
ANALYTIC STREAMLINE CALCULATIONSON LINEAR TETRAHEDRADarin P. Diachin� and James A. HerzogyMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439fdiachin,herzogg@mcs.anl.govAbstractAnalytic solutions for streamlines within tetra-hedra are used to de�ne operators that accuratelyand e�ciently compute streamlines. The methodpresented here is based on linear interpolation, andtherefore produces exact results for linear velocity�elds. In addition, the method requires less com-putation than the forward Euler numerical method.Results are presented that compare accuracy mea-surements of the method with forward Euler andfourth-order Runge-Kutta applied to both a linearand a nonlinear velocity �eld.1 IntroductionStreamlines are a common tool used to visualizesteady ow �elds. They are generated by calculat-ing integral curves along a given static velocity �eldand can be interpreted as the path a massless parti-cle would follow when placed within the �eld. Themotion of these massless particles is de�ned byddtp(t) = u(p(t)); (1)where p(t) represents the particle's position withinthe �eld, u(p(t)) is the velocity of the �eld atthe given position, and t is a parameter along thestreamline. Throughout this paper we scale t so thatit is equivalent to the time scale of the velocity �eld.Many ow �elds in engineering and scienti�c ap-plications are computed on a discrete mesh by us-ing �nite di�erence, �nite volume, or �nite element�Graduate Research Appointee at ANL. Doctoral candi-date at Northwestern University in Theoretical and AppliedMechanicsyGraduate Research Appointee at ANL. Doctoral candi-date at StanfordUniversity in Scienti�cComputing and Com-putational Mathematics

techniques. The work presented here pertains to cal-culating streamlines on tetrahedral meshes with ve-locities de�ned at the vertices. Our method can beapplied to hexahedral meshes by decomposing eachcell into �ve or six tetrahedra. One such decomposi-tion algorithm is presented by Kenwright and Lane.2Traditionally, streamlines are calculated by nu-merically integrating equation (1). Care must betaken to choose an appropriate time step for theseintegration techniques to maintain numerical accu-racy and stability. Darmofal and Haimes provide ananalysis of many integration algorithms used for cal-culating streamlines.1 To ensure numerical stabilityand maintain local error bounds, they suggest us-ing the eigenvalues of the velocity tensor along witha method-dependent ampli�cation function to com-pute a time step.By using analytic solutions for streamlines on lin-early varying �elds, we have eliminated the necessityfor bounding the time step. By discretely steppingalong these analytic streamlines, we achieve accura-cies that are consistently better than the commonlyused fourth-order Runge-Kutta method. To main-tain e�ciency, we use a technique similar to a spe-cialized fourth-order Runge-Kutta method by Siko-rski et al.5 Our method requires fewer computationsthan the forward Euler integration technique imple-mented with a constant time step, provided enoughmemory is available to store a 3 � 3 matrix and a3-vector for every cell through which the streamlinepasses. We will refer to our method as ANTS, ab-breviated for analytic time stepping.The remainder of this paper is organized as fol-lows. In the next section we review the generalframework for computing streamlines, and in Sec-tion 3 we provide an overview of the specializedfourth-order Runge-Kutta (SRK4) method men-tioned above. Sections 4 and 5 present the analyticsolutions for streamlines and their subsequent inte-gration into the ANTS algorithm. Section 6 presents1

a few important aspects of our implementation, andSection 7 provides accuracy and timing results forstreamline calculations performed on both linear andnonlinear velocity �elds. Section 8 summarizes ourconclusions.2 Calculating StreamlinesPick a seed location, p(0), for a streamlinet 0While the particle is in the domainLocate the mesh cell containing p(t)Transform the cell into computational (1)space if necessaryWhile the particle is in the cellInterpolate the particle's velocity (2)at time tIntegrate equation (1) to get the (3,4)particle's position at time t+ ht t+ hEndwhileMap the streamline back to physical (1)space if necessaryEndwhileFigure 1: Common numerical algorithm for comput-ing streamlinesThe general algorithm for calculating a stream-line on a discrete mesh is provided in Figure 1. The�rst important step is locating the cell in the meshthat contains the initial position of the streamline.While the e�ciency of an algorithm for searching anentire mesh to locate this cell is largely dependent onthe shape of the domain and the nature of the meshdata structure, much work has been done develop-ing general-purpose algorithms for point location inindividual cells. In particular, there exist e�cient al-gorithms for point location in both tetrahedral andhexahedral cells.2With some streamline calculation algorithms thenumerical integration of equation (1) is performedmore e�ciently in a transformed space.6 While weperform our integration in physical space, we douse a transformation from physical coordinates tocanonical coordinates to formulate the governingequation for a streamline. This transformation isdiscussed in Section 4.Interpolation techniques are required to estimatethe velocity in equation (1) at any point in the do-main using the discrete velocity values at nearby

