
A Directory Service for Configuring
High-Performance Distributed Computations

Steven Fitzgerald,1 Ian Foster,2 Carl Kesselman,1 Gregor von Laszewski,2

Warren Smith,2 Steven Tuecke2

1 Information Sciences Institute 2 Mathematics and Computer Science
University of Southern California Argonne National Laboratory

Marina del Rey, CA 90292 Argonne, IL 60439http://www.globus.org/
Abstract

High-performance execution in distributed computing
environments often requires careful selection and configu-
ration not only of computers, networks, and other resources
but also of the protocols and algorithms used by applica-
tions. Selection and configuration in turn require access
to accurate, up-to-date information on the structure and
state of available resources. Unfortunately, no standard
mechanism exists for organizing or accessing such informa-
tion. Consequently, different tools and applications adopt ad
hoc mechanisms, or they compromise their portability and
performance by using default configurations. We propose
a Metacomputing Directory Service that provides efficient
and scalable access to diverse, dynamic, and distributed
information about resource structure and state. We define
an extensible data model to represent required information
and present a scalable, high-performance, distributed im-
plementation. The data representation and application pro-
gramming interface are adopted from the Lightweight Di-
rectory Access Protocol; the data model and implementation
are new. We use the Globus distributed computing toolkit to
illustratehow this directory service enables the development
of more flexible and efficient distributed computing services
and applications.

1 Introduction

High-performance distributed computing often requires
careful selection and configuration of computers, networks,
application protocols, and algorithms. These requirements
do not arise in traditional distributed computing, where con-
figuration problems can typically be avoided by the use of

standard default protocols, interfaces, and so on. The situ-
ation is also quite different in traditional high-performance
computing, where systems are usually homogeneous and
hence can be configured manually. But in high-performance
distributed computing, neither defaults nor manual config-
uration is acceptable. Defaults often do not result in ac-
ceptable performance, and manual configuration requires
low-level knowledge of remote systems that an average
programmer does not possess. We need an information-
rich approach to configuration in which decisions are made
(whether at compile-time, link-time, or run-time [19]) based
upon information about the structure and state of the system
on which a program is to run.

An example from the I-WAY networking experiment il-
lustrates some of the difficulties associated with the configu-
ration of high-performance distributed systems. The I-WAY
was composed of massively parallel computers, worksta-
tions, archival storage systems, and visualization devices [6].
These resources were interconnected by both the Internet
and a dedicated 155 Mb/sec IP over ATM network. In this
environment, applications might run on a single or multi-
ple parallel computers, of the same or different types. An
optimal communication configuration for a particular situa-
tion might use vendor-optimized communication protocols
within a computer but TCP/IP between computers over an
ATM network (if available). A significant amount of infor-
mation must be available to select such configurations, for
example:� What are the network interfaces (i.e., IP addresses) for

the ATM network and Internet?� What is the raw bandwidth of the ATM network and
the Internet, and which is higher?

1



� Is the ATM network currently available?� Between which pairs of nodes can we use vendor pro-
tocols to access fast internal networks?� Between which pairs of nodes must we use TCP/IP?

Additional information is required if we use a resource lo-
cation service to select an “optimal” set of resources from
among the machines available on the I-WAY at a given time.

In our experience, such configuration decisions are not
difficult if the right information is available. Until now,
however, this information has not been easily available, and
this lack of access has hindered application optimization.
Furthermore, making this information available in a useful
fashion is a nontrivial problem: the information required to
configure high-performance distributed systems is diverse
in scope, dynamic in value, distributed across the network,
and detailed in nature.

In this article, we propose an approach to the design
of high-performance distributed systems that addresses this
need for efficient and scalable access to diverse, dynamic,
and distributed information about the structure and state
of resources. The core of this approach is the definition
and implementation of a Metacomputing Directory Service
(MDS) that provides a uniform interface to diverse infor-
mation sources. We show how a simple data representa-
tion and application programming interface (API) based
on the Lightweight Directory Access Protocol (LDAP)
meet requirements for uniformity, extensibility, and dis-
tributed maintenance. We introduce a data model suitable
for distributed computing applications and show how this
model is able to represent computers and networks of inter-
est. We also present novel implementation techniques for
this service that address the unique requirements of high-
performance applications. Finally, we use examples from
the Globus distributed computing toolkit [9] to show how
MDS data can be used to guide configuration decisions with
realistic settings. We expect these techniques to be equally
useful in other systems that support computing in distributed
environments, such as Legion [12], NEOS [5], NetSolve [4],
Condor [16], Nimrod [1], PRM [18], AppLeS [2], and het-
erogeneous implementations of MPI [13].

