50 75 100where the gray area is multiplied by � = 10�4 for Test 1 and by � = 10�8 for Test2. The factor  d is set to 4 and 8 for Test 1 and 2 respectively. Tables 2 and 3 showthe average results of the rank estimates, the relative error norms, and the conditionnumbers of the matrix R. No breakdown occurs, so the LINPACK algorithm is alwaysused in Algorithm A. All three algorithms give good results. However, Table 1 showsthat the average cost of Algorithm C is less than that of the other two.To make an ill-conditioned signal or noise part, we now increase the condition numberof Rs or G by applying another scalar .Test 3: Suppose that we have one signal stronger than others. The test matrix KH lookslike
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1 55 10015 40 70 80where the light gray area is multiplied by � = 10�7 and the dark gray area is multipliedby  = 102. The scalar  makes Rs ill-conditioned around those positions with asharp rank drop. We choose the factor  d = 20. The results are given in Figure 2and Figure 3.In the �rst graph of Figure 2, we also mark the position where there is a breakdown.A \�" means that the CSNE algorithms is applied instead of the LINPACK algorithm.A \+" represents an assignment of 0 in the signal part in the reduction algorithm (nohyperbolic rotation is applied). A \�" shows that the combined algorithm assigns a0 in the signal part and applies the plane rotations to eliminate the last row of thecorrected F .Algorithms A and B have a large relative error for the signal part when a breakdownoccurs. Because of the ill-conditioned Rs, the solutions to the triangular linear systemsin Algorithm A are less accurate, even if the CSNE algorithm corrects it by one step ofre�nement. For Algorithm B, the reduction steps in the signal part not only transferthe norm of the vector zHs to its last component but also transfer most of the energyof Rs to its last column. The enlargement of the arguments at Step 2 in Algorithm 2.4increases the absolute error when we assign a 0 to tdd. Algorithm C still has goodperformance in this test. 15



Test 4: We construct the test matrix KH as
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1 55 10015 40 70 80where the light gray area is multiplied by � = 10�6 and the dark gray area is multipliedby  = 10�9. The factor  d is set to 6. The scalar  makes G ill-conditioned so thatthe data matrix behaves similarly to the one with large sensor-to-signal ratio (m=d).Figure 4 shows the results. No breakdown occurs in any algorithm. However, therelative errors for the signal part of Algorithm A and B jump when the numericalrank increases. We �nd that the large errors actually start from the numerical rankdegeneracy around position 26 shown in Figure 5. This is due to the ill-conditioned Gand the inaccurately computed noise part when downdating by hyperbolic rotations.Again, Algorithm C shows good results.6 ConclusionsWe have presented a new algorithm, the combined algorithm, and shown its good perfor-mance on several ill-conditioned downdating problems. The combined algorithm has thefollowing features:� The work per downdate is O(m2).� The algorithm is as e�cient as Chambers' algorithm and does not break down.� Since the algorithm does not use hyperbolic rotations, it has relational stability withthe coe�cient km = 12(m� 1)pm for the full-rank case and km = 18(m� 1)pm forthe rank-revealing case.We believe that the combined algorithm is suitable for real-time computations.AcknowledgmentsI thank Dianne P. O'Leary and Gail Pieper for very helpful comments.References[1] G. W. Stewart. An updating algorithm for subspace tracking. IEEE Trans. SignalProcessing, 40:1535{1541, 1992.[2] E. C. Boman, M. F. Gri�en, and G. W. Stewart. Direction of arrival and the rank-revealing URV decomposition. In Proceedings of ACASSP-91, Washington, D.C., 1991.IEEE. 16
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Algorithm A Algorithm B Algorithm CTest 1 533 922 256Test 2 533 922 524Test 3 624 920 278Test 4 571 920 260Table 1: Average operations count (ops) for all tests
Ave. Rank Ave. Error Ave.Algorithm Estimate Signal Noise Cond(R)A 4 2.6937e-15 5.9723e-04 9.6484e+04B 4 3.2455e-15 5.9723e-04 9.6484e+04C 4 2.1222e-15 5.9723e-04 9.6484e+04Table 2: Average results of the rank estimates, the signal and noise errors, and the conditionnumbers of R for Test 1 (� = 10�4)Ave. Rank Ave. Error Ave.Algorithm Estimate Signal Noise Cond(R)A 4 2.3847e-15 6.2704e-08 1.0911e+09B 4 2.8806e-15 6.2704e-08 1.0911e+09C 4 2.3357e-15 6.2704e-08 1.0911e+09Table 3: Average results of the rank estimates, the signal and noise errors, and the conditionnumbers of R for Test 2 (� = 10�8) 18
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