grid points. ANTS is based on linear interpolationwhich provides a continuous velocity �eld over theentire domain. However, the method results in dis-continuities in the acceleration at cell boundaries fornonlinear velocity �elds. Linear interpolation is alsodescribed in detail in Section 4.The steps responsible for introducing numericalerror are numbered on the right-hand side of Figure1. The �rst source of error is associated with thetransformation to computational space. This erroris generally greater for hexahedral cells due to thenonlinear transformations commonly used.2, 6 SinceANTS does not require a transformation to compu-tational space, it does not introduce error of type1. Type 2 error is introduced when the interpolationfunction does not match the nature of the velocity�eld. For example, linear interpolation is exact onlyon linearly varying �elds. In the case of a quadrati-cally varying �eld, type 2 error can be managed byusing quadratic interpolation techniques or, less ef-fectively, by reducing the cell size.Two types of error are associated with integratingequation (1) using linear interpolation on tet meshes.Type 3 error is the numerical error introduced bythe speci�c integration technique and is the type oferror that is greatly reduced with ANTS. Type 4error is associated with the discontinuity in acceler-ation across cell boundaries. Care must be taken tolimit the amount of velocity information used froma given cell in calculations performed in neighboringcells. For instance, ANTS, SRK4, and forward Eu-ler schemes all use velocity information interpolatedat a position near a face of a cell to track across theboundary into a neighboring cell. If the time stepis too large, a signi�cant amount of error will beintroduced due to the discontinuity in acceleration.Fourth-order Runge-Kutta has the same problem ifone-fourth the time step is su�ciently large.Type 4 error can be eliminated using the resultspresented in Section 5 of this paper. The process re-quires computing successive intersections of the an-alytic solution with subsequent cell faces. However,this process is, in general, computationally more ex-pensive than ANTS.3 Specialized Fourth-Order Runge-Kutta MethodThe ANTS algorithm is based on a specializedversion of the fourth-order Runge-Kutta (SRK4)method.5 In this method, Sikorski et al. use a linearinterpolation function on tetrahedra to reduce each2

time step of the integration to a matrix-vector multi-plication and a vector-vector addition, provided thetet geometry and velocity data are static and a con-stant time step is used. They demonstrate how thefourth-order Runge-Kutta formulae in this case canbe reduced to a linear operation,p(t+ h) = Hp(t) + d; (2)where H is a constant 3� 3 matrix, d is a constant3-vector, and p(t) is any position within the tetra-hedron. We will refer to H as the time-steppingmatrix and d as the time-stepping vector, and wewill refer to equation (2) as the time-stepping for-mula. Note that the time step for SRK4 must becarefully chosen to maintain numerical stability. Weshow in this paper that error due to integration canbe reduced by computing the time-stepping matrixand vector using the analytic solution to the stream-line instead of the fourth-order approximation usedin SRK4. The new algorithm for calculating stream-lines is provided in Figure 2.Calculate the time-stepping matrix and time-stepping vector for each cell using theanalytic formulation for streamlinesPick a seed location, p(0), for a streamlinet 0While the particle is in the domainLocate the mesh cell containing p(t)While the particle is in the cellCalculate p(t+ h) using the time-stepping formulat t+ hEndwhileEndwhileFigure 2: Analytic time-stepping algorithm for com-puting streamlines4 Governing EquationIn this section we formulate the governing equa-tion for streamlines that is used in deriving the time-stepping matrix and vector. The derivation com-prises two fundamental steps: �rst, the linear in-terpolation function is used to derive the equationfor streamlines in canonical coordinates, and second,the canonical equation is mapped into physical spaceby using the transformation between the two spaces.