The principal contributions of this article are� a new architecture for high-performance distributed
computing systems, based upon an information service
called the Metacomputing Directory Service;� a design for this directory service, addressing issues of
data representation, data model, and implementation;� a data model able to represent the network structures
commonly used by distributed computing systems, in-
cluding various types of supercomputers; and

� a demonstration of the use of the information provided
by MDS to guide resource and communication config-
uration within a distributed computing toolkit.

The rest of this article is organized as follows. In Sec-
tion 2, we explain the requirements that a distributed com-
puting information infrastructure must satisfy, and we pro-
pose MDS in response to these requirements. We then de-
scribe the representation (Section 3), the data model (Sec-
tion 4), and the implementation (Section 5) of MDS. In
Section 6, we demonstrate how MDS information is used
within Globus. We conclude in Section 7 with suggestions
for future research efforts.

2 Designing a Metacomputing Directory Ser-
vice

The problem of organizing and providing access to in-
formation is a familiar one in computer science, and there
are many potential approaches to the problem, ranging from
database systems to the Simple Network Management Proto-
col (SNMP). The appropriate solution depends on the ways
in which the information is produced, maintained, accessed,
and used.

2.1 Requirements

Following are the requirements that shaped our design
of an information infrastructure for distributed computing
applications. Some of these requirements can be expressed
in quantitative terms (e.g., scalability, performance); others
are more subjective (e.g., expressiveness, deployability).

Performance. The applications of interest to us frequently
operate on a large scale (e.g., hundreds of proces-
sors) and have demanding performance requirements.
Hence, an information infrastructure must permit rapid
access to frequently used configuration information. It
is not acceptable to contact a server for every item:
caching is required.

Scalability and cost. The infrastructure must scale to large
numbers of components and permit concurrent access
by many entities. At the same time, its organization
must permit easy discovery of information. The human
and resource costs (CPU cycles, disk space, network
bandwidth) of creating and maintaining information
must also be low, both at individual sites and in total.

Uniformity. Our goal is to simplify the development of
tools and applications that use data to guide config-
uration decisions. We require a uniform data model
as well as an application programming interface (API)
for common operations on the data represented via that

2



model. One aspect of this uniformity is a standard rep-
resentation for data about common resources, such as
processors and networks.

Expressiveness. We require a data model rich enough to
represent relevant structure within distributed comput-
ing systems. A particular challenge is representing
characteristics that span organizations, for example net-
work bandwidth between sites.

Extensibility. Any data model that we define will be in-
complete. Hence, the ability to incorporate additional
information is important. For example, an applica-
tion can use this facility to record specific information
about its behavior (observed bandwidth, memory re-
quirements) for use in subsequent runs.

Multiple information sources. The information that we
require may be generated by many different sources.
Consequently, an information infrastructure must inte-
grate information from multiple sources.

Dynamic data. Some of the data required by applications
is highly dynamic: for example, network availability
or load. An information infrastructure must be able to
make this data available in a timely fashion.

Flexible access. We require the ability to both read and up-
date data contained within the information infrastruc-
ture. Some form of search capability is also required,
to assist in locating stored data.

Security. It is important to control who is allowed to update
configuration data. Some sites will also want to control
access.

Deployability. An information infrastructure is useful only
if is broadly deployed. In the current case, we require
techniques that can be installed and maintained easily
at many sites.

Decentralized maintenance. It must be possible to dele-
gate the task of creating and maintaining information
about resources to the sites at which resources are lo-
cated. This delegation is important for both scalability
and security reasons.

2.2 Approaches

It is instructive to review, with respect to these require-
ments, the various (incomplete) approaches to information
infrastructure that have been used by distributed computing
systems.

Operating system commands such as uname andsysinfo can provide important information about a partic-
ular machine but do not support remote access. SNMP [21]

and the Network Information Service (NIS) both permit re-
mote access but are defined within the context of the IP
protocol suite, which can add significant overhead to a high-
performance computing environment. Furthermore, SNMP
does not define an API, thus preventing its use as a compo-
nent within other software architectures.

High-performance computing systems such as PVM [11],
p4 [3], and MPICH [13] provide rapid access to configura-
tion data by placing this data (e.g., machine names, network
interfaces) into files maintained by the programmer, called
“hostfiles.” However, lack of support for remote access
means that hostfiles must be replicated at each host, compli-
cating maintenance and dynamic update.

The Domain Name Service (DNS) provides a highly dis-
tributed, scalable service for resolving Internet addresses to
values (e.g., IP addresses) but is not, in general, extensible.
Furthermore, its update strategies are designed to support
values that change relatively rarely.

The X.500 standard [14, 20] defines a directory service
that can be used to provide extensible distributed directory
services within a wide area environment. A directory service
is a service that provides read-optimized access to general
data about entities, such as people, corporations, and com-
puters. X.500 provides a framework that could, in principle,
be used to organize the information that is of interest to us.
However, it is complex and requires ISO protocols and the
heavyweight ASN.1 encodings of data. For these and other
reasons, it is not widely used.

The Lightweight Directory Access Protocol [24] is a
streamlined version of the X.500 directory service. It re-
moves the requirement for an ISO protocol stack, defining
a standard wire protocol based on the IP protocol suite. It
also simplifies the data encoding and command set of X.500
and defines a standard API for directory access [15]. LDAP
is seeing wide-scale deployment as the directory service of
choice for the World Wide Web. Disadvantages include its
only moderate performance (see Section 5), limited access
to external data sources, and rigid approach to distributing
data across servers.

Reviewing these various systems, we see that each is
in some way incomplete, failing to address the types of
information needed to build high-performance distributed
computing systems, being too slow, or not defining an API
to enable uniform access to the service. For these reasons,
we have defined our own metacomputing information in-
frastructure that integrates existing systems while providing
a uniform and extensible data model, support for multiple
information service providers, and a uniform API.

2.3 A Metacomputing Directory Service

Our analysis of requirements and existing systems leads
us to define what we call the Metacomputing Directory Ser-

3



vice (MDS). This system consists of three distinct compo-
nents:

1. Representation and data access: The directory struc-
ture, data representation, and API defined by LDAP.

2. Data model: A data model that is able to encode
the types of resources found in high-performance dis-
tributed computing systems.

3. Implementation: A set of implementation strategies
designed to meet requirements for performance, mul-
tiple data sources, and scalability.

We provide more details on each of these components in the
following sections.

Figure 1 illustrates the structure of MDS and its role in a
high-performance distributed computing system. An appli-
cation running in a distributed computing environment can
access information about system structure and state through
a uniform API. This information is obtained through the
MDS client library, which may access a variety of services
and data sources when servicing a query.

3 Representation

The MDS design adopts the data representations and API
defined by the LDAP directory service. This choice is driven
by several considerations. Not only is the LDAP data rep-
resentation extensible and flexible, but LDAP is beginning
to play a significant role in Web-based systems. Hence, we
can expect wide deployment of LDAP information services,
familiarity with LDAP data formats and programming, and
the existence of LDAP directories with useful information.
Note that the use of LDAP representations and API does not
constrain us to use standard LDAP implementations. As we
explain in Section 5, the requirements of high-performance
distributed computing applications require alternative im-
plementation techniques. However, LDAP provides an at-
tractive interface on which we can base our implementation.
LDAP also provides a mechanism to restrict the types of
operations that can be performed on data, which helps to
address our security requirements.

In the rest of this section, we talk about the “MDS repre-
sentation,” although this representation comes directly from
LDAP (which in turn “borrows” its representation from
X.500). In this representation, related information is or-
ganized into well-defined collections, called entries. MDS
contains many entries, each representing an instance of some
type of object, such as an organization, person, network, or
computer. Information about an entry is represented by one
or more attributes, each consisting of a name and a cor-
responding value. The attributes that are associated with
a particular entry are determined by the type of object the

entry represents. This type information, which is encoded
within the MDS data model, is encoded in MDS by associ-
ating an object class with each entry. We now describe how
entries are named and then, how attributes are associated
with objects.

3.1 Naming MDS Entries

Each MDS entry is identified by a unique name, called its
distinguished name. To simplify the process of locating an
MDS entry, entries are organized to form a hierarchical, tree-
structured name space called a directory information tree
(DIT). The distinguished name for an entry is constructed
by specifying the entries on the path from the DIT root to
the entry being named.

Each component of the path that forms the distinguished
name must identify a specific DIT entry. To enable this, we
require that, for any DIT entry, the children of that entry
must have at least one attribute, specified a priori, whose
value distinguishes it from its siblings. (The X.500 repre-
sentation actually allows more than one attribute to be used
to disambiguate names.) Any entry can then be uniquely
named by the list of attribute names and values that identify
its ancestors up to the root of the DIT. For example, consider
the following MDS distinguished name:< hn = dark.mcs.anl.gov,ou = MCS,o = Argonne National Laboratory,o = Globus,c = US >
The components of the distinguished name are listed in little
endian order, with the component corresponding to the root
of the DIT listed last. Within a distinguished name, abbrevi-
ated attribute names are typically used. Thus, in this exam-
ple, the names of the distinguishingattributes are: host name
(HN), organizational unit (OU), organization (O), and coun-
try (C). Thus, a country entry is at the root of the DIT, while
host entries are located beneath the organizational unit level
of the DIT (see Figure 2). In addition to the conventional set
of country and organizational entries (US, ANL, USC, etc.),
we incorporate an entry for a pseudo-organization named
“Globus,” so that the distinguished names that we define do
not clash with those defined for other purposes.