Regarding notation, we use the variable name nfor positions in canonical space and v for canon-ical velocities, while p and u represent the respec-tive quantities in physical coordinates (see Figure 3).Further, the following subscript convention is usedto relate tets under the transformation from physicalto canonical space: variables with subscript zero cor-respond to data de�ned on the vertex mapped to thecanonical origin, subscript one corresponds to dataon vertices mapped to (1; 0; 0), subscript two corre-sponds to (0; 1; 0) and subscript three corresponds tovertex (0; 0; 1). We refer to p0 as the tetrahedron'sorigin vertex.
x

y

3
2

0

z

1

p

p

p

p

p

(1,0,0)

(0,0,1)

ζ

η

ξ

(0,0,0) (0,1,0)

nFigure 3: The tetrahedron on the left represents acell in physical coordinates, and the tetrahedron onthe right is the canonical tetrahedron.4.1 Linear InterpolationA linear interpolation scheme assumes that bothscalar and vector data vary linearly in each coordi-nate direction within the cell. The scalar interpola-tion formula for the canonical tet iss(�; �; �) = (s1 � s0)�+ (s2 � s0)�+ (s3 � s0)� + s0;(3)where s could represent any of a number of scalar pa-rameters, including temperature or chemical speciesconcentration. Here, s0; s1; s2, and s3 are the valuesof s at the vertices.The vector interpolation formula is analogous:v(�; �; �) = (v1 � v0)� + (v2 � v0)� (4)+(v3 � v0)� + v0= V n+ v0:The matrix V has columns containing the di�erenceof the vertex velocity vectors in canonical coordi-nates. Noting that the velocity is the time derivative3

of the position, n(t), and writing each coordinate interms of the time t, we have the governing equationfor a streamline in canonical coordinates:dn(�(t); �(t); �(t))dt = V n(�(t); �(t); �(t)) + v0: (5)4.2 Transformation from Physicalto Canonical CoordinatesTransformations between physical space and com-putational space are common for streamline calcula-tion algorithms on both tetrahedral and hexahedralmeshes. For example, transformations are often usedin point location and data interpolation algorithms.In the case of tetrahedral meshes, a point is deter-mined to be in a given cell if the point's canonicalcoordinates with respect to the cell are all greaterthan zero and the sum of the canonical coordinatesis less one. Further, linear interpolation in physi-cal coordinates for scalar or vector quantities canbe performed by mapping into canonical coordinatesand applying equation (3) or (4), respectively.A distinct advantage of using tetrahedral cellsrather than hexahedral cells is that the transforma-tion from physical space to canonical space is lin-ear. This property allows for an analytic solution tothe inverse transformation, which is essential to thederivation of the analytic solutions for streamlinesin physical coordinates. In the case of hex cells, thetransformation to computational space is nonlinearand requires expensive iterative methods to perform.2 The transformation from physical to canonical co-ordinates is provided below:n(�; �; �) = B(p(x; y; z)� p0); (6)B = [p1 p2 p3]�1 :Here, B is the inverse of the 3�3 matrix containingthe vectors along the edges emanating from the tet'sorigin vertex (see Figure 3).Several quantities related to the transformation,which are used in deriving the de�ning equation forstreamlines in physical coordinates, are provided be-low:n(�(t); �(t); �(t)) = B(p(x(t); y(t); z(t)) � p0);ddtn(�(t); �(t); �(t)) = B ddtp(x(t); y(t); z(t));V = BU;v0 = Bu0:

U is the matrix with columns containing the di�er-ence in vertex velocities, and u0 is the velocity atthe tet's origin. We derive the governing equationfor streamlines in physical coordinates by replacingthe quantities above into the governing equation forstreamlines in canonical coordinates (equation (5)):ddtp(x(t); y(t); z(t)) = Ap(x(t); y(t); z(t)) (7)�Ap0 + u0;A = UB:5 Analytic SolutionsThis section outlines the methods for deriving thetime-steppingmatrix and time-stepping vector usinganalytic solutions to equation (7). There are fourgeneral subsets of solutions to this equation depend-ing on the rank of A. Each case is presented inde-pendently below. For ease of notation, the physicalcoordinates, p(�(t); �(t); �(t)), will be written as afunction of t for the remainder of this paper. Also,we equate the rank of the system with the rank ofA.5.1 Rank Three SystemsThe solution to equation (7) for a full rank systemis provided below:p(t) = eAtk1 + k2; (8)k1 = p(0)� k2;k2 = p0 � A�1u0;where p(0) is the initial physical position. The ma-trix eAt is the exponential of the matrix At and isde�ned with the power serieseAt = I +At+ A2t22! + ::: : (9)The exponential matrix is discussed further by Molerand Van Loan.3 Note that A has full rank in thiscase, and therefore the inverse of A exists.The time-stepping formula provides the positionof the particle at time t+h for a constant time steph. The formula is derived by evaluating p(t+h) andwriting the result in terms of p(t):p(t+ h) = eA(t+h)k1 + k2; (10)= eAhp(t) + (I � eAh)k2;= Hp(t) + d:4