3.2 Object Classes

Each DIT entry has a user-defined type, called its object
class. (LDAP defines a set of standard object class defi-
nitions, which can be extended for a particular site.) The
object class of an entry defines which attributes are associ-
ated with that entry and what type of values those attributes
may contain. For example, Figure 3 shows the definition

4



MDS
Data Model

APIMetacomputing
System

Application MDS
Client Library

SNMP

NIS

LDAP

NWS

Text File

Figure 1. Overview of the architecture of the Metacomputing Directory Service

of the object classes GlobusHost and GlobusResource,
and Figure 4 shows the values associated with a particular
host. The object class definition consists of three parts: a
parent class, a list of required attributes, and a list of optional
attributes.

The SUBCLASS section of the object class definition en-
ables a simple inheritance mechanism, allowing an object
class to be defined in terms of an extension of an existing
object class. The MUST CONTAIN and MAY CONTAIN sec-
tions specify the required and optional attributes found in
an entry of this object class. Following each attribute name
is the type of the attribute value. While the set of attribute
types is extensible, a core set has been defined, including
case-insensitive strings (cis) and distinguished names (dn).

In Figure 3, GlobusHost inherits from the object classGlobusResource. This means that a GlobusHost entry
(i.e., an entry of type GlobusHost) contains all of the at-
tributes required by the GlobusResource class, as well as
the attributes defined within its own MUST CONTAIN sec-
tion. In Figure 4, the administrator attribute is inherited
from GlobusResource. A GlobusHost entry may also
optionally contain the attributes from both its parent’s and
its own MAY CONTAIN section.

Notice that the administrator attribute in Figure 4 con-
tains a distinguished name. This distinguished name acts as
a pointer, linking the host entry to the person entry represent-
ing the administrator. One must be careful not to confuse
this link, which is part of an entry, with the relationships rep-
resented by the DIT, which are not entry attributes. The DIT
should be thought of as a separate structure used to organize
an arbitrary collection of entries and, in particular, to enable
the distribution of these entries over multiple physical sites.
Using distinguishednames as attribute values enables one to
construct more complex relationships than the trees found in
the DIT. The ability to define more complex structures is es-
sential for our purposes, since many distributed computing
structures are most naturally represented as graphs.

4 Data Model

To use the MDS representation for a particular purpose,
we must define a data model in which information of interest
can be maintained. This data model must specify both a DIT
hierarchy and the object classes used to define each type of
entry.

In its upper levels, the DIT used by MDS (see Figure 2)
is typical for LDAP directory structures, looking similar to
the organization used for multinational corporations. The
root node is of object class country, under which we place
first the organization entry representing Globus and then
the organization and organizational unit (i.e., division or
department) entries. Entries representing people and com-
puters are placed under the appropriate organizational units.

The representation of computers and networks is central
to the effective use of MDS, and so we focus on this issue
in this section.

4.1 Representing Networks and Computers

We adopt the framework for representing networks intro-
duced in RFC 1609 [17] as the starting point for the repre-
sentation used in MDS. However, the RFC 1609 framework
provides a network-centric view in which computers are ac-
cessible only via the networks to which they are connected.
We require a representation of networks and computers that
allows us to answer questions such as� Are computers A and B on the same network?� What is the latency between computers C and D?� What protocols are available between computers E and

F?

In answering these questions, we often require access to
information about networks, but questions are posed most
often from the perspective of the computational resource.

5



workstation workstation

workstation

workstation

IBM SP

Argonne National LaboratoryISI at USC
(California) (Illinois)

c=US

ou=ISI

MCS Division

o=ANL

ou=MCS

nn=MCS-LAN

LAN

LAN

WAN

hn=dark.mcs.anl.gov

dark cold

sunny

hot

hn=cold.mcs.anl.gov
Ian Gregor SteveWarrenCarl Steve

cn=Ian Foster

cn=Gregor von Laszewski

cn=Warren Smith

cn=Steve Tuecke

EthernetSwitch

n
1

......

...

...

hn=sp-node-1.mcs.anl.gov

hn=sp-node-n.mcs.anl.gov

nn=SP-Switch

nn=SP-Ethernet

o=USCnn=WAN

o=Globus ...
...

cn=Carl Kesselman

cn=Steve Fitzgerald

Figure 2. A subset of the DIT defined by MDS, showing the organizational nodes for Globus, ANL,
and USC; the organizational units ISI and MCS; and a number of people, hosts, and networks.

That is, they are computer-centric questions. Our data model
reflects this perspective.

A high-level view of the DIT structure used in MDS is
shown in Figure 2. As indicated in this figure, both people
and hosts are immediate children of the organizations in
which they are located. For example, the distinguished
name< hn=dark.mcs.anl.gov,ou=MCS, o=Argonne National Laboratory,o=Globus, c=US >
identifies a computer administered by the Mathematics and
Computer Science (MCS) Division at Argonne National
Laboratory.

Communication networks are also explicitly represented
in the DIT as children of an organization. For example, the
distinguished name< nn=mcs-lan,ou=MCS, o=Argonne National Laboratory,o=Globus, c=US >

represents the local area network managed by MCS.
This distinguished name identifies an instance of aGlobusNetwork object. The attribute values of aGlobusNetwork object provides information about the
physical network link, such as the link protocol (e.g., ATM
or Ethernet), network topology (e.g., bus or ring type), and
physical media (e.g., copper or fiber). As we shall soon

see, logical information, such as the network protocol being
used, is not specified in the GlobusNetwork object but is
associated with a GlobusNetworkImage object. Networks
that span organizations can be represented by placing theGlobusNetwork object higher in the DIT.

Networks and hosts are related to one another viaGlobusNetworkInterfaceobjects: hosts contain network
interfaces, and network interfaces are attached to networks.
A network interface object represents the physical charac-
teristics of a network interface (such as interface speed) and
the hardware network address (e.g. the 48-bit Ethernet ad-
dress in the case of Ethernet). Network interfaces appear
under hosts in the DIT, while a network interface is as-
sociated with a network via an attribute whose value is a
distinguished name pointing to a GlobusNetwork object.
A reverse link exists from the GlobusNetwork object back
to the interface.

To illustrate the relationship between GlobusHost,GlobusNetwork, and GlobusNetworkInterfaceobjects,
we consider the configuration shown in Figure 5. This con-
figuration consists of an IBM SP parallel computer and two
workstations, all associated with MCS. The SP has two net-
works: an internal high-speed switch and an Ethernet; the
workstations are connected only to an Ethernet. Although
the SP Ethernet and the workstation Ethernet are connected
via a router, we choose to represent them as a single net-
work. An alternative, higher-fidelity MDS representation
would capture the fact that there are two interconnected
Ethernet networks.

6



GlobusHost OBJECT CLASS GlobusResource OBJECT CLASSSUBCLASS OF GlobusResource SUBCLASS OF GlobusTopMUST CONTAIN { MUST CONTAIN {hostName :: cis, administrator :: dntype :: cis, }vendor :: cis, MAY CONTAIN {model :: cis, manager :: dn,OStype :: cis, provider :: dn,OSversion :: cis technician :: dn,} description :: cis,MAY CONTAIN { documentation :: cisnetworkNode :: dn, }totalMemory :: cis,totalSwap :: cis,dataCache :: cis,instructionCache :: cis}
Figure 3. Simplified versions of the MDS object classes GlobusHost and GlobusResourcedn: hn=dark.mcs.anl.gov, ou=MCS,o=Argonne National Laboratory, o=Globus, c=USobjectclass: GlobusHostobjectclass: GlobusResourceadministrator: cn=John Smith, ou=MCS,o=Argonne National Laboratory, o=Globus, c=UShostName: dark.mcs.anl.govtype: sparcvendor: Sunmodel: SPARCstation-10OStype: SunOSOSversion: 5.5.1

Figure 4. Sample data representation for an MDS computer

The MDS representation for Figure 5 is shown in Fig-
ure 6. Each host and network in the configuration appear
in the DIT directly under the entry representing MCS at Ar-
gonne National Laboratory. Note that individual SP nodes
are children of MCS. This somewhat unexpected represen-
tation is a consequence of the SP architecture: each node
is a fully featured workstation, potentially allowing login.
Thus, the MDS representation captures the dual nature of
the SP as a parallel computer (via the switch network object)
and as a collection of workstations.

As discussed above, theGlobusNetworkInterfaceob-
jects are located in the DIT under the GlobusHost objects.
Note that a GlobusHost can have more than one network
interface entry below it. Each entry corresponds to a dif-
ferent physical network connection. In the case of an SP,

each node has at least two network interfaces: one to the
high-speed switch and one to an Ethernet. Finally, we see
that distinguished names are used to complete the repre-
sentation, linking the network interface and network object
together.

4.2 Logical Views and Images

At this point, we have described the representation of a
physical network: essentially link-level aspects of the net-
work and characteristics of network interface cards and the
hosts they plug into. However, a physical network may sup-
port several “logical” views, and we may need to associate
additional information with these logical views. For exam-
ple, a single network might be accessible via several different

7



ou=MCS

MCS-LAN SP-Switch

... ...

...

sp
node1

workstation
A

workstation
B ...

sp
node n

nin=
nin=nin=

nn=

...

hn= hn=

Figure 6. The MDS representation of the configuration depicted in Figure 5, showing host (HN),
network (NN), and network interface (NIN) objects. The dashed lines correspond to “pointers”
represented by distinguished name attributes

E t h e r n e t

S w i t c h

...