This formulation uses the property of exponentialmatrices that exp(A(t + h)) = exp(At) exp(Ah) forscalars t and h.5.2 Rank Two SystemsThe solutions to the governing equation for rankde�cient systems can be derived by changing coor-dinate systems, ~p = Wp, where W is orthonormalmapping. The critical step is to �nd this mappingW under which the transformed matrix, ~A, has theappropriate number of zero rows. A rank two ~A ma-trix will have one zero row, and a rank one ~A willhave two zero rows. In the case of a rank two sys-tem, the governing equation is written in the newcoordinate system as follows:24 _~x_~y_~z 35 = 24 ~a11 ~a12 ~a13~a21 ~a22 ~a230 0 0 3524 ~x~y~z 35+ 24 ~w1~w2~w3; 35 ;~w = � ~w1 ~w2 ~w3 �T = ~u0 � ~A~p0:The solution in the ~z coordinate is found using directintegration of the constant ~w3,~z(t) = ~w3t+ ~z(0); (11)where ~z(0) is the initial ~z coordinate. We will referto the solution in the ~x and ~y coordinates P(t) =[~x(t); ~y(t)]T :P(t) = eAt [P(0)� �1~z(0)� �2] +�t + �1~z(0) + �2;A = � ~a11 ~a12~a21 ~a22 � :P(t) is a function of the exponential of the left prin-ciple submatrix of ~At, the initial position ~p(0) =[~x(0); ~y(0); ~z(0)]T , and the 2-vectors �;�1, and �2de�ned below:� = ~w3det(A) � ~a12~a23 � ~a13~a22~a11~a23 � ~a13~a21 � ;�1 = 1det(A)2 4Xi=1 � s1is2i � :s11 = ~a21~a12~a22~a23; s21 = ~a12~a21~a11~a23;s12 = �~a21~a212~a13; s22 = �~a12~a221~a13;s13 = ~a12~a11~a22~a23; s23 = ~a21~a11~a22~a13;s14 = �~a11~a222~a23; s24 = �~a22~a211~a23;�2 = 1det(A)2 8Xi=1 � t1it2i � :

t11 = ~a21~a12~a22 ~w1; t21 = ~a12~a23~a11 ~w2;t12 = �~a21~a12~a13 ~w3; t22 = �~a12~a21~a23 ~w3;t13 = ~a12~a11~a23 ~w3; t23 = ~a23~a22~a13 ~w3;t14 = ~a12~a11~a22 ~w2; t24 = ~a21~a11~a22 ~w1;t15 = ~a12~a23~a22 ~w3; t25 = ~a21~a11~a13 ~w3;t16 = �~a13~a222 ~w3; t26 = �~a12~a221 ~w1;t17 = �~a11~a222 ~w2; t27 = �~a22~a211 ~w2;t18 = �~a22~a211 ~w1; t28 = �~a23~a211 ~w3:Note if det(A) = 0 another orthonormal mappingWwould have to be used to achieve a solution of thisform.The time-stepping matrix and vector in the tildecoordinate system are found using the same pro-cedure used for the rank three system. Position~p(t + h) = [P(t + h); ~z(t + h)]T is calculated andwritten in terms of ~p(t). The results are below:~H = � eAh (I � eAh)�1~0T 1 � ;~d = � (I � eAh)�2 + �h~w3h �Finally, ~H and ~d are mapped into physical coor-dinates using the following transformations:H = W ~HWT ; (12)d =WT ~d:5.3 Rank One SystemsRank one systems are solved similarly to rank twosystems. An orthonormal mapping is used such thatthe two bottom rows of ~A are zeroed:24 _~x_~y_~z 35 = 24 ~a11 ~a12 ~a130 0 00 0 0 3524 ~x~y~z 35+ 24 ~w1~w2~w3 35 :The solutions in ~y and ~z are both linear in t, and ~xis a function of ~p(0), the exponential of ~a11, and thescalars � and � de�ned below:~x(t) = �~x(0) + ~a12~a11 ~y(0) + ~a13~a11 ~z(0) � �� e~a11t�~a12~a11 ~y(0)� ~a13~a11 ~z(0) + �t+ �;� = �~a12 ~w2 + ~a13 ~w3~a11 ;� = �~a11 ~w1 + ~a12 ~w2 + ~a13 ~w3~a211 ;~y(t) = ~w2t + ~y(0);~z(t) = ~w3t + ~z(0):5