SP2

Workstations

Argonne National Laboratory

Figure 5. A configuration comprising two net-
works and N+2 computers

protocol stacks: IP, Novell IPX, or vendor-provided libraries
such as MPI. Associated with each of these protocols can
be distinct network interface and performance information.
Additionally, a “partition” might be created containing a
subset of available computers; scheduling information can
be associated with this object.

The RFC 1609 framework introduces the valuable con-

cept of images as a mechanism for representing multiple
logical views of the same physical network. We apply
the same concept in our data model. Where physical net-
works are represented by GlobusHost, GlobusNetwork,
and GlobusNetworkInterface object classes, network
images are repre-
sented by GlobusHostImage,GlobusNetworkImage, andGlobusNetworkInterfaceImage object classes. Each
image object class contains new information associated
with the logical view, as well as a distinguished name
pointing to its relevant physical object. In addition, a
physical object has distinguished name pointers to all of
the images that refer to it. For example, one may use
both IP and IPX protocols over a single Ethernet interface
card. We would represent this in MDS by creating twoGlobusNetworkInterfaceImageobjects. One image ob-
ject would represent the IP network and contain the IP ad-
dress of the interface, as well as a pointer back to the object
class representing the Ethernet card. The second image ob-
ject would contain the IPX address, as well as a distinguished
name pointing back to the same entry for the Ethernet card.
The GlobusNetworkInterface object would include the
distinguished names of both interface images.

The structure of network images parallels that of the cor-
responding physical networks, with the exception that not
all network interfaces attached to a host need appear in an
image. To see why, consider the case of the IBM SP. One

8



might construct a network image to represent the “parallel
computer” view of the machine in which IBM’s proprietary
message-passing library is used for communication. Since
this protocol cannot be used over the Ethernet, this image of
the network will not contain images representing the Ether-
net card. Note that we can also produce a network image
of the SP representing the use of IP protocols. This view
may include images of both the switch and Ethernet network
interfaces.

4.3 Questions Revisited

At this stage we have gone quite deeply into the repre-
sentation of computers and networks but have strayed rather
far from the issue that motivated the MDS design, namely,
the configuration of high-performance distributed compu-
tations. To see how MDS information can be used, let us
revisit the questions posed in Section 1 with respect to the
use of multiple computers on the I-WAY:� What are the network interfaces (i.e., IP addresses)

for the ATM network and Internet? A host’s IP ad-
dress on the ATM network can be found by look-
ing for a GlobusNetworkInterface that is point-
ing to a GlobusNetwork with a link protocol at-
tribute value of ATM. From the interface, we find theGlobusNetworkInterfaceImage representing an IP
network, and the IP address will be stored as an attribute
in this object.� What is the raw bandwidth of the ATM network and
the Internet, and which is higher? Is the ATM network
currently available? The raw bandwidth of the ATM
network will be stored in the I-WAY GlobusNetwork
object. Information about the availability of the ATM
network can also be maintained in this object.� Between which pairs of nodes can we use vendor proto-
cols to access fast internal networks? Between which
pairs of nodes must we use TCP/IP? Two nodes can
communicate using a vendor protocol if they both point
to GlobusHostImage objects that belong to the sameGlobusNetworkImage object.

Note that the definition of the MDS representation, API, and
data model means that this information can be obtained via
a single mechanism, regardless of the computers on which
an application actually runs.

5 Implementation

We have discussed how information is represented in
MDS, and we have shown how this information can be used
to answer questions about system configuration. We now

turn our attention to the MDS implementation. Since our
data model has been defined completely within the LDAP
framework, we could in principle adopt the standard LDAP
implementation. This implementation uses a TCP-based
wire protocol and a distributed collection of servers, where
each server is responsible for all the entries located within a
complete subtree of the DIT. While this approach is suitable
for a loosely coupled, distributed environment, it has three
significant drawbacks in a high-performance environment:� Single information provider. The LDAP implemen-

tation assumes that all information within a DIT subtree
is provided by a single information provider. (While
some LDAP servers allow alternative “backend” mech-
anisms for storing entries, the same backend must be
used for all entries in the DIT subtree.) However, re-
stricting all attributes to the same information provider
complicates the design of the MDS data-model. For
example, the IP address associated with a network in-
terface image can be provided by a system call, while
the network bandwidth available through that interface
is provided by a service such as the Network Weather
Service (NWS) [23].� Client/server architecture. The LDAP implementa-
tion requires at least one round-trip network commu-
nication for each LDAP access. Frequent MDS ac-
cesses thus becomes prohibitively expensive. We need
a mechanism by which MDS data can be cached locally
for a timely response.� Scope of Data. The LDAP implementation assumes
that any piece of information may be used from any
point in the network (within the constraints of access
control). However, a more efficient implementation of
attribute update can be obtained if one can limit the
locations from which attribute values can be accessed.
The introduction of scope helps to determine which
information must be propagated to which information
providers, and when information can be safely cached.