Note if ~a11 = 0, another orthonormal mapping Wwould have to be employed to achieve a solution hav-ing the above form.The time-stepping matrix and vector quantitiesare derived analogously to the rank three and twomethods:~H = 24 e~a11h ~a12~a11 (e~a11h � 1) ~a13~a11 (e~a11h � 1)0 1 00 0 1 35 ;~d = 24 (1� e~a11h)� + �h~w2h~w3h 35 :These quantities are mapped into physical space us-ing transformations in equation (12).5.4 Rank ZeroRank zero systems occur when the four veloci-ties at the vertices are the same, thus resulting ina zero di�erence matrix. In such a tet, a particlewill track parallel to this velocity value, u. There-fore, the time-stepping matrix is simply the identitymatrix and the time-stepping vector is d = hu.6 ImplementationIn this section we discuss four important issuesrelevant to our implementation of ANTS. The �rstissue pertains to the determination of the rank of A.We use a two-step process. First we compute the de-terminant. If det(A) is su�ciently large with respectto the in�nity norm of A (greater than 10�12), weconclude the rank of A is three; otherwise, we com-pute the singular value decomposition,A = UDSV TD .The matrices UD and VD are orthonormal, and S isa diagonal matrix of singular values, �1; �2; and �3.The numerical rank is de�ned to be the number ofratios �1�1 ; �2�1 , and �3�1 greater than machine precision.Second, the singular value decomposition is alsoused to implement the rank de�cient system coordi-nate mapping discussed in Section 5. We use UTD tomap physical space into the appropriate coordinates:~p = UTDp: (13)Substituting into equation (7) gives ~A = SVDUTD .Third, we consider the treatment of rank threesystems that are numerically rank two (and simi-larly rank two matrices that are numerically rankone). We have performed several tests that involvedcomparing the rank two time-stepping matrix with

the resulting time-stepping matrix for a slightly per-turbed, numerically rank three system. We have ob-served that the di�erence between the two matricesis consistent with the perturbation. This suggestsit is acceptable to approximate solutions of numer-ically rank two systems with exact rank two solu-tions. We are currently developing the theory tostudy this question quantitatively. Note this prob-lem can be side-stepped using SRK4 to compute thetime-stepping quantities for numerically rank de�-cient systems.Finally, Moler and Van Loan discuss numerousmethods for calculating the exponential of a matrix.3We prefer the matrix decomposition methods be-cause the decomposition of the matrixA can be per-formed once and used in the e�cient calculation ofexp(At) for all scalar values of t. In particular, weuse the Schur decomposition, A = ZTZT , where Zis an orthonormalmatrix and T is quasi-upper trian-gular. The exponential of At is calculated as follows:eAt = ZeTtZT : (14)To compute exp(T t), we use an algorithm in whichthe exponential of the block diagonals of T are calcu-lated explicitly, and the o�-diagonals are calculatedby using a recursive relation involving the exponen-tiated block diagonals.47 ResultsThe analytic method (ANTS) was compared withtwo common numerical methods, �rst order forwardEuler (FE) and fourth-order Runge-Kutta (RK4).Critical points of the analysis include the accuracy,computation time, and memory required by the var-ious algorithms.Given any velocity �eld u(p(t)) and initial posi-tion p0, the numerical methods provide an approx-imate solution in the form of a sequence of points(pi) for i = 0 : : :N , with pi � p(ti) for some discretetime ti. We denote the ith time-step by hi = ti�ti�1for i = 1; : : : ; N . The two numerical methods FEand RK4 can be de�ned by the method used to ob-tain pi from pi�1. For Forward Euler,pi = pi�1 + hiu(pi�1): (15)Fourth-order Runge-Kutta is de�ned bypi = pi�1 + 16 (F1 + 2F2 + 2F3 + F4) ; (16)F1 = hiu(pi�1); (17)F2 = hiu(pi�1 + F1=2); (18)6