Note that these drawbacks all relate to the LDAP im-
plementation, not its API. Indeed, we can adopt the LDAP
API for MDS without modification. Furthermore, for those
DIT subtrees that contain information that is not adversely
affected by the above limitations, we can pass the API calls
straight through to an existing LDAP implementation. In
general, however, MDS needs a specialized implementation
of the LDAP API to meet the requirements for high perfor-
mance and multiple information providers.

The most basic difference between our MDS implemen-
tation and standard LDAP implementations is that we allow
information providers to be specified on a per attribute ba-
sis. Referring to the above example, we can provide the IP

9



address of an interface via SNMP, the current available band-
width via NWS, and the name of the machine into which the
interface card is connected. Additionally, these providers
can store information into MDS on a periodic basis, thus
allowing refreshing of dynamic information. The specifi-
cation of which protocol to use for each entry attribute is
stored in an object class metadata entry. Metadata entries
are stored in MDS and accessed via the LDAP protocol.

In addition to specifying the access protocol for an at-
tribute, the MDS object class metadata also contains a time-
to-live (TTL) for attribute values and the update scope of the
attribute. The TTL data is used to enable caching; a TTL of
0 indicates that the attribute value cannot be cached, while a
TTL of �1 indicates that the data is constant. Positive TTL
values determine the amount of time that the attribute value
is allowed to be provided out of the cache before refreshing.

The update scope of an attribute limits the readers of an
updated attribute value. Our initial implementation consid-
ers three update scopes: process, computation, and global.
Process scope attributes are accessible only within the same
process as the writer, whereas computation scope attributes
can be accessed by any process within a single computation,
and global scope attributes can be accessed from any node
or process on a network.

6 MDS Applications in Globus

We review briefly some of the ways in which MDS in-
formation can be used in high-performance distributed com-
puting. We focus on applications within Globus, an infras-
tructure toolkit providing a suite of low-level mechanisms
designed to be used to implement a range of higher-level
services [9]. These mechanisms include communication,
authentication, resource location, resource allocation, pro-
cess management, and (in the form of MDS) information
infrastructure.

The Globus toolkit is designed with the configuration
problem in mind. It attempts to provide, for each of its
components, interfaces that allow higher-level services to
manage how low-level mechanisms are applied. As an ex-
ample, we consider the problem referred to earlier of select-
ing network interfaces and communication protocols when
executing communication code within a heterogeneous net-
work. The Globus communication module (a library called
Nexus [10]) allows a user to specify an application’s com-
munication operations by using a single notation, regardless
of the target platform: either the Nexus API or some library
or language layered on top of that API. At run-time, the
Nexus implementation configures a communication struc-
ture for the application, selecting for each communication
link (a Nexus construct) the communication method that is
to be used for communications over that link [7]. In mak-
ing this selection for a particular pair of processors, Nexus

first uses MDS information to determine which low-level
mechanisms are available between the processors. Then, it
selects from among these mechanisms, currently on the basis
of built-in rules (e.g., “ATM is better than Internet”); rules
based on dynamic information (“use ATM if current load
is low”), or programmer-specified preferences (“always use
Internet because I believe it is more reliable”) can also be
supported in principle. The result is that application source
code can run unchanged in many different environments,
selecting appropriate mechanisms in each case.

These method-selection mechanisms were used in the
I-WAY testbed to permit applications to run on diverse het-
erogeneous virtual machines. For example, on a virtual
machine connecting IBM SP and SGI Challenge comput-
ers with both ATM and Internet networks, Nexus used three
different protocols (IBM proprietary MPL on the SP, shared-
memory on the Challenge, and TCP/IP or AAL5 between
computers) and selected either ATM or Internet network
interfaces, depending on network status [8].

Another application for MDS information that we are
investigating is resource location [22]. A “resource bro-
ker” is basically a process that supports specialized searches
against MDS information. Rather than incorporate these
search capabilities in MDS servers, we plan to construct
resource brokers that construct and maintain the necessary
indexes, querying MDS periodically to obtain up-to-date
information.

7 Summary

We have argued that the complex, heterogeneous, and
dynamic nature of high-performance distributed computing
systems requires an information-rich approach to system
configuration. In this approach, tools and applications do
not rely on defaults or programmer-supplied knowledge to
make configuration choices. Instead, they base choices on
information obtained from external sources.

With the goal of enabling information-rich configuration,
we have designed and implemented a MetacomputingDirec-
tory Service. MDS is designed to provide uniform, efficient,
and scalable access to dynamic, distributed, and diverse in-
formation about the structure and state of resources. MDS
defines a representation (based on that of LDAP), a data
model (capable of representing various parallel computers
and networks), and an implementation (which uses caching
and other strategies to meet performance requirements). Ex-
periments conducted with the Globus toolkit (particularly in
the context of the I-WAY) show that MDS information can
be used to good effect in practical situations.