F3 = hiu(pi�1 + F2=2); and (19)F4 = hiu(pi�1 + F3): (20)The accuracy and stability of the methods aredependent upon the selection of hi.1 Our analysisincludes both constant time step solutions and time-adapted solutions. The time step was adapted basedon a variation of the method proposed by Haimesand Darmofal for steady ow �elds1 in which thevelocity tensor was evaluated and used to select atime step that would control the average global errorof the result.Two model ow �elds were used to test the meth-ods. The �rst is similar to that used by severalresearchers.1, 5, 6 The velocity �eld is given by thelinear functionu1(x; y; z) = �x� 3y; (21)v1(x; y; z) = �y + 3x; (22)w1(x; y; z) = �z: (23)Provided with initial coordinate (x0; y0; z0), this�eld has exact streamlines given byx1(t) = e�t (x0 cos(3t)� y0 sin(3t)) ; (24)y1(t) = e�t (x0 sin(3t) + y0 cos(3t)) ; (25)z1(t) = z0e�t: (26)The �eld has the notable property that it is inter-polated exactly on the cells used for our methods.Therefore, any error introduced into the solution isa result of the numerical method. A second �eld,which is not interpolated exactly, was used to inves-tigate the behavior of ANTS for nonlinear �elds andis given byu2(x; y; z) = �:2 xpx2 + y2 � 2y; (27)v2(x; y; z) = �:2 ypx2 + y2 + 2x; (28)w2(x; y; z) = �z: (29)This �eld has the exact solutionx2(t) = (r0 � :2t) cos(�0 + 2t); (30)y2(t) = (r0 � :2t) sin(�0 + 2t); (31)z2(t) = z0e�t; where (32)r0 = qx20 + y20 ; and (33)�0 = arctan(y0=x0): (34)Two measures of accuracy are used to evaluatethe methods. The �nal error is de�ned to be Ef =

Forward Euler

RK4

Analytic

0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16
Accuracy of Numerical Integrators

−log(h)

−
lo

g(
E

f)Figure 4: Order of the methods, using �eld 1kpN�p(tN)k. Our de�nition of average global error,� = 1Tf NXi=1 hikpi � p(ti)k; where (35)Tf = NXi=1 hi; (36)is adapted from that given by Darmofal andHaimes.1All software was written in C, and the numericalresults were obtained on a Silicon graphics worksta-tion with a single, 100 MHz MIPS R4000 processor.A cubic mesh with 1000 cubic cells was decomposedinto a tetrahedral mesh. Streamline calculations for�eld 1 were initiated with p0 = (�:5;�:6;�:4) andterminated once the time had accumulated beyond4.0 units. Streamlines for �eld 2 were initiated withp0 = (1:2; :2; :2) and terminated at 5.0 time units.The orders of the methods in terms of the �nal er-rors are depicted in �gure 4. The numerical methodsare as expected, with FE having order 1 and RK4having order 4. The order of the analytical solutionis approximately machine precision at 15. The smallreduction in accuracy with smaller time steps can beattributed to cumulative roundo� errors. Figure 5depicts the calculated streamlines for a large �xedtime step on �eld 1. The time step has been chosensuch that the RK4 stability limit is exceeded.1 Theanalytic solution remains accurate and stable underthese conditions. Figure 6 shows the streamlines ascalculated for �eld 2. Here we see that FE is unsta-ble, RK4 is stable but not very accurate, and ANTSis stable and accurate. In order to provide the fullpicture, �gures 7 and 8 show x and y as functions of7

Forward Euler

RK4

Analytic

True

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

yFigure 5: Plots of the solutions with constant h =:90 on linear velocity �eld
Forward Euler

RK4

Analytic

True

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

x

yFigure 6: Plots of the solutions with constant h =:90 on nonlinear velocity �eldt. Note that we restrict our graphs to the x-y planebecause these are the more interesting views.Timing results were obtained by averaging 100streamline calculations on �eld 1. The best per-formance of ANTS is obtained by precomputing Hand d for each cell and then using (2) to computethe streamlines. The �rst set of timing results usesprecomputed matrices and involves streamlines com-puted with a predetermined constant time step. Thetime required for the ANTS solution was typically.63 and .28 times that required for FE and RK4, re-spectively. For a mesh with a large number of cells,computer memory may not be available to precom-pute and store H and d. In this case, the ANTSsolution took 2.3 times as long as FE and was ap-

Forward Euler

RK4

Analytic

True

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

t

x Figure 7: Solution on nonlinear �eld h = :90
Forward Euler

RK4

Analytic

True

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

2

2.5

t

y Figure 8: Solution on nonlinear �eld h = :90proximately equal in speed to RK4.In the previous timings, all methods completedthe same number of time steps and obtained di�er-ent levels of accuracy. A more meaningful compari-son of computational costs was obtained by adaptingthe time step and requiring that all of the methodssatisfy a given bound of the average global error.This takes into account the fact that less accuratemethods require smaller, and hence more, time stepsto obtain a solution of comparable accuracy. Thetiming data were obtained by specifying a bound onthe average global error and solving a modi�ed formof the time step equation given by Darmofal andHaimes.1The computation time is plotted against the er-rors obtained by the methods in �gure 9. Thecurve for FE contains only two data points, in or-8

Forward Euler

RK4

Analytic

10
−20

10
−15

10
−10

10
−5

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Avg Global Error

C
om

pu
ta

tio
n

tim
e

pe
r

st
re

am
lin

e
(s

)

Figure 9: Computation time as a function of averageglobal error requirements.Table 1: Timings for matrix computations, 1 unitequals the time required for a single Ax+ b compu-tation where A is a 3� 3 matrixMatrix Time (units)Transform 3.2A 3.1A�1 2.0Schur decomposition 29.5H and d 10.4der to preserve the scale on the timing axis. Clearly,however, FE is computationally expensive comparedwith RK4 and ANTS. In the graph, the ANTS so-lutions appear to become faster as the tolerance de-creases. However, the analytic solutions were com-puted on the same time steps as the RK4, and thebehavior observed corresponds to increases in cu-mulative roundo� error as the time step is adaptedto the error requirement. The ANTS solutions arefaster and more accurate than RK4 in this case.Because precomputed matrices require a largeamount of computer memory for storage and im-prove the speed of the streamline calculations, timesrequired to compute the respective matrices aregiven in table 1. The times have been normalized bythe time required to compute a matrix vector multi-plication followed by a vector addition. These tim-ings were obtained by averaging the times requiredfor approximately 30,000 matrix evaluations on �eld2. The balance of memory use and computationalspeed will depend on available resources and prior-ities for a given application. If the time steps areknown at initialization time, it is recommended that

H and d be computed and stored for each cell. If thetime step is not known until computation time, pre-computation and storage of A, A�1, and the Schurdecomposition will speed the calculation of H and donce a time step is selected.8 ConclusionWe have taken advantage of the fact that ana-lytic solutions exist for streamlines in a linear veloc-ity �eld to �nd analytic solutions to linearly inter-polated �elds resulting from many ow-solving tech-niques. The accuracy of the analytical streamlines isapproximatelymachine precision and superior to theresults from the common forward Euler and fourthorder Runge-Kutta methods. In addition, by pre-computing matrices associated with the analyticaltechnique, the streamline calculations require lesstime than do both numerical methods. Therefore,if storage memory is available, the analytic solverprovides faster more accurate results than the twonumerical methods tested.The analytical method also appears to providestable solutions even when numerical methods havefailed. The test case of an inward-spiraling ow illus-trated that both of the numerical methods can failto properly capture the proper ow pattern, whereasthe analytical method succeeded.AcknowledgementsThis work was supported by the Mathematical,Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38. The authorswould like to thank Paul Plassmann, Carl Ollivier-Gooch, and Lori Freitag for helpful and insightfulconversations regarding the work presented in thispaper. References[1] D. L. Darmofal and R. Haimes. An analysis of3d particle path integration algorithms. Journalof Computational Physics, 123:182{195, 1995.[2] David N. Kenwright and David A. Lane. Opti-mization of time-dependent particle tracing us-ing tetrahedral decomposition. In Proceedingsof Visualization '95, pages 321{327. IEEE Com-puter Society Press, 1995.9

[3] Cleve Moler and Charles Van Loan. Nineteendubious ways to compute the exponential of amatrix. SIAM Review, 20:801{832, 1978.[4] B. N. Parlett. A recurrence among the elementsof functions of triangular matrices. Linear Alge-bra and Its Applications, 14:117{121, 1976.[5] K. Sikorski S. K. Ueng and Kwan-Liu Ma. Fastalgorithms for visualizing uid motion in steadyow on unstructured grids. In Proceedings of Vi-sualization '95, pages 313{320. IEEE ComputerSociety Press, 1995.[6] Susumu Shirayama. Processing of computed vec-tor �elds for visualization. Journal of Computa-tional Physics, 106:30{41, 1993.

10