We are currently deploying MDS in our GUSTO dis-
tributed computing testbed and are extending additional
Globus components to use MDS information for configura-
tion purposes. Other directions for immediate investigation

10



include expanding the set of information sources supported,
evaluating performance issues in applications, and develop-
ing optimized implementations for common operations. In
the longer term, we are interested in more sophisticated ap-
plications (e.g., source routing, resource scheduling) and in
the recording and use of application-generated performance
metrics.

Acknowledgments

We gratefully acknowledge the contributions made by
Craig Lee, Steve Schwab, and Paul Stelling to the design and
implementation of Globus components. This work was sup-
ported by the Defense Advanced Research Projects Agency
under contract N66001-96-C-8523 and by the Mathemati-
cal, Information, and Computational Sciences Division sub-
program of the Office of Computational and Technology
Research, U.S. Department of Energy, under Contract W-
31-109-Eng-38.

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod:
A tool for performing parameterised simulations using dis-
tributed workstations. In Proc. 4th IEEE Symp. on High
Performance Distributed Computing. IEEE Computer Soci-
ety Press, 1995.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing ’96. ACM
Press, 1996.

[3] R. Butler and E. Lusk. Monitors, message, and clusters:
The p4 parallel programming system. Parallel Computing,
20:547–564, April 1994.

[4] H. Casanova and J. Dongarra.Netsolve: A network server for
solving computational science problems. Technical Report
CS-95-313, University of Tennessee, Nov. 1995.

[5] J. Czyzyk, M. P. Mesnier, and J. J. Moré. The Network-
Enabled Optimization System (NEOS) Server. Preprint
MCS-P615-0996, Argonne National Laboratory, Argonne,
Illinois, 1996.

[6] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuh-
fuss. Overview of the I-WAY: Wide area visual supercomput-
ing. International Journal of Supercomputer Applications,
10(2):123–130, 1996.

[7] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Manag-
ing multiple communication methods in high-performance
networked computing systems. Journal of Parallel and Dis-
tributed Computing, 40:35–48, 1997.

[8] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke.
Software infrastructure for the I-WAY high-performance dis-
tributed computing experiment. In Proc. 5th IEEE Symp. on
High Performance Distributed Computing, pages 562–571.
IEEE Computer Society Press, 1996.

[9] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of Supercomputer
Applications, 1997. To appear.

[10] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach
to integrating multithreading and communication. Journal
of Parallel and Distributed Computing, 37:70–82, 1996.

[11] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek,
and V. Sunderam. PVM: Parallel Virtual Machine—A User’s
Guide and Tutorial for Network Parallel Computing. MIT
Press, 1994.

[12] A. Grimshaw, J. Weissman, E. West, and E. Lyot, Jr. Meta-
systems: An approach combining parallel processing and
heterogeneous distributed computing systems. Journal of
Parallel and Distributed Computing, 21(3):257–270, 1994.

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22:789–828,
1996.

[14] S. Heker, J. Reynolds, and C. Weider. Technical overview
of directory services using the x.500 protocol. RFC 1309,
FY14, 03/12 92.

[15] T. Howes and M. Smith. The ldap application program in-
terface. RFC 1823, 08/09 95.

[16] M. Litzkow, M. Livney, and M. Mutka. Condor - a hunter
of idle workstations. In Proc. 8th Intl Conf. on Distributed
Computing Systems, pages 104–111, 1988.

[17] G. Mansfield, T. Johannsen, and M. Knopper. Charting net-
works in the x.500 directory. RFC 1609, 03/25 94. (Experi-
mental).

[18] B. C. Neumann and S. Rao. The Prospero resource manager:
A scalable framework for processor allocation in distributed
systems. Concurrency: Practice & Experience, 6(4):339–
355, 1994.

[19] D. Reed, C. Elford, T. Madhyastha,E. Smirni, and S. Lamm.
The Next Frontier: Interactive and Closed Loop Performance
Steering. In Proceedings of the 1996 ICPP Workshop on
Challenges for Parallel Processing,pages 20–31,Aug. 1996.

[20] J. Reynolds and C. Weider. Executive introduction to direc-
tory services using the x.500 protocol. RFC 1308, FYI 13,
03/12 92.

[21] M. Rose. The Simple Book. Prentice Hall, 1994.
[22] G. von Laszewski. A Parallel Data Assimilation System

and Its Implications on a Metacomputing Environment. PhD
thesis, Syracuse University, Dec. 1996.

[23] R. Wolski. Dynamically forecasting network performance
using the network weather service. Technical Report TR-
CS96-494, U.C. San Diego, October 1996.

[24] W. Yeong, T. Howes, and S. Kille. Lightweight directory
access protocol. RFC 1777, 03/28 95. Draft Standard.

11


